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Abstract

Nearly all mammals have a vibrissal system specialized for tactile sensation, composed of

whiskers growing from sensor-rich follicles in the skin. When a whisker deflects against an

object, it deforms within the follicle and exerts forces on the mechanoreceptors inside. In

addition, during active whisking behavior, muscle contractions around the follicle and

increases in blood pressure in the ring sinus will affect the whisker deformation profile. To

date, however, it is not yet possible to experimentally measure how the whisker deforms in

an intact follicle or its effects on different groups of mechanoreceptors. The present study

develops a novel model to predict vibrissal deformation within the follicle sinus complex.

The model is based on experimental results from a previous ex vivo study on whisker defor-

mation within the follicle, and on a new histological analysis of follicle tissue. It is then used

to simulate whisker deformation within the follicle during passive touch and active whisking.

Results suggest that the most likely whisker deformation profile is “S-shaped,” crossing the

midline of the follicle right below the ring sinus. Simulations of active whisking indicate that

an increase in overall muscle stiffness, an increase in the ratio between deep and superficial

intrinsic muscle stiffness, and an increase in sinus blood pressure will all enhance tactile

sensitivity. Finally, we discuss how the deformation profiles might map to the responses of

primary afferents of each mechanoreceptor type. The mechanical model presented in this

study is an important first step in simulating mechanical interactions within whisker follicles.

Author summary

Many mammals rely on whiskers as a mode of tactile sensation, especially when exploring

in darkness. Active, rhythmic protraction and retraction of the whiskers, commonly

referred to as “whisking,” is observed among many whisker specialist animals. During

whisker-based sensing, forces and moments generated by external stimuli are transmitted

to the base of the whisker shaft inside the follicle. Within the follicle, the interaction
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between the whisker’s deformation and the surrounding tissue determines how different

groups of mechanoreceptors will deform, thereby transducing the mechanical signals into

electrical signals. However, it is not yet possible to experimentally measure this interaction

in vivo. We therefore created a mechanical model of the follicle sinus complex to simulate

whisker deformation within the follicle resulting from external whisker deflection. Our

results provide the first estimate of whisker shape as it deforms in the follicle, during both

passive touch and active whisking. In turn, these shape estimates allow us to predict how

the whisker will deform against different types of mechanoreceptors at different locations

within the follicle. In addition, we find that both intrinsic muscle contraction and an

increase in blood pressure will improve the tactile sensitivity of the whisker system.

Introduction

Nearly all mammals have an extensive vibrissal (whisker) system [1], and many are specialized

to actively gather tactile information from the environment [2–4]. Unlike an insect antenna, a

whisker has no mechanoreceptors along its length. Instead, external mechanical stimuli are

transmitted to a richly innervated follicle at the whisker base [5–10], where mechanoreceptors

transduce the mechanical information into electrical signals [11,12]. Therefore, in order to

understand how an animal detects, localizes, and perceives a whisker-based tactile stimulus, it

is essential to understand how deformation of the whisker outside the follicle causes deforma-

tion of the whisker inside the follicle.

Whisker and follicle systems are thought to be traits of very basal mammals [13–15], or

even the mammal-like reptile cynodonts [16–18], and whisker anatomy is strikingly similar

for multiple species across a broad swath of the mammalian family tree. A list of these species

helps impart an appreciation for the remarkable range of animals that share similar follicle

characteristics and for the importance of this sensing modality in mammals: the rakali (water

rat; Hydromys chrysogaster) [19], naked mole-rats (Heterocephalus glaber) [20], tree squirrels

(Sciurus vulgaris) [21], shrews (Sorex araneus) [22], rock hyrax (Procavia capensis) [23], tam-

mar wallaby (Macropus eugenii) [24], manatee (Trichechus manatus) [25,26], harbor seal

(Phoca vitulina) [27], ringed seal (Pusa hispida) [28], California sea lion (Zalophus california-
nus) [29], sea otter (Enhydra lutris) [30], bearded seal (Erignathus barbatus) [31], Eurasian

otter and pole cat (Lutra lutra and Mustela putorius) [32], rats and cats (Rattus norvegicus and

Felis catus) [11].

Across these species, lengthwise cross-sectioning of each follicle is near-cylindrical

(bearded-seal, pole cat, ringed seal, sea otter, and shrew), ovular (rat, cat, rock hyrax, wallaby,

and manatee), or can resemble an inverted vase (squirrel). Regardless of shape, however, all

follicles are densely packed with mechanoreceptors, often including Merkel, lanceolate, and

club-like endings, and all contain one or more blood sinuses, which have been postulated to

help regulate sensor sensitivity based on variations in blood pressure [33–36].

An animal’s perception of a tactile stimulus will be determined by how these mechanore-

ceptors transduce mechanical deformation into neural signals, which will in turn be deter-

mined by how the vibrissa deforms within the follicle. Additionally, the particular profile of

whisker deformation has the potential to actuate different populations of mechanoreceptors

along the length of the follicle.

To begin to quantify the deformation of the whisker within the follicle, Whiteley et al. [37]

recently performed an experiment to determine how the internal follicle tissue at the ring

sinus (RS) level deformed in response to a vibrissal deflection. With the caveats that this
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experiment was performed ex vivo, and that it examined only a small region of the whisker fol-

licle sinus complex (FSC), the data from Whiteley et al. [37] provide ground truth measure-

ments of the tissue displacements that result from passive whisker deformation relative to the

follicle. These data thus provide a starting point for predicting more complex whisker-follicle

interactions.

The present study was undertaken to investigate the deformation profile of the whisker

within the follicle. In the present study, we develop a mechanical model of the FSC that repli-

cates the deformation profile observed in passive conditions [37] and examine features that

change during active whisking. These profiles allow us to predict how the whisker will deform

against different types of mechanoreceptors at different locations within the follicle. Results

also show that active muscle contraction, as well as blood pressure increases during the arousal

concomitant with active exploration, may both help enhance tactile sensitivity.

Materials and methods

Ethics statement

All experiments involving animals were approved in advance by the Institutional Animal Care

and Use Committee of Northwestern University.

Anatomical experiments to estimate tissue stiffness along the follicle length

To obtain estimates of tissue stiffness within the follicle, we sectioned four mystacial pads of

three adult (3–8 months), female, Long Evans rats (Rattus norvegicus). After use in unrelated

electrophysiology experiments, rats were perfused with 1x phosphate-buffered saline solution

(PBS) with 10 units/ml heparin and then with HistoChoice. The mystacial pad tissue was dis-

sected away from the underlying bone and placed in 100% HistoChoice overnight. After 24

hours, tissue was sequentially cryoprotected in 10%, 20%, and 30% sucrose in PBS, each until

osmotic pressure was equalized, as indicated by the tissue resting on the bottom of the vial. Tis-

sue was then flash-frozen in Optimal Cutting Temperature compound (Tissue-Tek O.C.T.,

Sakura Finetek) on a level aluminum block partially submerged in liquid nitrogen, and sec-

tioned at 20 microns on an upright freezing microtome.

Tissue sections were mounted on gelatin coated slides using a 4% paraformaldehyde solu-

tion for 15 min, and then permeabilized with acetone for 5 min. Sections were washed,

bleached, and stained in Mallory’s Phosphotungstic Acid Hematoxilin (PTAH) [38], washed

again and dehydrated; stained in 0.1% Fast Green in ethanol; and finally washed, cleared, and

placed under cover slips. Fast Green stains collagen blue-green, while PTAH stains muscle stri-

ations purple-blue and many tissues (including collagen) various shades of red-pink. When we

double-stained for collagen and muscle, the pink PTAH pigments were washed out with etha-

nol and the collagen was re-stained with Fast Green to achieve darker and more distinct color.

Each slide-mounted section of a whole pad was placed under a Zeiss Opmi 6-CFC dissecting

microscope. Photomicrographs were taken at 8x magnification with a Canon Digital Rebel

camera.

Overview of an ex vivo whisker deflection experiment

To constrain some model parameters, we used data from a study that experimentally quanti-

fied tissue deformation in an ex vivo preparation [37]. In these experiments, the displacement

of tissue internal to the follicle near the RS level is imaged during external deflection of the

whisker. An overview of the experimental procedure is provided here.
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Briefly, Whiteley et al. [37] dissected the C-row of whiskers, suspended C1 horizontally in a

petri dish, with flanking follicles supported by silicone, and deflected the C1 whisker proxi-

mally (~7mm) and horizontally with a high-resolution manipulator (Fig 1A). The wall of the

actuated follicle at the level of the ringwulst was dissected, providing a window (~1×1mm2) for

imaging the relative displacement of fluorescently labeled Merkel cells. Relative displacement

was calculated as the difference between pre-deflection position of a Merkel cell, and its posi-

tion at the peak of whisker deflection, from z-stacks of two-photon images. Displacement was

considered using a cylindrical coordinate system within the follicle consisting of 3 dimensions:

radial (displacement perpendicular to the whisker), longitudinal (displacement along the whis-

ker), and polar (rotation around the whisker, clockwise from dorsal axis being 0˚) (Fig 1B).

Whiteley et al.’s results indicated that the whisker at the RS level moves to the opposite side of

the follicle, in the direction of deflection. Total displacement in the three dimensions was

4.8μm. Finally, no sign change of radial displacement was identified in the observed window.

A beam-and-spring model for the vibrissa displacement in the FSC

We created a beam-and-spring model (Fig 2A) to simulate deformation of the vibrissa in the

follicle and the follicle in the tissue. Two beams and six springs were used.

The whisker is represented by a Bernoulli-Euler beam [39] and the follicle wall by a rigid

beam. The tissue distribution internal to the follicle wall is modeled by four internal springs
(k1, k2, k3, and k4), chosen at the locations of the hair bulb (HB), the cavernous sinus (CS), the

RS, and the follicle entrance. These locations were chosen based on the approximation that

material properties are similar within each of the three partitioned regions. The connective tis-

sue and muscle outside of the follicle are represented by two external springs (k5 and k6), repre-

senting the locations of the two contact points of the intrinsic muscles at the top and bottom of

the follicle, respectively. The adjacent follicles and distant facial tissue are indicated as rigid

ground in the schematic, and their elastic properties are accounted for in the choices of k5 and

k6. This approximation is appropriate because in all experiments and simulations presented in

this work, only a single follicle is deflected at a time. Simulating simultaneous deflection of

multiple whiskers is a topic for future work.

We emphasize that the schematic is not intended to imply that either tissue or muscle inser-

tion points exist only on one edge of the follicle. Tissue surrounds the follicle and the whisker

Fig 1. Schematic of the experimental procedure and coordinate systems used in Whiteley et al. [37]. (A) A row of

follicles pinned to silicone base, immersed in artificial cerebrospinal fluid for two-photon imaging. A single whisker

was deflected by displacing the glass capillary in rostral or caudal directions, while the dorsal surface of the follicle was

exposed and imaged. TPLSM: two-photon laser scanning microscope; aCSF: artificial cerebrospinal fluid. (B) A

cylindrical coordinate system was used for displacement analysis of the tissue between the whisker (purple cylinder)

and the follicle. A section of the Merkel cell dense region at the level of the ringwulst was imaged. Radial distance (r)

measures displacements perpendicular to the vibrissa; polar angle (α) measures displacements around the

circumference of the vibrissa; and longitudinal distance (l) measures displacements along the vibrissa length. MDR:

Merkel-cell dense region; Rw: ringwulst.

https://doi.org/10.1371/journal.pcbi.1007887.g001
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shaft on all sides. However, the model only simulates whisker deflection in the rostrocaudal

direction (in line with the intrinsic muscles). In this model, complex mechanical effects,

including normal and shear effects from other dimensions, are simplified to act only in the

plane of whisker movement. In other words, the model is “pseudo-3D” since it allows move-

ment only in one plane (2D), but incorporates tissue effects in all dimensions. Furthermore,

placing springs on one side is mathematically equivalent to modeling the mechanics on both

sides of the movement direction, because compression and tension can be modeled with the

identical spring with a sign change.

Although this model is simplified, we emphasize that our goal is only to simulate the overall

whisker deformation, not the exact internal tissue displacement and strain. The model cap-

tures the essential features of the follicle stiffness distribution and allows examination of a

finite, but wide, range of spring stiffnesses. The model is well suited for finite element method

analysis. The solution to this problem employs a standard approach of stiffness matrix assem-

bly [40]. A proper decomposition of the structure for finite element analysis is shown in

Fig 2B.

Fig 2. The mechanical formulation of the beam-and-spring model for the FSC. (A) The beam-and-spring model of

the vibrissa and tissue. The tissue inside the follicle is modeled by four internal springs (k1, k2, k3, and k4), colored in

green and placed at anatomically relevant locations. The tissue outside the follicle is modeled by two external springs

(k5 and k6), colored in orange. Although the springs are illustrated only on one side, they act on both sides, or more

precisely, all around the shaft. The vibrissa is represented as a purple line, and the follicle wall is an orange line. The

follicle system is supported by the rest of the tissue on the face, considered to be far away and thus indicated as ground.

The overall length of the follicle is L, from the base to apex. (B) The finite element definition of the vibrissa-follicle

structure. The entire structure is modeled by 13 elements (beam segments and springs) denoted by black circled

indices. There are a total of 20 degrees of freedom (DOFs) denoted by orange arrows and indices. Single headed orange

arrows denote translations; double-headed orange arrows denote rotations. Elements 1~4 represent the segments of

the vibrissa, elements 5~7 represent the segments of the follicle wall, and elements 8~13 represent six springs.

https://doi.org/10.1371/journal.pcbi.1007887.g002
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With these definitions, we define the global displacement matrix

dT
¼ ½u1; y2; u3; y4; u5; y6; u7; y8; u9; y10; u11; y12; u13; y14; u15; y16; u17; y18; u19; u20� ð1Þ

where the translational displacements and rotational displacements are denoted by u and θ,

respectively.

The stiffness matrices for elements 1 to 7 are

K ðiÞ ¼

12EiIi
L3
i
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i
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ai

bi

ci

di

ai bi ci di

; i 2 f1; 2; 3; 4; 5; 6; 7g; ð2Þ

where E is Young’s modulus, I is the moment of inertia (= πR4/4, R: vibrissa base radius), and

L is the length of the corresponding element. The indices [ai, bi, ci, di] below and to the right of

the matrix correspond to the indices of the DOFs for the i-th element when it is added to a

global stiffness matrix. For example, [a1, b1, c1, d1] = [1,2,3,4] for element 1.

Similarly, the stiffness matrices for elements 8 to 13 are

KðiÞ ¼

ki� 7 � ki� 7

� ki� 7 ki� 7

" # ai

bi
ai bi

; i 2 f8; 9; 10; 11; 12; 13g; ð3Þ

where ki-7 are the spring constants for the i-th element. The indices [ai, bi] below and to the

right of the matrix correspond to the indices of the DOFs at each end of the i-th element when

it is added to a global stiffness matrix. For example, [a10, b10] = [5,15] for element 10.

When the global stiffness matrix is constructed, linear shape functions reflect the assump-

tion of constant Young’s modulus along the vibrissa. The global stiffness matrix is a 20-dimen-

sional sparse square matrix, assembled by adding up values from local stiffness matrices

sharing the same indices pair defined previously, or by using the scatter operator L(i), depen-

dent on indices for corresponding DOFs, to stack the local stiffness matrices to a global sparse

matrix. The result is

K ¼
X13

i¼1

LðiÞTKðiÞLðiÞ ð4Þ

In addition to the natural boundary condition that u19 = u20 = 0, we also apply the essential

boundary condition that θ8 = -10˚, to simulate a 10˚ deflection of the vibrissa. By using penalty

method [41,42], the overall stiffness matrix and force matrix is given by

K tot ¼ K þ diagð0; 0; 0; 0; 0; 0; 0; b; 0; 0; 0; 0; 0; 0; 0; 0; 0; 0;b; bÞ ð5Þ

f ¼ ½0; 0; 0; 0; 0; 0; 0; b�y8; 0; 0; 0; 0; 0; 0; 0; 0; 0; 0;b�u19; b�u20�
T

ð6Þ
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where β is a very large number usually 107 to the average K(ii) to enforce the natural boundary

conditions. In our calculation, we choose β = 107E (Young’s modulus).

The nodal displacements are then related to the nodal forces by

d ¼ K � 1f ð7Þ

The shear force V(x) along the vibrissa is simply the cumulative sum of the forces caused by

the deformation of those springs. For the Euler-Bernoulli beam, the deflection of the beam u

(x) is fully described by the equation

EI
d3uðxÞ
dx3

¼ VðxÞ; x 2 ½0; L� ð8Þ

The Young’s modulus (E) for the vibrissa is estimated to be 3.5GPa based on several studies

[43,44], the follicle length (L) is measured to be ~1mm, and the diameter of the vibrissa near

its base is assumed to be ~150μm [11]. Note that because the displacements can be expressed

in a nondimensional form, change in these estimates simply scales the magnitude of displace-

ments. The boundary conditions are the displacement on both ends and the bending moment

on a solved end. In particular, the bending moment for the base of the follicle (free end) is M

(0) = 0.

Upon deflection of a whisker, the follicle will not stay stationary relative to the animal’s

head. We contrast differences and similarities of follicle movement between passive touch and

active whisking qualitatively in Fig 3A. The follicle will be driven either by the deflected whis-

ker (passive touch), or by actuated intrinsic muscle (active whisking).

Fig 3. Relative and absolute displacements during whisker deflection. (A) Illustrations demonstrating mechanical

differences between passive touch and active whisking. Top: the whisker and follicle at their resting locations,

undeflected. Middle: during passive touch, the whisker is deflected by a peg, leading to movement of the loosely-held

follicle. Bottom: during active whisking, the follicle is driven by contracted muscle, which is stiff. In both cases, the

follicle moves upon deflection. (B) Modeling displacement caused by external deflection of the whisker. Left: The

beam-and-spring model of the vibrissa and follicle. The undeflected vibrissa lies along the x-axis. Four springs (k1, k2,

k3, k4) connect the vibrissa (purple) to the follicle wall (orange). Two springs (k5, k6) connect the follicle wall to distant

facial tissue (ground). Middle: The deformation of the vibrissa in response to an external applied force F is composed

of three elemental components: bending, rotation, and translation. Because the follicle wall is modeled as a rigid beam

(i.e., much stiffer than the vibrissa), it displaces only by translation and rotation. Right: Schematic after a 10˚ rostral

rotation of the vibrissa. The absolute displacement u(x) is shown in light purple. The follicle wall displacement f(x) is

shown in light orange.

https://doi.org/10.1371/journal.pcbi.1007887.g003

PLOS COMPUTATIONAL BIOLOGY Vibrissal deformation within the follicle

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1007887 April 1, 2021 7 / 26

https://doi.org/10.1371/journal.pcbi.1007887.g003
https://doi.org/10.1371/journal.pcbi.1007887


We define the following different quantifications of displacement relevant to this study by

showing an example of 10˚ whisker deflection by illustration (Fig 3B). The absolute displace-
ment u(x) of the vibrissa is the difference between its deflected position and its original unde-

flected position for all points on the vibrissa. The deflection of a vibrissa includes bending,

rotation, and translation, all of which contribute to the absolute displacement u(x) of the whis-

ker. S1 Fig contains a simplified and intuitive version of Fig 3B. The follicle wall displacement f

(x) is similarly defined for the follicle wall. Finally, the relative displacement r(x) of the vibrissa

is defined as the difference between u(x) and f(x). The relative displacement is more relevant

than absolute displacement because it determines how the mechanoreceptors along the whis-

ker length interact with the internal tissue.

Results

Overview: Novelty of results and limitations on their interpretation

The present work provides the first estimate of the shape of the whisker as it deforms in the fol-

licle, during both passive touch and active whisking. These shape estimates in turn allow us to

predict how the whisker will push into (and pull against) different types and groups of mecha-

noreceptors at different locations within the follicle, and these ideas are elaborated extensively

in the Discussion. The model also makes predictions for how muscle and tissue stiffness, as

well as blood pressure in the RS, will affect the whisker’s deformation profile in the follicle, and

thus ultimately how they will affect mechanoreceptors and the rat’s tactile sensitivity.

All results of the present work should be interpreted in a semi-quantitative manner. The

model can predict the order of magnitude of relative displacements of the whisker shaft at differ-

ent locations within the follicle. In addition, the present results apply only to quasi-static condi-

tions, and thus cannot be applied to whisker collisions, vibrations, texture exploration, or airflow.

Parameter constraints and optimization

Although the structure of the mechanical model has been established based on anatomy (Fig

3), the values of the spring constants representing the tissue stiffness are as yet unconstrained.

To constrain some of the stiffness values in the model we used prior experimental work as well

as a new anatomical analysis.

Skin stiffness imposes constraints on k4, k5, and k6. We begin by constraining k4, k5,

and k6. The two external springs (k5 and k6) represent the muscle attachment and model the

rotation and the translation of the follicle within the tissue. Consider the case that the whisker

is deflected when the intrinsic muscle outside the follicle is relaxed (e.g., when the animal is

anesthetized, resting, or unprepared for an external stimulus). In this case, relaxed muscle

together with other connective tissue is representative of the overall skin stiffness (8MPa for

mouse [45]). Therefore, we approximated the overall skin stiffness in our model as the sum of

k5 and k6 by multiplying the elastic modulus Eskin by the follicle length:

k5 þ k6 � Eskin � L ¼ 8MPa� 1mm � 104N=m ð9Þ

Notice that the ratio of k5 and k6 will depend on the exact state of the intrinsic muscle; this

ratio will become important later in our analysis of active vs. passive deflections. In the simula-

tions that follow, we used a ratio of k6/k5 = 7/3, unless otherwise indicated. This value was cho-

sen to reflect the relatively stiffer skin tissue (near k6) compared to the compliant fat tissue

deeper in the mystacial pad (near k5). Although 7/3 is only an approximation, later results will

demonstrate that this ratio can vary widely without significantly changing the shape of the

deformation profile.

PLOS COMPUTATIONAL BIOLOGY Vibrissal deformation within the follicle

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1007887 April 1, 2021 8 / 26

https://doi.org/10.1371/journal.pcbi.1007887


To constrain the value of k4, the spring at the follicle entrance, we noted that previous work

has indicated that the vibrissa tends to be stiffly clamped as it enters the follicle [46]. It is clear

from the videos associated with this earlier study that the vibrissa displaces very little relative

to the follicle at its entrance. To ensure such a rigid vibrissal-follicle junction, k4 should be

much larger than the unactuated intrinsic muscle stiffness represented by the sum of k5 and

k6. A factor of 100 is sufficient to prevent translation (and permits only rotation) at the follicle

entrance:

k4 � 100ðk5 þ k6Þ ¼ 106N=m ð10Þ

Follicle anatomy imposes constraints on k1, k2, k3, and k4. Having established basic con-

straints for k4, k5, and k6, we next estimated the values for the three remaining internal springs

(k1, k2, and k3). To estimate the internal tissue stiffness at different levels of the follicle, we

carefully examined serial images of mystacial pad tissue sliced so as to reveal follicle cross-sec-

tions (Fig 4).

The follicle is composed two major structural proteins: keratin (stained pink in Fig 4) and

collagen (stained green in Fig 4). Keratin has a higher stiffness and is more resistant to deforma-

tion and displacement. Collagen has a lower stiffness and is more elastic. Because all tissue sec-

tions were processed with identical sectioning and staining techniques, the images serve as

indicators of relative stiffness at different levels of the follicle. We compared relative stiffness

across sections by considering the relative amounts of keratin and collagen in each section, as

well as the density of the tissue as indicated by the darkness of stains. All assessments were made

by looking with the naked eye through the microscope. Three major inferences about relative

stiffness at various levels within and without the FSC can be made from the images in Fig 4.

First, throughout the length of the follicle, the follicle wall is very darkly stained, indicating

that it is stiffer than the other collagen (green-stained) tissues in the image. In addition, the rel-

ative ratio of keratin and collagen in the follicle wall does not appear to change, so the thick-

ness of the follicle wall can be taken as a proxy for its stiffness. The follicle wall is relatively thin

in sections A and B, increases in thickness through section F, and becomes thin again at the far

end (sections G, H, I). Note that the follicle has been sectioned at a slight angle so the follicle

wall is a bit thicker on the caudal side; this effect is particularly noticeable in sections C and F.

This anatomy validates the modeling assumption made in Materials and Methods that the folli-

cle wall is rigid compared to the tissue inside and outside (Fig 3).

Second, the stiffness of the tissue internal to the follicle generally decreases from superficial

to deep. At the skin surface (sections A, B, represented by k4), the whisker (missing) is seen as

a white oval, and is densely surrounded by darkly stained tissue. Consistent with previous

studies [46], sections A and B show that the whisker is held tightly at the apex of the follicle.

This effect is partially attributable to the intrinsic stiffness of the tissue and partially attributed

to the small size of the opening at the apex of the follicle which restricts vibrissal displacement

at the entrance. These features support the previous assumption that k4 should be large. In sec-

tion C, the outer root sheath becomes visible as a dark band around the whisker (white oval),

and the surrounding dense staining indicates that the whisker continues to be held tightly

within the follicle. Starting with level D, near the RS (k3), the whisker begins to be less tightly

held within the follicle, as indicated by the lighter staining between the outer root sheath and

the follicle wall. Sections E and F show even weaker staining inside the follicle near the CS (k2),

indicating a continuing decrease in stiffness. This trend continues through section G, which

approaches the plate, a mat of connective tissue that loosely overlies the bone [47]. Finally, in

sections H and I (k1) we see very diffuse keratinocytes that will become the whisker cortex, and
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the very end of follicle capsule. In these sections the tissue is more hydrated and less dense,

and the whisker is quite loose within the follicle.

Third, the follicle is held fairly tightly within the skin in sections A, B, and C. In section C,

the whisker is primarily surrounded by keratin (stained pink), which is less elastic and tougher

than collagen. By section D, the surrounding matrix is primarily loosely coiled collagen

(stained green) and a large crescent of pale green to white is visible around the follicle’s rostral

Fig 4. Images of horizontal (lengthwise) and parasagittal (cross-sectional) FSC sections permit estimation of relative tissue stiffness. All images were taken at

4x. Left: The image shows a lengthwise cross-section of the A1 vibrissal FSC, assembled from multiple tiled images. Rostral is to the left. The slice does not pass

exactly through the central axis, so the vibrissa (the continuous medial dark vertical line) is actually thinner than the full whisker diameter, and no medulla can be

observed. The large space free of tissue observed around the vibrissa is an artifact of tissue preparation and was not represented in the model (see text for details).

This panel serves only as a depth reference for the right panels and was not used for stiffness estimation. Horizontal black lines, labeled A–I, from superficial to deep

represent the approximate levels at which the cross-sections (right 3x3 panel) were taken, on an equivalent follicle. Scale bar: 1 mm. Right: Cross sections of a single

C3 vibrissa from superficial (section A) to deep (section I). Brightness, contrast, and magenta (R: 255, G: 0, B: 255) saturation were globally increased during post-

processing. The vibrissa is present in sections D, F, G, and H, but has fallen out of the tissue in the remaining sections and is observed as a white oval. The whisker

often falls out during tissue preparation because the keratin from which it is composed is highly cross-linked, and so does not have many available binding sites for

fixative. The whisker in section H is diffuse and appears to be an empty space at 4x, but cells are observable at higher magnification, consistent with other

descriptions of the HB and papilla [11]. A, B: A white oval where the vibrissa would be tightly held by the follicle wall (FW) is in the center of the image, and the

follicle itself is also held tightly in the skin by the tissue. C: The outer root sheath (ORS), a membrane surrounding the vibrissa, is observed as a dark oval. Because

the follicle has been sectioned at a slight angle, the RS (slightly deeper in the follicle) is observable on the rostral side. D: At the level of RS, most of the space inside

the follicle is occupied by blood (brown) or empty space (white). The ORS and inner root sheath (IRS) can both be observed as dark ovals. The vibrissa (V) is held

closely against the IRS, though the outer layer of the hair shaft is not pigmented so appears very light white/gray. E: Leaving the RS, all internal tissue becomes less

stiff, appearing less darkly stained. At the level of CS, the FW is very thick compared to the vibrissa. MF: muscle fiber. F: Medially to the trabecula-dense region of

the CS the internal membranes become denser (darker) but the vibrissa shaft becomes more diffuse, with melanocytes (pigmented portion of the whisker) no longer

segregated to the center of the shaft (more apparent at higher magnification). G, H, I: All surrounding tissue is much less dense towards the end of the follicle, near

the HB level. The whisker is also less dense. By comparing across all sections (A–I) it can be observed that the follicle wall is thin near the apex, thicker in the middle,

and thin again deep in the tissue. Scale bar: 1 mm.

https://doi.org/10.1371/journal.pcbi.1007887.g004
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edge. This lighter staining indicates that the follicle is held loosely in the skin. In section E, the

first fibers of the sling muscle are visible as pink strands running across the rostral arc of the

follicle, and again a space lies between the follicle wall and the muscle fiber, showing that there

is not a lot of connective tissue anchoring the follicle to surrounding tissue. The muscle can

slide across the follicle and the follicle can slide around in the skin very easily. In these images,

we distinguish pink muscles and pink keratin based on the presence of muscle fibers under

microscope. Sections G, H, and I, continue this trend, showing large white/light green rings/

crescents around the follicle that indicate that it is not well anchored in the skin.

Together, the images of Fig 4 suggest that it is reasonable to assume that k1�k2<k4, that

k1�k3<k4, and that k5<k6. We cannot infer anything about the relative values of k2 and k3.

Less pertinent to the purpose of tissue stiffness estimation, we note that there is large space

free of tissue observed around vibrissa in the left panel of Fig 4. This large space around the

whisker shaft occurs partially from tissue shrinkage during cryoprotection, and partially

because the plane of section is off center, and so the image does not include the full width of

the whisker shaft. Although this artifact is visible in the anatomical images, it has no implica-

tions for the model, because the model does not assume any space between the whisker and

surrounding tissue. In other words, the space is an artifact, and we did not include this artifact

in the model.

The deepest internal spring k1 has a negligible effect on deformation near

the RS

The previous section constrained values for the two external springs, k5 and k6, as well as the

most superficial spring, k4. We have also constrained the relative relations for the internal

springs k1, k2, and k3, but have left their exact values uncertain. In this section, we show that

the effect of k1 is negligible regardless of the values k2 and k3, and therefore it can be removed

from the next stage of simulation.

To bracket the possible range of whisker deformation profiles we first investigated how k1

affects the relative displacement, r(x), in the RS region. Specifically, we simulated the rostral

deflection of a vibrissa, and observed the deformation profile of the whisker for different values

of k1, under different combinations of k2 and k3.

Fig 5 illustrates the different possible shapes of the relative displacement given a 10˚ deflec-

tion. The value of k2 changes across plots from top to bottom, and four distinct values of k3 are

indicated as four different colors. For each k2 and k3 combination, changing k1 results in a

shaded area bounded by two extreme deformation profiles. The width of the shaded area can

be as large as 13.0μm microns near the CS (for the smallest value of k2). However, the width of

the shaded area at the RS level is very small for all combinations of k2 and k3 (0.286μm in aver-

age), indicating that the effect of k1 is negligible in this region. Because our primary area of

interest is around the RS in later stages of simulation, we set k1 to an intermediate value (103N/

m) to reduce the degrees of freedom in subsequent parameter tuning.

The internal spring k3 has the largest effect on deformation around the RS

With the value of k1 now fixed, we examined the effect of different k2 and k3 values on the

whisker deformation profiles. Depending on different (k2, k3) pairs, the deformation profile

can take different shapes. Fig 6A shows all possible shapes that a vibrissa might take, with three

typical shapes indicating three major categories of all deformation profiles, C-shapes, S1-shapes,
and S2-shapes. These three different deformation profiles differ by the number of times they

cross the x-axis (the resting position). Fig 6 confirms that the intermediate choice for k1 was

appropriate, as these same three shapes were also apparent in Fig 5. In other words, the choice
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for k1 does not substantively restrict the range of possible deformations profiles of the whisker

in the follicle.

The side(s) on which mechanoreceptors will be directly exposed to stretched or compressed

tissue at different levels are determined by the locations of the x-axis crossings. The C-shaped

profiles remain on a single side of the zero line, opposite the direction of vibrissa deflection. In

contrast, S1-shapes cross the zero line once, near deeper levels of the follicle, below the RS.

Many of the S1-shapes more closely resemble a “hook” or a cane than an “S.” S2-shapes cross

the zero line twice, so they are deformed toward different sides of the follicle at different levels.

Compared with the two S-shaped profiles, C-shapes have relatively low values of both k2 and

k3. S1-shaped profiles have smaller values of k2 than do S2-shaped profiles.

Fig 5. Varying k1 has a negligible effect on whisker deformation near the level of the RS. The schematic of the

follicle at the top provides a visual reference for anatomical locations. Abbreviations: HB: hair bulb; CS: cavernous

sinus; RS: ring sinus. The whisker is simulated to experience a 10˚ deflection for different combinations of spring

constants (k1, k2, k3), and relative displacement r(x) is plotted against the follicle length. The aspect ratio of all plots has

been exaggerated. From top to bottom, each of the four plots shows a different value of k2, increasing from 103N/m to

106N/m, logarithmically spaced. Within each plot, each color indicates a different value of k3, increasing from 104N/m

(orange) to 106N/m (blue), logarithmically spaced. Each single shaded area represents the effect of varying k1 between

102 and 106N/m, for particular values for the other springs (k2 and k3). The width of each shaded area can be quite

large at the level of the CS especially in the top two panels, but small (0.286μm on average) at the level of the RS.

https://doi.org/10.1371/journal.pcbi.1007887.g005

PLOS COMPUTATIONAL BIOLOGY Vibrissal deformation within the follicle

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1007887 April 1, 2021 12 / 26

https://doi.org/10.1371/journal.pcbi.1007887.g005
https://doi.org/10.1371/journal.pcbi.1007887


To further constrain the internal spring constants k2 and k3, as well as the possible deforma-

tion profiles, we noted two features of the experiment by Whiteley, et al. [37]. First, the maxi-

mum tissue displacement near the RS relative to the follicle wall is calculated to be 4.8μm (see

Methods). For small deflections, the maximum tissue displacement usually takes place at the

leading edge (towards the direction of displacement) of the whisker during deformation. We

therefore conservatively restricted the whisker displacement at the RS level to be smaller than

4.8μm. As will become clear, this numerical constraint has a large influence on the range of

feasible profiles, and the consequences of relaxing it will be described in the Discussion. Sec-

ond, there was no sign change of whisker displacement identified in the experiment. We there-

fore added the constraint that, within the window of the RS (x2[0.55L, 0.65L]), the whisker

must displace entirely towards a single side, opposite to the direction of whisker deflection.

With these two additional constraints imposed, we sampled the spring pair (k2, k3) drawn

from a logarithmically spaced grid bounded by 103N/m and 106N/m in both dimensions, and

plotted the relative deformation profiles (Fig 6B). As can be seen, when r(x)|x = 0.6mm is con-

strained to be smaller than 4.8μm, the feasible deformation profile is limited to S1- or S2-

shapes, and the C-shape is excluded. Consistent with the second constraint, all profiles deemed

feasible in Fig 6B (both S1- and S2-shapes) indicate that the tissue is compressed on the side

opposite to the deflection direction throughout the region from the RS to the rete ridge collar

(RRC), and stretched elsewhere.

Fig 6C illustrates the (k2, k3) sample space, with S1- and S2-shaped profiles indicated using

the same color scheme as in Fig 6B. The feasible space of (k2, k3) depends only weakly on k2,

but strongly on k3. The value of k3 determines the whisker displacement around the RS level,

and the value of k2 mostly determines whether the whisker takes an S1- or S2-shape.

Overall, the results shown in Fig 6 reveal two interesting features of vibrissal deformation in

the follicle. First, because the spring at the entrance to the follicle is stiff, the model confirms a

previous hypothesis [48] that a deflected vibrissa pivots about a fulcrum near the follicle apex.

Therefore, in the superficial regions of the follicle, including the RRC and the RS, the vibrissa

will deform in the direction opposite deflection. Although this result is not surprising from a

mechanical perspective, it has important implications for the sensitivities of RS-Merkel and

RRC-Merkel mechanoreceptors, both of which were recently shown to respond strongly in the

(same) direction of vibrissal deflection (not opposite) [49]. Second, the model predicts that

maximal deformation of the vibrissa will occur superficial to the mechanoreceptor-rich RS

Fig 6. Although simulations across all possible (k2, k3) pairs permit both C-shaped and S-shaped deformation profiles, results from ex vivo experiments

are most consistent with S-shaped profiles. (A) Different deformation profiles (r(x)) for different spring pairs (k2, k3) are shown as a cluster of gray curves.

Some typical examples of the deformation profiles of the vibrissa are drawn in black (C-shape), orange (S1-shape), and blue (S2-shape). (B) Deformation profiles

inconsistent with the ex vivo experimental data [37] are deemed infeasible and are drawn in gray. Feasible deformation profiles constrained by limiting the

displacement at the RS level, r(x)|x = 0.6mm, to be smaller than 4.8μm are colored in orange and blue, depending on whether it is S1- or S2-shape. All profiles in

both (A) and (B) have exaggerated aspect ratios for visual clarity. (C) The sampling space for (k2, k3) pairs is shown on a logarithmic scale bounded by [103, 103]

N/m and [106, 106]N/m. The color scheme is the same as in A and B, and the space incompatible with the ex vivo data is marked with gray crosses. The space

compatible with the ex vivo data is marked with orange or blue colored dots.

https://doi.org/10.1371/journal.pcbi.1007887.g006
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area. We note that this second result is largely due to the 4.8μm constraint imposed by the ex
vivo experimental data. If this numerical constraint were relaxed, many of the C-shaped pro-

files would become feasible and much larger deformations in the RS area could occur. These

ideas are elaborated further in the Discussion.

The next sections of this work describe the effects of changing the spring stiffnesses outside

the follicle, assuming the S1- and S2-shaped profiles deemed feasible space in Fig 6. However, it

is important to note that the same analysis (i.e., the results shown in Figs 7 and 8) would

equally well hold for C-shaped profiles.

Deformations of the whisker in the follicle are predicted to be larger during

active whisking than during passive whisker displacement

All previous simulations have assumed a fixed stiffness outside the follicle, established by the

springs k5 and k6. Their sum k5+k6 has been fixed at 104N/m, reflecting the total stiffness out-

side the follicle. As explained earlier in Results, their ratio has been fixed at k6/k5 = 7/3, reflect-

ing the relatively higher stiffness near the skin than deeper in the tissue.

However, we noted that these stiffnesses will change depending on whether the muscles are

relaxed or contracted. We therefore simulated how the whisker displacement in the follicle

would change between a deflection delivered passively versus a deflection generated by active

whisking. We emphasize that the results of this section reveal qualitative trends only, and give

an approximate indication of how deformations of the whisker will change based on behav-

ioral conditions. To simulate the differences between passive and active deflection required

five steps.

Step 1) Notice that stiffness outside the follicle depends not only on the intrinsic muscles, but
also on surrounding tissue, including the skin, surrounding collagenous extracellular matrix, ten-
dons, and the extrinsic musculature. Therefore, both the total stiffness and the balance of stiff-
nesses on the two ends of the follicle will influence follicle motion. The central panel of Fig 7A

schematizes the two intrinsic muscles that connect to a typical follicle, as well as the surround-

ing superficial and deep connective and extrinsic muscle tissue. Inspection of this central panel

indicates that the stiffness of the springs k5 and k6 will depend on the surrounding tissue as

well as the muscles. In addition, the motion of the follicle will be determined both by the total

stiffness of the springs k5 and k6 (their sum), as well as the relative strengths (their ratio).

Notice also that tissue is not schematized in any other diagrams in Fig 7 for visual clarity. In

the following steps, steps 2 through 4 neglect the tissue (focusing only on the muscles), and

step 5 then adds its effects back in.

Step 2) Analyze intrinsic muscle stiffness (neglect tissue): notice that the direction of deflection
determines whether the intrinsic muscles compress or lengthen. The left and right panels of Fig

7A indicate the direction of reaction forces exerted by the muscles on the follicle when the

vibrissa is deflected rostrally (left panel) and caudally (right panel). In these diagrams, all forces

are indicated to act horizontally for visual simplicity, but a similar analysis holds if the force

contains a vertical component. When the whisker is deflected rostrally, the intrinsic muscles

on both sides of the follicle push to support the follicle. Consequently, both muscles are in

compression. In contrast, when the whisker is deflected caudally, the intrinsic muscles on both

sides of the follicle pull it in opposite directions and both muscles are stretched (they are in

tension). Note that the schematics in Fig 7A are free body diagrams, so the reaction forces

shown are independent of the displacement of adjacent follicles.

Step 3) Analyze intrinsic muscle stiffness (neglect tissue): apply the analysis of Fig 7A to more
realistic schematics. Fig 7B schematizes four cases of whisker deflection, for both passive and

active touch. In all schematics, two neighboring follicles in the same row are shown, serially
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Fig 7. Caudal deflection and actuated intrinsic muscles result in increased whisker displacement. (A) The middle
panel illustrates the follicle at rest, with superficial tissue (ST) indicated by thin hatching and deep tissue (DT)

indicated by coarse hatching. Illustrations in left and right panels show the directions of the reaction forces on the

vibrissa when the whisker is deflected rostrally and caudally, respectively. The external force is in black, and the

reaction forces are in red. L: lateral; R: rostral; MusR: rostral intrinsic muscle; MusC: caudal intrinsic muscle. (B)

Illustrations show muscle behavior in four different cases. Each illustration shows two follicles and the connecting

intrinsic muscles. The caudal of the two whiskers is deflected in either the rostral direction (left column) or caudal

direction (right column), during both passive touch (blue box) and active whisking (orange box). Muscles are defined

to be completely relaxed (blue) during passive touch, and actuated (orange) during active whisking. During passive

touch, the whisker is deflected by an external peg, marked by a black circle. During active whisking, the caudal follicle

retracts/protracts against a peg, so that the whisker is deflected rostrally/caudally. The locations of two external springs,

k5 and k6, are indicated in the two middle panels. (C) A table qualitatively summarizes intrinsic muscle stiffness for

different cases of muscle activation and deflection direction. Asterisks indicate the ordinal (not proportionally scaled)

magnitudes of muscle stiffness. (D) A table qualitatively summarizes k5 and k6 stiffness for different cases of muscle

activation and deflection direction. Asterisks indicate the ordinal (not proportionally scaled) magnitudes of muscle

stiffness. (E) The change in relative displacement r(x) under different overall external spring stiffness (k5+k6). The

overall stiffness increases logarithmically from 104N/m (blue) to 105N/m (orange). A stiffer external support results in

bigger r(x). (F) The identical plot as (E), but with different external spring stiffness ratios (k5/k6). As the ratio shifts

from unbalanced (blue) to balanced (orange), larger r(x) is observed at the RS level.

https://doi.org/10.1371/journal.pcbi.1007887.g007
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connected by intrinsic muscles [50], and the caudal whisker is assumed to be deflected. In pas-
sive touch, the muscles are not contracted, and the whisker is assumed to be deflected by a peg

moving relative to the whisker. A rostral deflection will cause the muscle to compress (case 1),

while a caudal external deflection will cause the muscle to lengthen (case 2). In active touch,

the muscles are assumed to be contracting so that the caudal follicle protracts or retracts the

whisker against a peg. If the whisker makes contact with an object during retraction (case 3),

the muscle will be passively lengthening, and the object will cause the muscle to compress. If

the whisker makes contact with an object during protraction (case 4), the muscles are contract-

ing, and the object will cause the muscles to lengthen. Note that case 4 also includes the sce-

nario in which an animal holds its whiskers stiff but does not actively whisk; this situation

often occurs when a rodent runs along a wall. In accordance with the quasi-static assumptions

of this work, actively holding the whisker at a fixed position is equivalent to an instant during

active protraction.

Step 4) Analyze intrinsic muscle stiffness (neglect tissue): the four cases of Fig 7B are associated
with different mechanical properties. Contracted muscles and passively relaxed muscles have

different spring stiffness when they are compressed or lengthened by an external force from

“natural” or resting length [51]. Fig 7C qualitatively summarizes the intrinsic muscle spring

stiffnesses for the four cases shown in Fig 7B. Specifically, in case 1, a rostral deflection will

compress the muscles and be associated with low stiffness (single asterisk). In case 2, a caudal

deflection will lengthen the relaxed muscles from their resting lengths and be associated with

moderate muscle stiffness due to connective tissue (double asterisks). In case 3, although mus-

cles cannot actively resist a compression force, active muscle fibers are likely still cross-linked,

contributing to larger stiffness and force resistance (double asterisks). In case 4, the contracted

muscles will actively resist the tensile force, resulting in high stiffness (triple asterisks).

Step 5) Incorporate the effects of surrounding tissue. As indicated in Step 1, the external

springs k5 and k6 represent the combined stiffness of intrinsic muscles and connective and

muscle tissue external to the follicle. Steps 2 through 4 have analyzed intrinsic muscle stiffness

only, while neglecting the tissue, and the qualitative stiffness estimates of Fig 7C. Fig 7D now

qualitatively depicts stiffness after incorporating the effects of the surrounding tissue.

In case 1, the intrinsic muscles are relaxed and compressed to be shorter than their resting

lengths, so they exert only weak reaction forces, therefore the stiffness contribution of the con-

nective tissue around the follicle is likely to be significant. Specifically, during an external

deflection, the collagen layer and the keratinous skin epidermis will anchor the follicle near its

apex, while the deeper end of the follicle will displace. Therefore, in Fig 7D, the stiffness of k6

Fig 8. Increasing blood pressure causes decreased whisker displacement, but higher internal forces at the RS level.

(A) The change of r(x) as the hydrostatic pressure in the RS is simulated to increase by increasing k3. From orange to

blue, the value of k3 increases logarithmically from 105 to106N/m. With higher blood pressure, r(x) in the RS region

decreases. (B) The change in the relative displacement and the force at the RS level as the blood pressure increase. Left

y-axis, solid line: relative displacement at the RS level, r(x)|x = 0.6mm. Right y-axis, dashed line: the relative change of the

internal force at the RS level from base state (k3 = 105N/m). The force is given by k3�r(x)|x = 0.6mm. As the blood

pressure increases, the relative displacement at the RS level drops, whereas the force increases.

https://doi.org/10.1371/journal.pcbi.1007887.g008
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(near the apex) is assigned double asterisks, while k5 (near the base) remains a single asterisk.

For the other cases, the contribution of connective tissue to the overall stiffness is not as signifi-

cant compared to that of the intrinsic muscles. However, for cases 3 and 4, when the rat is

actively whisking, a complex of extrinsic muscles is activated and help hold the follicles firmly.

These extrinsic muscles insert into the mystacial pad from different directions, in both superfi-

cial and deep layers. Although different muscle groups are activated at different phases during

whisking, a relatively stiffer support is offered by at least one group of muscles at each phase.

Therefore, the overall stiffness for cases 3 and 4 in Fig 7D is assigned triple asterisks.

In order to investigate how the whisker deformation profile will be different during active

whisking compared to passive touch, without having to fix a single stiffness condition for each,

we examined the qualitative trends from passive touch to active whisking by independently

changing the overall stiffness (k5+k6) and the balance (k5/k6) of the external support. These

degrees of freedom relating to tissues and muscles can be disentangled into independent vari-

ables (k5+k6 and k5/k6) due to the intrinsic linear property of the system, which frees us from

having to consider any coupling effects.

We first looked at the overall stiffness of the external support. The overall stiffness is mod-

eled by the summation of the external spring constants (k5+k6). Fig 7E shows how the relative

displacement r(x) changes under different overall stiffness. As expected, stiffer external sup-

port in general prevents the follicle from rotating. Consequently, for an imposed external

deflection angle, r(x) must increase in magnitude to compensate for the small rotation of the

follicle. Specifically, r(x)|x = 0.6mm, increases from 2.97μm to 3.66μm (123.10% of its original),

when the overall stiffness increases from 104 to 105N/m. The result of the simulation indicates

that active muscles of high stiffness result in larger whisker deformation followed by larger tis-

sue displacement internal to the follicle.

We next looked at the balance of external support. Fig 7F shows the relative displacement r

(x) for different external spring ratios (k5/k6), with the value of the sum held constant. This

result shows that when external support to the follicle is more balanced, the relative displace-

ment of the whisker within the follicle increases. This effect occurs because the follicle itself

rotates less when the whisker is deflected (absolute displacement not shown), meaning that the

whisker shaft itself must bend more to accommodate the externally imposed movement. Spe-

cifically, r(x)|x = 0.6mm decreases from 2.97μm to 1.57μm (52.94% of its original), by switching

from balanced support (k5/k6 = 1) to unbalanced support (k5/k6 = 1/20 or 20). The result sug-

gests that more balanced external support will also result in larger whisker deformation, hence

larger tissue displacement internal to the follicle.

The results suggest that these two independent variables both facilitate tactile sensitiv-

ity. This leads to the combined effect of muscle being actuated quite clear: actuated mus-

cle leads to larger tissue displacement than unactuated muscle, and presumably higher

tactile sensitivity. We emphasize that although the analysis of Fig 7 has assumed an S-

shaped profile, all results would hold equally well for any of the C-shaped profiles shown

in Fig 6.

Increased blood pressure in the RS results in larger whisker deformation

The blood flow within the follicle at the RS is regulated by the autonomic nervous system [52].

It has long been postulated that this regulating blood pressure could stabilize mechanical prop-

erties of the vibrissa [33–36], mediate tactile sensing resolution for some slowly-adapting

receptors [33,34], allowing animals to have different perceptual sensitivities as needed. How-

ever, the relationship between blood pressure in the RS and sensation is difficult to validate in
vivo. In our model, a change of hydrostatic (blood) pressure in the RS is simulated by changing
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the value for k3, thus allowing us to estimate the effects of changing pressure on whisker defor-

mation within the follicle.

Fig 8A shows that the relative whisker displacement r(x) decreases at the RS level as k3

increases, modeling increasing hydrostatic pressure. Specifically, r(x)|x = 0.6mm drops from

2.86μm to 0.32μm (11.17% of its original), when k3 increases from 105 to106N/m. The general

deformation profiles remain similar.

Mechanoreceptor response is largely associated with the tissue deformation in that small area

which surrounds it. In the previous section, the whisker displacement is itself a good indicator of

tissue deformation. Here, due to the inflated and stiffened RS structure, the whisker displacement

alone offers only incomplete information about tissue deformation. Therefore, we made a pre-

liminary assessment of tissue deformation by looking at the internal force exerted on the tissue at

the RS level. This force is defined as the one which occurs between the RS and the whisker shaft,

and is simply given by multiplying the tissue stiffness (k3) and the relative whisker displacement

at the RS level (r(x)|x = 0.6mm). Fig 8B shows how changes in blood pressure affect relative whisker

displacement and the internal force at the RS level, with higher pressure leading to smaller dis-

placement. As blood pressure increases, although whisker displacement decreases, the product of

stiffness and displacement increases. In other words, the internal force becomes larger. This

force is important if we assume the amount of tissue deformation is related to the force that is

applied to it. The implications for mechanosensitivity will be further described in the Discussion.

Once more, we emphasize that although the analysis of Fig 7 has assumed an S shaped profile, all

results would hold equally well for any of the C-shaped profiles shown in Fig 6.

Discussion

We have developed a low-dimensional mechanical model that predicts the shape of the whisker in

the follicle as it pushes and pulls against mechanosensitive regions. The model can reveal only

qualitative deformation profiles; the absolute magnitudes of displacements and forces should not

be taken as precise predictions. The number of model parameters was chosen to be commensu-

rate with available biological data. The model is based on a quasi-static analysis and in its present

form cannot be directly used to predict dynamic effects. Although we anticipate many future

improvements, the present model serves to bracket the range of possible internal states and

describes consequences for sensory receptor activation and the regulation of tactile sensitivity.

The simulation predicts whisker displacement in all areas within the FSC,

but mechanoreceptor responses will depend also on local tissue stiffness

Four springs were used to model the stiffnesses within the follicle. Although the spring stiffness

distribution reflects tissue stiffness, they are not equivalent: tissue stiffness is more traditionally

represented by Young’s modulus. However, approximating Young’s modulus would require

us to assume locations for the springs at a higher spatial resolution than appropriate given the

available biological data. Instead, the springs’ locations near the HB, CS, RS, and RRC were

chosen because qualitative observation of follicle anatomy (e.g., Fig 4) indicated that tissue

material properties are likely to be similar within each of the three partitioned regions. Future

work will explore the effects of adding additional springs to the model.

Although adding more springs would add resolution to the model, we have confidence in

the general shapes of the profiles, as they persist for a wide range of parameter combinations.

Consistent with previous hypotheses for whisker deformation in the follicle [36,48], the model

predicts that the whisker will pivot about a fulcrum near its apex. After fixing the value of the

spring near the follicle entrance, varying the values of the three remaining internal springs

revealed three distinct feasible whisker shapes: C-shaped, S1-shaped, and S2-shaped (Figs 5
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and 6). The primary reduction in feasible profiles resulted from limiting deformation ampli-

tude at the RS level to 4.8 microns (Fig 6). This constraint was based on results of an ex vivo
imaging experiment [37] and the consequences of relaxing this restriction will be explored in a

later section of the Discussion.

Regardless of whether the profile is C-shaped or S-shaped, larger whisker displacements

will result in larger tissue deformation. However, displacement alone is not enough to predict

the forces that the whisker will exert on mechanoreceptors: an estimate of local tissue stiffness

is required. To gain intuition for the relative roles of whisker deformation and local stiffness,

imagine a room in which a balloon filled with air is hung by a string from the center of the ceil-

ing. If you push on the balloon, it will simply bump away from you. You will not be able to

deform the balloon’s shape because there is nothing holding it in place as you push on it. Now

imagine the same balloon but hung from the ceiling very close to a wall. When you push on

the balloon it will compress against the wall. Because the wall is stiff, the balloon will deform.

Similarly, the identical whisker deformation in the follicle could lead to very different

mechanoreceptor responses, depending on the local tissue stiffness. Because the present model

does not address the microstructure of the tissue in which the mechanoreceptors are embed-

ded, the whisker deformation profiles do not directly map to how the mechanoreceptors

respond. The whisker displacement can serve only as an indirect predictor of internal tissue

deformation.

What are the mechanisms by which local tissue stiffness can be modulated?

Because so much of the mechanoreceptor response will depend on local stiffness, the present

work has also investigated tissue stiffness in different regions of the follicle and how it might

be modulated. The anatomical analysis of Fig 4 indicates that stiffer tissue is found closer to

the follicle entrance, near the mechanoreceptor rich regions. This finding indicates that mech-

anoreceptors in these regions are compressed against relatively stiff tissue, compared to deeper

regions, allowing richer tactile sensitivity and resolution.

Notably, the spring that has the largest influence on whisker deformation (k3) is located at

the RS, the most richly innervated region of the follicle. Blood pressure variation in the RS has

previously been hypothesized to help regulate tactile sensitivity during active whisking [33–

36]. Because the follicle walls are stiff, the follicle capsule is well approximated as a system with

a fixed volume. Increasing the volume of fluid in the follicle will increase the hydrostatic pres-

sure and hence the stiffness. In agreement with this hypothesis, the results of the present work

indicate that a stiffer RS will result in decreased radial whisker displacement, and increased

force in the radial direction (Fig 8). This radial force is likely to have a strong effect on slowly-

adapting RS-Merkel cells [49,53], making them especially good for sustained pressure sensing.

The increase in radial force might also serve to increase displacement of mechanoreceptors in

the other two dimensions.

Tissue stiffness is also strongly influenced by the state of the muscles surrounding the folli-

cle, and these effects are discussed further below when considering the differences between

passive touch and active whisking.

Mappings from the whisker deformation profile to the mechanoreceptor

response

Although the present model cannot predict specific mechanoreceptor cell-membrane displace-

ments, it does allow us to begin to form a mapping between the whisker deformation profile

and neural activity of the mechanoreceptors. The same external deflection will lead to very dif-

ferent neural responses by different subtypes of mechanoreceptors at different locations. To
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begin to consider the consequences of whisker deformation on mechanoreceptor responses,

the profiles of Fig 6 are replicated in Fig 9A, and aligned with two schematics of the follicle

that emphasize the locations of the blood sinuses and the different mechanoreceptor types (the

left two panels of Fig 9B).

It is notable that the S-shaped profiles do not exhibit maximal whisker deformation near

the RS, where most of the mechanoreceptors are located. As described in Results, these S-

shaped profiles occur because the whisker shaft displacement near the RS was limited to

4.8μm, the norm of the average, 3D tissue displacement observed experimentally when the

whisker is deflected by 10˚ [37]. The dark gray profiles of Fig 9A show the consequence of

relaxing this upper bound to 12μm, which is the norm of the maximal tissue displacement

recorded in the same experiment. Unsurprisingly, with more flexibility available near the RS,

the deformation profiles approach C-shapes. Although an S-shape may seem unintuitive, it is

possible that such a profile could help avoid a saturation effect during large deflections. In

other words, increasing stiffness near the RS would allow larger external forces to be imposed,

without generating excessive displacement of the whisker inside the follicle. Since we cannot

say with absolute certainty which profile may occur (perhaps both), it is important to note that

the results of both Figs 7 and 8 in the present work are equally valid for both S-shaped and C-

shaped profiles. Until more experiments are performed, the S-shaped profiles are most consis-

tent with the available biological data.

Regardless of whether the profiles are C-shaped or S-shaped, Fig 9A also clearly indicates

that more lateral to and at the level of the RS, the whisker will displace in the direction opposite

Fig 9. Schematics indicate how whisker deformation profiles map to the responses of different subtypes of

mechanoreceptors (A) The deformation profiles from Fig 6 are replicated here. Although the S-shaped profiles (blue and

orange) are the focus of the present work, some of the C-shape profiles (dark gray) would be possible if constraints based

on experimental data were relaxed (see text for details) (B) Left: The locations of the two blood sinuses (left panel) and the

different subtypes of mechanoreceptors are shown vertically aligned with the deformation profiles in (A). Middle: Four

major types of mechanoreceptors are shown: RRC-Merkel endings (green), Lanceolate endings (red), RS-Merkel (green),

and Club-like endings (blue). Right: Mappings to each of the mechanoreceptor types are indicated as boxes. A time series

of whisker deformation profiles r(x, t) yields different responses f(r) for each mechanoreceptor type. The responses of the

different subtypes are represented by peri-stimulus time histograms (PSTHs), adapted from Furuta et al. 2020 [49]. In this

example, f(r) is the mapping f: r(x, t)!PSTH.

https://doi.org/10.1371/journal.pcbi.1007887.g009
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that of external whisker deflection. This result is intriguing given that recent work has shown

that both RS-Merkel and RRC-Merkel cells respond most strongly when the external whisker

is deflected in the same direction as the mechanoreceptors [49]. Previous studies have shown

that the Merkel cell complex with slowly adapting type I afferents responds specifically to tissue

compression [54,55], and that the Piezo2 channels in Merkel cells respond to positive pressure

(compression) only [56,57].

To explain the responses of the RRC-Merkel cells, we note that they are located on the

fringes of the FSC. When deflected, these cells are likely to be compressed in the same direc-

tion as the deflection; with little or no effect on the other side of the FSC. Explaining the

observed responses of the RS-Merkel cells is more challenging. The epithelial tissue, glassy

membrane, and connective tissue at the RS level is not connected to any hard tissue (e.g., the

follicle wall), and deformation will affect both sides of the FSC. The RS-Merkel cells themselves

are located between the glassy membrane and the epithelial sheath [49]. These factors, along

with others, will lead to complicated interactions between shaft displacement and Merkel cell

membrane displacement. The relationship between the compression/stretch of the tissue and

the neural activity of RS-Merkel cells is unclear. The difficulty in determining such relation-

ships underlies the importance and usefulness of seeking a mapping from one to the other.

Fig 9B illustrates an example of such mapping from a time series of whisker deformation

profiles (r(x, t)) to neural activities of different subtypes of mechanoreceptors. Previous work

has characterized how different mechanoreceptor subtypes respond to a ramp-and-hold stim-

ulation in one direction [49]. A time series of deformation profiles can be simulated by apply-

ing the same stimulus to the model of the whisker. In this way, a mapping f: r(x, t)!neural

activity can be generated for each individual subtype. We anticipate that future model

improvements will yield a richer description of whisker displacement in all dimensions, which

is likely to be particularly important for lanceolate and club-like endings. A 3D model will not

only allow analysis of longitudinal and polar tissue deformation, but also improve the mapping

to neural activity.

Generalization from passive deflections to active whisking

In the most general terms, the present model suggests that the deformation profile of the whis-

ker will stay qualitatively the same between passive touch and active whisking: the same group

(s) of mechanoreceptors will respond when the whisker is deflected in the same direction

under both conditions. This consistency is advantageous to a whisker-specialist animal that

must interpret whisker signals during both active and passive conditions, because it is easier to

interpret a system’s responses if it does not change with behavioral state.

However, we emphasize that the model treats both protraction and retraction as quasistatic

processes, and thus the present work can predict deformation of the whisker in the follicle only in

response to external bending. Examination of dynamic effects such as vibrations or collisions will

require the addition of dampers to model more transient responses. The present model cannot

predict the whisker’s time-varying response during texture exploration [58–64], during an airflow

stimulus [65], or the reafferent signals during non-contact (“free-air”) whisking [53,66–68].

Despite these limitations, the present model can be used to investigate the differences

between an external tactile stimulus delivered when the muscles are relaxed versus contracted

(Fig 7). When the external springs that represent the external tissue and muscle stiffness are

stiffer, as during active whisking, tactile sensitivity is enhanced. More interestingly, the model

predicts that tactile sensitivity will depend on the balance of superficial and deep muscles. Dur-

ing a rostral deflection, muscle support of the follicle is more unbalanced than during a caudal

deflection, and tactile sensitivity is reduced (Fig 7F). Thus overall, the simulations suggest that
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muscle actuation in general, as well as caudal external deflection, both serve to increase

mechanosensitivity, and these are precisely the conditions that obtain during active touch.

Recent behavioral work has shown that rats typically prolong the total duration of contacts

significantly in a whisk cycle [69,70]. This is enough time required for vibrations to damp after

collision with the object [71] and the whisker will experience quasistatic bending. The present

model can be used to begin to understand how the whisker deforms in the follicle under these

conditions, and how mechanoreceptors may respond during these temporal “windows” of

whisking behavior. The current work thus paves the way for future studies to more completely

characterize internal whisker follicle mechanics to investigate the responses of sub-populations

of mechanoreceptors and other specialized compartments within the follicle.

Supporting information

S1 Fig. The deformation profile of the whisker is determined by tissue stiffness both inside

and outside the follicle. Three hypothetical cases for how the whisker-follicle complex could

deform and rotate in response to an external force F. The whisker follicle complex is shown in its

resting position in the schematic labeled “rest,” and the three cases show its final position and

shape after the force has been applied. In case 1, the tissue outside the follicle is extremely stiff. As a

result, the whisker bends without little or no follicle rotation. In case 2, the tissue inside the follicle

is extremely stiff. The imposed force causes the follicle to move as a whole and the whisker bends

very little. In case 3, the tissue stiffness surrounding the follicle is moderate, so the whisker bends,

and the follicle also rotates. In the present work, simulations generate the shapes of case 3, but only

relative displacements (the x-y reference frame in red) are reported and analyzed in Results.

(TIF)
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