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Background:Usingmachine learning based onmetabolomics, this study aimed

to construct an effective primary Sjogren’s syndrome (pSS) diagnostics model

and reveal the potential targets and biomarkers of pSS.

Methods: From a total of 39 patients with pSS and 38 healthy controls (HCs),

serum specimens were collected. The samples were analyzed by ultra-high-

performance liquid chromatography coupled with high-resolution mass

spectrometry. Three machine learning algorithms, including the least

absolute shrinkage and selection operator (LASSO), random forest (RF), and

extreme gradient boosting (XGBoost), were used to build the pSS diagnosis

models. Afterward, four machine learning methods were used to reduce the

dimensionality of the metabolomics data. Finally, metabolites with significant

differences were screened and pathway analysis was conducted.

Results: The area under the curve (AUC), sensitivity, and specificity of LASSO, RF

and XGBoost test set all reached 1.00. Orthogonal partial least squares

discriminant analysis was used to classify the metabolomics data. By

combining the results of the univariate false discovery rate and the

importance of the variable in projection, we identified 21 significantly

different metabolites. Using these 21 metabolites for diagnostic modeling,

the AUC, sensitivity, and specificity of LASSO, RF, and XGBoost all reached

1.00. Metabolic pathway analysis revealed that these 21 metabolites are highly

correlated with amino acid and lipid metabolisms. On the basis of

21 metabolites, we screened the important variables in the models. Further,

five common variables were obtained by intersecting the important variables of

three models. Based on these five common variables, the AUC, sensitivity, and

specificity of LASSO, RF, and XGBoost all reached 1.00.2-Hydroxypalmitic acid,

L-carnitine and cyclic AMP were found to be potential targets and specific

biomarkers for pSS.

Conclusion: The combination of machine learning and metabolomics can

accurately distinguish between patients with pSS and HCs. 2-

Hydroxypalmitic acid, L-carnitine and cyclic AMP were potential targets and

biomarkers for pSS.

OPEN ACCESS

EDITED BY

Francois-Pierre Martin,
H&H Group, Switzerland

REVIEWED BY

Ornella Cominetti,
Nestlé Research Center, Switzerland
Sandra Anjo,
University of Coimbra, Portugal

*CORRESPONDENCE

Kai Wang,
morrosun@hotmail.com

†These authors have contributed equally
to this work

SPECIALTY SECTION

This article was submitted to
Metabolomics,
a section of the journal
Frontiers in Molecular Biosciences

RECEIVED 12 April 2022
ACCEPTED 10 August 2022
PUBLISHED 05 September 2022

CITATION

Wang K, Li J, Meng D, Zhang Z and Liu S
(2022), Machine learning based on
metabolomics reveals potential targets
and biomarkers for primary
Sjogren’s syndrome.
Front. Mol. Biosci. 9:913325.
doi: 10.3389/fmolb.2022.913325

COPYRIGHT

© 2022 Wang, Li, Meng, Zhang and Liu.
This is an open-access article
distributed under the terms of the
Creative Commons Attribution License
(CC BY). The use, distribution or
reproduction in other forums is
permitted, provided the original
author(s) and the copyright owner(s) are
credited and that the original
publication in this journal is cited, in
accordance with accepted academic
practice. No use, distribution or
reproduction is permitted which does
not comply with these terms.

Frontiers in Molecular Biosciences frontiersin.org01

TYPE Original Research
PUBLISHED 05 September 2022
DOI 10.3389/fmolb.2022.913325

https://www.frontiersin.org/articles/10.3389/fmolb.2022.913325/full
https://www.frontiersin.org/articles/10.3389/fmolb.2022.913325/full
https://www.frontiersin.org/articles/10.3389/fmolb.2022.913325/full
https://www.frontiersin.org/articles/10.3389/fmolb.2022.913325/full
https://crossmark.crossref.org/dialog/?doi=10.3389/fmolb.2022.913325&domain=pdf&date_stamp=2022-09-05
mailto:morrosun@hotmail.com
https://doi.org/10.3389/fmolb.2022.913325
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/molecular-biosciences
https://www.frontiersin.org
https://www.frontiersin.org/journals/molecular-biosciences
https://www.frontiersin.org/journals/molecular-biosciences#editorial-board
https://www.frontiersin.org/journals/molecular-biosciences#editorial-board
https://doi.org/10.3389/fmolb.2022.913325


KEYWORDS

primary Sjogren’s syndrome, systemic lupus erythematosus, metabolomics, machine
learning, 2-hydroxypalmitic acid, L-carnitine, cyclic AMP

Introduction

Primary Sjogren’s syndrome (pSS), a chronic inflammatory

autoimmune disease of unknown etiology, is characterized by

salivary and lacrimal gland hypofunction. SS can be a disease that

is primary or secondary to other autoimmune diseases, such as

rheumatoid arthritis, systemic lupus erythematosus (SLE), and

systemic sclerosis. There is a strong relationship between pSS and

human leukocyte antigens (HLA), IRF5-TNPO3, STAT4,

PTPN22, IL12A, FAM167A-BLK, DDX6-CXCR5, and TNIP1

(Lessard et al., 2013). Although these genes are related to pSS,

any mutation of them will not result in the development of pSS.

Environmental factors may also be implicated in the

development of pSS. As a result of the consistent increase

chromium in the soil, there is an increase in the prevalence of

pSS (Lee et al., 2019). Metabolomics is a useful tool for the

identification of changes in metabolic pathways, including

abnormal downstream changes in small molecule metabolites

due to changes in upstream protein-encoding genes and changes

in metabolites due to environmental factors. Metabolomics is

used to improve the understanding of the origin and

pathogenesis of disease.

In recent years, metabolomics has provided new insights

into the pathogenesis of pSS; it has great potential in

identifying new biomarkers of pSS and shows the potential

of metabolomics in diagnosing pSS. A metabolomics study

based on urine and serum of patients with pSS revealed that

the changes in the primary metabolic pathway in patients with

pSS were related to the metabolism of phospholipids, fatty

acids, and amino acids (tryptophan proline and

phenylalanine) (Fernández-Ochoa et al., 2020). The results

of saliva metabolomics revealed that the distribution diversity

of metabolites in the saliva of patients with pSS was lower than

that of healthy controls (HCs), and that the metabolite

distribution of patients with pSS was affected by salivary

adenitis (Kageyama et al., 2015). Notwithstanding, is there

any evidence supporting the pSS-specificity of the differential

metabolites? Unfortunately, the presence of these metabolites

was not confirmed in other rheumatic diseases by the above-

mentioned studies.

Therefore, in this study, we analyzed the serum from patients

with pSS and HCs using ultra-performance liquid

chromatography coupled with high-resolution mass

spectrometry (UPLC-HRMS) and processed the metabolomics

data using a machine learning approach in order to discover

potential diagnostic biomarkers in the serum. Afterward, we

verified the potential diagnostic biomarkers in SLE, thereby

revealing the potential correlation between serum metabolites

and the development of pSS.

Materials and methods

Study designing, and participants

The study design is shown in Supplementary Figure S1. A

total of 39 patients newly diagnosed with pSS were recruited

according to the revised American-European Consensus Group

classification criteria for pSS (Shiboski et al., 2017). Patients with

a history of radiotherapy administered to the neck, head, and

face; patients with hepatitis C virus infection, AIDS, lymphoma,

sarcoidosis, and Graves’ disease; and patients using anti-

acetylcholine drugs were excluded from the study. All patients

were Chinese and were hospitalized at the Affiliated Huaian

No.1 People’s Hospital of Nanjing Medical University. A total of

38 age-, sex-, and race-matched HCs constituted the control

group. The clinical information of the patients and HCs were

recorded (Table 1). An additional 11 serum samples, including

five HCs and six patients with pSS, were collected as the

indepengdent validation cohort (Supplementary Table S1).

The inclusion-exclusion criteria for the indepengdent

validation cohort are the same as mentioned above. Previous

pSS metabolomics studies have not further validated the

expression of the identified biomarkers in other rheumatic

diseases (Urbanski et al., 2021; Xu et al., 2021). Therefore, this

study also recruited a total of 44 patients with SLE and age-, sex-,

and race-matched HCs in order to validate whether the potential

biomarkers identified for pSS are specific (Supplementary Table

S2). All subjects avoided strenuous exercise and excitant drink

1 day before the sample collection and 5 ml of venous blood was

collected in coagulant tubes in the morning under the fasting

state. The study was approved by the Ethics Committee of the

Affiliated Huaian No.1 People’s Hospital of Nanjing Medical

TABLE 1 Demographics and clinical characteristics of pSS and HCs.

Characteristics HCs (n = 38) pSS (n = 39)

Age (mean, range) 36.50 ± 9.82 37.62 ± 12.72

Gender (F/M) 30/8 33/6

Cholesterol (mmol/L) 4.01 ± 1.09 5.61 ± 1.46a

ESR (mm/h) 17.06 ± 3.47 30.61 ± 8.14a

CRP (mg/L) 4.76 ± 1.77 12.00 ± 4.24a

Anti-SSA Antibody (positive/negative) 0/38 29/10a

Anti-SSB Antibody (positive/negative) 0/38 13/26a

ANA (positive/negative) 2/36 26/13a

ap < 0.05 for Wilcoxon test for pSS, patients and HCs.

Abbreviations: pSS, primary Sjogren’s syndrome; ESR, erythrocyte sedimentation rate;

CRP, C-reactive protein; HCs, Healthy controls.
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University. In accordance with the Declaration of Helsinki, all

participants were informed about the purpose of the study.

Sample preparation

For protein precipitation, samples (10 μL) were taken from

each group and cold methanol (30 μL, 4°C) was added, vortexed

for 30 s, and centrifuged at 16,000 g in a freeze centrifuge for

15 min at 4°C. Using a centrifugal concentration dryer

(Labconco, United States), the supernatant was collected and

evaporated at room temperature. The residue was reconstituted

in pure methanol (20 μL). By replacing the serum with ultra-pure

water and applying the same standard operating procedure for

serum samples, extraction blanks were prepared.

Conditions of UPLC-HRMS

Chromatographic analysis was conducted with a Hypersil

GOLD C18 (100 mm × 2.1 mm, 1.9 μm, Thermo Scientific,

Germany) column on a UPLC Ultimate 3,000 system (Dionex,

Germering, Germany) coupled to a Q-Exactive mass

spectrometer (QEMS, Thermo Fisher Scientific, Bremen,

Germany) in both positive and negative modes

simultaneously. The autosampler and column temperatures

were set to 4°C and 40°C, respectively, and the injection

volume was 5 µL. Binary gradient elution (channel A:

acetonitrile, 0.1% v/v formic acid, channel B: ultra-pure water,

0.1% v/v formic acid) was done at a flow rate of 400 μL/min over

a run time of 15 min with the gradient elution program as

follows: 0–3 min, 99% B; 3–10 min, 99% B; 10–13 min, 1% B;

13–13.1 min, 1% B; 13.1–15 min, 99% B. To avoid complications

related to the injection order, all samples were analyzed in a

randomized fashion. Using a QEMS equipped with a heated

electrospray ionization source, the MS data were collected. For

both positive and negative modes, the operating parameters were

as follows: a spray voltage of 3.5 kV and 2.5 kV for the positive

and negative modes, respectively, a capillary temperature of

250°C, a sheath gas flow of 50 arbitrary units, an auxiliary gas

flow of 13 arbitrary units, a sweep gas of 0 arbitrary units, and an

S-lens RF level of 60. The resolution was set at 70,000 in the full-

scan analysis (70–1,050 m/z). Following the manufacturer’s

instructions, the MS system was calibrated. Chemical

identification was performed based on the retention time and

the accurate mass of commercial standards.

Metabolite identification

Metabolite ion peaks were extracted using the R package

XCMS with the following parameters: mass accuracy: 25 ppm,

peak width (5, 25), snthresh: 12, prefilter: (5, 5,000). For

overlapping peaks, the minimum difference in m/z was

7.5 mda. The closest approach was used for grouping before

and after retention time (RT) correction, with 9 s as the rtCheck

parameter and an allowable RT difference of 2.5%. Finally, the

original data files of the missing peak regions were reintegrated

using the fillPeaks method, thus filling in the missing data points.

Peak area, RT and peak width were extracted from the XCMS

data and UPLC-HRMS features for each sample. Metabolic

structure identification uses mass accuracy and secondary

spectrogram matching to search the self-built compound’s

library. The self-built compounds’ library was established

from 500 metabolite standards (≥98.0%, Sigma-Aldrich, St.

Louis, MO, United States). The final library contains

415 endogenous metabolites, which are mainly enriched in

glucose metabolism, lipid metabolism, amino acid metabolism,

nucleotide metabolism and phenolic metabolism.

Data analysis

The computational analysis was done using Python (version

3.6.2, Python Software Foundation, Delaware, United States) and

R (version 4.0.5, Foundation for Statistical Computing, Vienna,

Austria). The Mann - Whitney U tests were used to compare the

characteristics of the two groups of subjects. P values less than

0.05 were considered to statistically significant.

Machine learning approach

To establish diagnostic models of pSS, three machine

learning algorithms were applied: least absolute shrinkage and

selection operator (LASSO), random forest (RF), and extreme

gradient boosting (XGBoost). These machine algorithms

(LASSO, RF, and XGBoost) were applied using the R package

glmnet (Friedman et al., 2010), ranger (Wright and Ziegler, 2017)

and xgboost (Chen and Guestrin, 2016), respectively.

Metabolomics data was divided into two parts: the training set

(70%) and the test set (30%). We performed a repeated K-fold

cross-validation (repeats = 5, K = 5) on the models in order to

obtain an unbiased estimate for their performance. Using the R

package pROC, the receiver operating characteristic (ROC) curve

was prepared (Robin et al., 2011). Using the R package

ComplexHeatmap, heatmap analysis was performed (Gu et al.,

2016).

Metabolomics data are characterized by high dimensionality

and small samples sizes. Moreover, many redundant metabolites

are capable of causing curse of dimensionality, interfering with

diagnosis, and reduce the accuracy of classifiers. Therefore, to

reduce the dimensionality of the metabolomics data, different

methods were adopted. Among these methods, the principal

component analysis (PCA), an unsupervised method of data

dimensionality reduction, can visually describe the differences in
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metabolic patterns and clustering results between different

groups and identify the original variables that contribut to the

intergroup classification as biomarkers using load maps. PCA

was performed using the Python package PCA. Another method

adopted is the use of a variational autoencoder (VAE), which is

an unsupervised learning technique that uses artificial neural

networks to learn low-dimension features from high-dimension

features, thereby enabling the mapping of data points in the

original high-dimensional space to a low-dimensional space.

Keras (version 2.3.1) with TensorFlow (version 1.15.0)

backend was used to construct the VAE model. The partial

least squares-discriminant analysis (PLS-DA) is among the

most frequently used classification methods for metabolomics

data analysis. It combines a regression model with

dimensionality reduction and uses a certain discriminant

threshold for discriminant analysis of the regression results.

Furthermore, another commonly used method in

metabolomics data analysis is the orthogonal projections to

latent structures discriminant analysis (OPLS-DA), an

extension of PLS-DA. This analysis was performed using the

R package ropls (predI = 1, permI = 500, crossvalI = 7) (Thévenot

et al., 2015). The variable importance in the projection (VIP)

indicates the projected importance of variables in the PLS-DA

and OPLS-DA models, thereby assessing the relevance of

variables’ effect on the differences between the groups.

Metabolite variables with VIP values >1 are considered

different. To screen significantly different metabolites, we used

a VIP value >1.5 combined with a false discovery rate (FDR)

value <0.05.

Biological functions of significantly
different metabolites

The metabolic analysis software MetaboAnalyst 5.0 was used

to analyze the metabolic pathways and biological relevance of the

differential metabolites by consulting databases, such as the small

molecule pathway database (SMPDB) (Jewison et al., 2014), and

the Kyoto Encyclopedia of Genes and Genomes (KEGG)

database (Pang et al., 2020).

Results

Characteristics of the study participants

The main characteristics of patients with pSS and HCs are

tabulated in Table 1 (validation cohort were listed in

Supplementary Table S1). There was no significant difference

between pSS and HCs in terms of gender and age (p > 0.05).

Patients with pSS had significantly higher erythrocyte

sedimentation rate (ESR), C-reactive protein (CRP) and

cholesterol levels and higher positive rates of anti-SSA

antibodies, anti-SSB antibodies and anti-nuclear antibody

(ANA) than HCs (p < 0.05). The main characteristics of

patients with SLE and HCs are tabulated in Supplementary

Table S2. There was no significant difference between SLE

and HCs in gender, age and cholesterol (p > 0.05). Patients

with SLE had significantly higher ESR and CRP levels and higher

positive rates of anti-SSA antibodies, anti-SSB antibodies and

ANA than HCs (p < 0.05).

Metabolite identification

After HPLC-HRMS analysis, the final number of detectable

metabolites in the serum samples was 157. Figure 1A showed the

overall view of all metabolites.

Machine learning approach

To establish a diagnostic model of pSS, we adopted three

machine learning methods. The AUC, sensitivity, and

specificity of LASSO and XGBoost reached 1.0. The AUC of

RF was 0.982, while the sensitivity and specificity were

1.000 and 0.963, respectively (Supplementary Table S3).

The AUC, sensitivity, and specificity of LASSO, RF and

XGBoost test set reached 1.0 (Figures 1B–D). Different

methods were applied to reduce the dimensionality of the

metabolomics data. The PCA, VAE and PLS-DA methods

were not satisfactory after the dimensionality reduction. As a

result, the OPLS-DA method was used to classify the

metabolomics data (Figure 2). In the OPLS-DA model,

there was 21 metabolites with FDR and VIP

values <0.05 and >1.5, respectively (Table 2). Figure 3A

showed the heatmap of the 21 metabolites. Serum

concentrations of these 21 metabolites were significantly

different between the patients with pSS and HCs, such that

the concentrations of 1-Palmitoyl-sn-glycero-3-

phosphocholine, 2-Hydroxypalmitic acid, arachidonic acid,

cortisol and ribothymidine in patients with pSS were lower

when compared to those in HCs, while the concentrations of

the other metabolites were significantly higher in patients with

pSS when compared to HCs (Supplementary Figure S2,

Table 2).

Supplementary Figure S3 shows the correlation between

these metabolites. LASSO, RF, and XGBoost also trained the

dataset of these 21 metabolites. The results of the second

round of machine learning were similar to those of the first

round (Figures 3B,D,F). On the basis of the second round of

machine learning, we screened out the important variables in

the models. There were 10 important variables in LASSO, as

shown in Figure 3C. Figure 3E showed the top 20 important

variables in RF. There are 11 important variables in XGBoost,

as shown in Figure 3G. The third round of machine learning
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FIGURE 1
Heat map and ROC curve of different machine learning methods in all metabolites. Heat map of all metabolites (A). ROC curve of LASSO in all
metabolites (B). ROC curve of RF in all metabolites (C). ROC curve of XGBoost in all metabolites (D).

FIGURE 2
2D clustering plot based on PCA, VAE, PLS-DA, and OPLS-DA. PCA (A). VAE (B). PLS-DA (C). OPLS-DA (D).
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was based on the important variables of each model, and the

results were shown in the Supplementary Table S5. We further

intersect the important variables of three models to get six

common variables, namely cyclic AMP (cAMP), cortisol, 2-

Hydroxypalmitic acid, arachidonic acid, L-Carnitine and

D-Glutamic acid (Supplementary Figure S5). The fourth

round of machine learning is based on these six common

variables. As shown in the Supplementary Table S6, XGBoost

has the best performance. In addition, we provide the AUC

plots of XGBoost (Supplementary Figure S6), and the

performance summary of RF and LASSO (Supplementary

Table S6).

The second round of machine learning was based on

21 metabolites with FDR and VIP values <0.05 and >1.5. If
the threshold of VIP values was set to 2.0, four metabolites

would be screened, namely arachidonic acid, cAMP, L-Proline

and N-Acetyl-L-methionine. As shown in Supplementary

Table S7, the performance of the machine learning models

based on these four metabolites was lower than the results of

the fourth round of machine learning. In the fourth round of

machine learning, we used six metabolites, and next, we used

metabolites with the top six VIP values and top six AUC values

to develop the machine learning models, respectively, and the

results are shown in Supplementary Tables S8,S9, and the

performance of the models was still lower than the results of

the fourth round of machine learning. In summary, the using

of machine learning algorithms brings some advantages over

the single use of OPLS-DA. Our data and code for this study

can be accessed from GitHub at https://github.com/morrosun/

Primary-Sjogrens-syndrome.

Biological functions of the significantly
different metabolites

Results of the KEGG pathway enrichment analysis

revealed differential metabolites over-represented in

biological processes that are mainly related to aminoacyl-

tRNA biosynthesis, biotin metabolism, histidine

metabolism, glycerolipid metabolism, fructose and mannose

metabolism, lysine degradation, phenylalanine, tyrosine and

tryptophan biosynthesis, valine, leucine and isoleucine

biosynthesis, phenylalanine metabolism and beta-Alanine

metabolism (Figure 4). The top 10 biological processes

indicated by the SMPDB pathway enrichment analysis

included methylhistidine metabolism, biotin metabolism,

carnitine synthesis, glycerolipid metabolism, phospholipid

biosynthesis, ammonia recycling, fructose and nannose

degradation, beta-Alanine metabolism, gluconeogenesis, and

de novo triacylglycerol biosynthesis (Figure 4).

TABLE 2 The significantly different metabolites of pSS and HCs.

Metabolite VIP FDR AUC Change HMDB CAS

1-Palmitoyl-sn-glycero-3-phosphocholine 1.84 0.00 0.83 Down — 17364-16-8

2-Hydroxypalmitic acid 1.63 0.00 0.91 Down — 764-67-0

3-Methylhistidine 1.60 0.00 0.79 Up HMDB00479 368-16-1

Arachidonic acid 2.33 0.00 0.89 Down HMDB01043 506-32-1

Biotin 1.68 0.00 0.89 Up HMDB00030 58-85-5

Cortisol 1.98 0.00 0.91 Down HMDB00063 50-23-7

Cyclic AMP 2.10 0.00 0.95 Up HMDB00058 60-92-4

D-Glutamic acid 1.85 0.00 0.87 Up HMDB03339 6893-26-1

Dihydroxyacetone phosphate 1.79 0.00 0.91 Up HMDB01473 —

Glyceraldehyde 1.65 0.00 0.78 Up HMDB01051 56-82-6

L-Carnitine 1.69 0.00 0.95 Up HMDB00062 541–15-1

L-Histidine 1.71 0.00 0.82 Up HMDB00177 71-00-1

L-Leucine 1.66 0.00 0.8 Up HMDB00687 61-90-5

L-Lysine 1.83 0.00 0.91 Up HMDB00182 56-87-1

L-Phenylalanine 1.71 0.00 0.79 Up HMDB00159 63-91-2

L-Proline 2.39 0.00 0.92 Up HMDB00162 147-85-3

Maleic acid 1.62 0.00 0.87 Up HMDB00176 110-16-7

N-Acetyl-L-methionine 2.15 0.00 0.92 Up HMDB11745 65-82-7

Oxidized glutathione 1.57 0.00 0.97 Up HMDB03337 27025-41-8

Rhamnose 1.77 0.00 0.83 Up HMDB00849 3615-41-6

Ribothymidine 1.68 0.00 0.78 Down HMDB00884 1463-10-1

Abbreviations: pSS, primary Sjogren’s syndrome; HCs, healthy controls; VIP, variable influence on projection; FDR, false discovery rate; HMDB, human metabolomics database; CAS,

chemical abstracts service.
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FIGURE 3
Heat map, ROC curve and important variables screening of machine learning algorithms in significantly different metabolites. Heat map of
metabolites with significant differences in pSS group and HCs group (A). ROC curve of LASSO model in 21 significantly different metabolites on the
test set (B). Important variable screening of LASSO (C). ROC curve of RF model in 21 significantly different metabolites on the test set (D). Important
variable screening of LASSO (E). ROC curve of XGBoost model in 21 significantly different metabolites on the test set (F). Important variable
screening of XGBoos (G).
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FIGURE 4
Summary plot for KEGG and SMPDB. Metabolic pathway analysis of pSS-altered metabolites using MetaboAnalyst 5.0 based on the KEGG and
SMPDB. Triangles and circles colors indicate pathway enrichment significance, triangles and circles size indicates the extent of pathway impact,
common pathways are marked in red.

TABLE 3 ROC curve analysis of clinical characteristics and six common variables.

AUC 95% CI Sensitivity (%) Specificity (%) P-Value

cAMP 0.945 0.868–0.984 92.31 89.47 <0.0001
Cortisol 0.908 0.820–0.962 87.18 92.11 <0.0001
2-Hydroxypalmitic acid 0.904 0.815–0.959 82.05 97.37 <0.0001
Arachidonic acid 0.893 0.802–0.952 89.74 71.05 <0.0001
L-Carnitine 0.949 0.874–0.986 87.18 94.74 <0.0001
D-Glutamic acid 0.672 0.561–0.771 75.00 62.50 0.005

Anti-SSA antibody 0.872 0.776–0.937 74.36 100 <0.0001
Anti-SSB antibody 0.667 0.550–0.770 33.33 100 <0.001
ANA 0.807 0.701–0.888 66.67 94.74 <0.001

Abbreviations: ROC, receiver operating characteristic; AUC, area under the curve; pSS, primary Sjogren’s syndrome; HCs, healthy controls; CI, confidence interval.
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Definition of the potential metabolic
biomarker for pSS

The AUC values of six common important variables of three

machine learning models namely cAMP, cortisol, 2-

Hydroxypalmitic acid, arachidonic acid, L-Carnitine and

D-Glutamic acid were 0.945, 0.908, 0.904, 0.893, 0.949, and

0.672, respectively (Table 3). Compared to ANA, anti-SSA

antibody, and anti-SSB antibody, cAMP, cortisol, 2-

Hydroxypalmitic acid, arachidonic acid and L-Carnitine had

better AUC values which suggests that these metabolites were

potential biomarkers for pSS (Table 3).

Validation of potential biomarkers of pSS
in the SLE cohort

In this study, we revealed many significant different

metabolites between patients with pSS and HCs. However,

it is yet to be determined whether these differential metabolites

are specific to pSS. Previous studies of pSS metabolomics have

not confirmed the expression of differential metabolites in

other rheumatic diseases (Urbanski et al., 2021; Xu et al.,

2021). We further validated the potential markers of pSS in the

SLE cohort, namely cAMP, cortisol, 2-Hydroxypalmitic acid,

arachidonic acid and L-Carnitine. According to the results, a

total of 129 metabolites were identified in the metabolomic

analysis of SLE cohort; however, 2-Hydroxypalmitic acid was

not in the metabolic profile of the SLE cohort (Supplementary

Figure S7). There were no difference in the levels of L-carnitine

between patients with SLE and HCs, whereas the levels of

L-carnitine were significantly increased in patients with pSS

(Figure 5); the level of cAMP decreased in patients with SLE

and increased in patients with pSS relative to HCs (Figure 5).

The levels of both cortisol and arachidonic acid were

significantly decreased in patients with SLE compared to

HCs, which is consistent with the results of the pSS

cohort (Figure 5). The above results suggest that 2-

Hydroxypalmitic acid, cAMP, and L-Carnitine were specific

biomarkers of pSS.

FIGURE 5
Validation of cAMP, cortisol, 2-Hydroxypalmitic acid, arachidonic acid and L-Carnitine in the SLE cohort. The levels of cAMP and L-Carnitine in
patients with pSS decreased significantly compared with HCs, while the levels of cortisol, 2-Hydroxypalmitic acid and arachidonic acid inceased (A).
2-Hydroxypalmitic acid was not in the metabolic profile of the SLE cohort. The levels of cAMP, cortisol and arachidonic acid in patients with SLE
increased significantly compared with HCs, but there was no difference in the level of L-Carnitine (B).
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Discussion

Primary Sjogren’s syndrome is among the most common

autoimmune diseases, affecting about 0.1–0.4% of the general

population, especially in women, with a prevalence comparable

to that of rheumatoid arthritis (Voulgarelis and Tzioufas, 2010).

In addition to the most common salivary and lacrimal gland

involvement, pSS may affect several organs, including the lungs,

heart, liver, nervous system, kidneys, and joints, thus severely

reducing the patients’ quality of life (Bak et al., 2017; Narvaez

et al., 2020; Zhao et al., 2020). Metabolomics, as an emerging

strategy, is an effective method for detecting and monitoring

various diseases. The use of metabolomics data has revealed

many vital relationships that are linked with affected metabolic

signaling pathways that can identify and explore the centers of

these networks, as well as provide opportunities for the

development of novel therapeutic approaches. By integrating

metabolomics and genomics data, we can create a more robust

analytical tool and discover new biomarkers and compounds for

targeted therapies.

Machine learning algorithms are vital in the construction of

multivariate metabolite predictions. While PLS-DA and OPLS-

DA have been used as classical algorithms for binary

classification in metabolomics, more nonlinear machine

learning methods are being applied to the study of

metabolomics, such as RF, LASSO, XGBoost, support vector

machines, and artificial neural networks, are being employed to

study metabolomics (Yu et al., 2017; Liu et al., 2019; Mendez

et al., 2019; Zhao et al., 2019; Mazzilli et al., 2020). Currently,

there is no consensus regarding which algorithm is more suitable

for studying metabolomics. In a previous study, the predictive

performance of eight different machine learning algorithms was

compared to 10 published metabolomics data-sets and it was

revealed that the quality of the metabolomics data has more

influence on the generalized performance than the model

selection. Therefore, we used multiple machine learning

algorithms to classify the pSS metabolomics data set and

construct diagnostic models. We found that the predictive

performance of LASSO and RF was more substantial than

that of XGBoost and that the classification performance of

OPLS-DA was better than that of PCA, VAE, and PLS-DA.

In this study, we revealed many significantly differential

metabolites between patients with pSS and HCs; however, it is

yet to be determined whether these differential metabolites are

specific to pSS. Previous studies of pSS metabolomics have not

confirmed the expression of differential metabolites in other

rheumatic diseases. In addition to pSS, we investigated the

serum metabolomics in patients with SLE and found that the

levels of cAMP and L-Carnitine in patients with pSS are not

consistent with those in patients with SLE, which suggests that

patients with pSS have a unique metabolic profile.

Several studies have reported blood lipids changes in patients

with pSS. A recent study showed that patients with pSS had

higher levels of phosphatidylcholine and triglycerides but lower

levels of acylcarnitine; pSS-related metabolic disorders might be

related to lipid oxidation, fatty acid oxidation, and energy

metabolism, and in addition, this study showed that

acylcarnitine is a specific biomarker for pSS (Lu et al., 2021).

Among the free fatty acids, saturated fatty acids have been

demonstrated to induce inflammation via the innate immune

system and participate in the pathogenesis of pSS (Shikama et al.,

2017). Improving the lipid profile may serve as a new strategy for

the treatment of pSS. In our study, compared to the HCs, the

levels cholesterol and 2-Hydroxypalmitic acid increased in

patients with pSS and the level of L-carnitine decreased. To

date there have been no studies on 2-Hydroxypalmitic acid in

rheumatic diseases, and our results showed that the metabolic

profile of the SLE cohort does not contain 2-Hydroxypalmitic

acid, suggesting that 2-Hydroxypalmitic acid is specific to pSS.

The AUC of 2-Hydroxypalmitic acid was 0.904, with a sensitivity

of 82.05% and a specificity of 97.37% in distinguishing patients

with pSS from HCs.

L-carnitine is a kind of amino acid that promotes the

conversion of fat into energy. The decrease of L-carnitine in

the serum of patients with pSS indicates that the lipid metabolism

pathway may have been altered. Supplementation with

L-carnitine increases blood acylcarnitine levels, enhances fatty

acid metabolism, and improves disorders of lipid metabolism,

especially at doses above 1,500 mg/day (Wu et al., 2015; Asadi

et al., 2020; Kido et al., 2020). Our results showed no difference in

L-carnitine levels between patients with SLE and HCs, whereas

L-carnitine levels were significantly decreased in pSS patients.

L-carnitine is a specific biomarker for pSS, and the AUC of

L-carnitine in distinguishing patients with pSS from HCs was

0.949, with a sensitivity of 87.18% and a specificity of 94.74%.

L-carnitine supplementation may be beneficial to patients with

pSS. Prospective research was needed to further confirm this

result.

Further metabolomic studies also demonstrated that several

lipid metabolites, such as 1-palmitoyl-sn-glycero-3-

phosphocholine, 2-hydroxypalmitic acid, glyceraldehyde, and

arachidonic acid, differed significantly between patients with

pSS and HCs. Arachidonic acid is an unsaturated omega-6

fatty acid. A recent study showed a negative correlation

between omega-6 and interleukin-21 (Castrejón-Morales et al.,

2020). The lower levels of arachidonic acid may be as a result of

insufficient intake (Castrejón-Morales et al., 2020). Appropriate

omega-6 supplementation can improve the signs on the ocular

surface, as well as the symptoms of ocular discomfort presented

by patients with pSS (Aragona et al., 2005).

Cyclic AMP is an important substance involved in the

regulation of substance metabolism and biological functions in

cells. In our study, cyclic AMP increased in patients with SLE and

decreased in patients with pSS relative to HCs, suggesting that

cyclic AMP is a specific biomarker for pSS, and the AUC of cyclic

AMP in distinguishing patients with pSS from HCs was 0.945,
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with a sensitivity of 92.31% and a specificity of 89.47%. Previous

studies have shown that IgG from pSS patients could modify the

biological effects mediated by activation of muscarinic choline

receptor, that is, decrease cyclic AMP without affecting cyclic

GMP (Bacman et al., 1996). Both mRNA and protein levels of

cyclic AMP decreased significantly in SS mouse submandibular

glands and increased after treatment (Wang et al., 2020).

Activation of the cyclic AMP/protein kinase A pathway

upregulates the expression of the water channel aquaporin

5 in the apical plasma membranes of submandibular gland

acinar cells, which plays a critical role in regulating salivary

flow rates (Saito et al., 2015). These results are consistent with our

findings, indicating that cyclic AMP may be an important target

in the treatment of pSS.

Our study adopted a machine learning approach to

investigate UPLC-HRMS based on serum metabolomics data

and developed high sensitivity and specificity models to diagnose

pSS. At the same time, our study screened the significantly

different metabolites in the serum of patients with pSS.

Moreover, changes in the biological pathways of these

metabolites may be helpful to understand the potential

mechanism underlying the pathogenesis of pSS. Compared to

HCs, the metabolites of patients with pSS in the metabolic

network changed significantly and correlated with each other

(Supplementary Figure S3). The majority of the metabolic

pathways in the metabolic network were related to the

metabolism of fatty acids and amino acids. Our results need

to be further validated and the exact mechanisms need to be

further investigated.
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