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Abstract: The aim of this work was to design and fabricate fused deposition modeling (FDM) 3D-
printed sustained-release gastric-floating formulations with different shapes (cylinder, capsule and
hemisphere) and infill percentages (0% and 15%), and to investigate the influence of shape and infill
percentage on the properties of the printed formulations. Drug-loaded filaments containing HPMC,
Soluplus® and verapamil hydrochloride were prepared via hot-melt extrusion (HME) and then used
to print the following gastric-floating formulations: cylinder-15, capsule-0, capsule-15, hemisphere-0
and hemisphere-15. The morphology of the filaments and the printed formulations were observed by
scanning electron microscopy (SEM). The physical state of the drugs in the filaments and the printed
formulations were characterized by X-ray diffraction (XRD), thermogravimetric analysis (TGA) and
differential scanning calorimetry (DSC). The printed formulations were evaluated in vitro, including
the weight variation, hardness, floating time, drug content and drug release. The results showed
that the drug-loaded filament prepared was successful in printing the gastric floating formulations.
Verapamil hydrochloride was proved thermally stable during HME and FDM, and in an amorphous
state in the filament and the printed formulations. The shape and infill percentage of the printed
formulations effected the hardness, floating time and in vitro drug release.

Keywords: hot-melt extrusion; fused deposition modeling; 3D printing; floating systems; shape; infill
percentage; sustained release

1. Introduction

Oral administration is a preferred drug delivery route for its high patient compliance,
low cost, non-invasiveness and ease of use [1]. However, the bioavailability of conventional
oral dosage forms may be influenced by short gastro-retentive time or unpredictable gastric
emptying times, especially for drugs which are absorbed in the upper part of the digestive
system, or more soluble in acidic environments [2]. To solve this problem, a series of gastro-
retentive systems, including mucoadhesion systems, expandable systems and floating
systems, were developed to prolong gastric residence time of drugs to obtain better drug
absorption and bioavailability [3,4]. Among all these gastroretentive systems, the gastro-
floating systems attracted special attention due to their low density that allowed them to
float on gastric fluids without affecting the gastric emptying rate [4]. Traditionally, gastro-
floating systems rely on swelling polymers, microporous components or gas-generating
systems to achieve low density, which usually leads to their complex composition and
difficulty in manufacturing [4,5]. In addition, the gastro-floating systems are sometimes
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restricted by floating lag time, which increases the risk of being excreted by the stomach
before the dosage takes effect [6].

Since the first 3D-printed pharmaceutical product (Spritam®) was approved by the
FDA in 2015 [7], the combination of 3D-printing technology and pharmaceutical science
has become a new trend in pharmaceutical research. Taking advantage of the fabricated
complex structure of 3D printing [8], gastro-floating systems have achieved many pro-
gresses. Gastric-floating tablets with low infill percentage were prepared based on fused
deposition modeling (FDM) technology [9–11]. Semi-solid extrusion (SSE) 3D printing was
also applied in developing gastro-floating systems with low density [12–15]. Moreover,
tablet-in-device was designed and prepared for gastric-floating systems, which contain
conventional or sustained-release tablets in FDM-printed floating devices [16,17]. Among
these 3D printing gastric-floating systems, the reduction of tablet infill percentage is the
most frequently adopted strategy, and the shape of the formulations were only cylinders or
elliptic cylinders. As the geometrical shapes of 3D-printed formulations were reported to
influence on the properties of formulations, such as the surface area, volume, weight, and
in vitro drug release [18,19], we attempted to design and investigate 3D-printed gastric-
floating systems with both low infill percentage (0% and 15%) and different geometrical
shapes (cylinder, capsule and hemisphere) in this study.

Verapamil hydrochloride is a calcium channel blocker, which is commonly used to
treat high blood pressure, angina, cardiac arrhythmias and cardiomyopathies [20]. The
solubility of verapamil hydrochloride in hydrochloric acid solution (pH 1.0) and phosphate
buffer solution (pH 6.8) is 360 mg/mL and 54 mg/mL, respectively [21]. The physicochem-
ical properties of verapamil hydrochloride and its short half-life (4 h) make it a suitable
candidate for preparing gastric-floating formulations [22]. Besides, the thermostability of
verapamil hydrochloride provides a good opportunity for it to undergo hot-melt extrusion
(HME) and FDM 3D printing at a high temperature [23].

In this study, FDM 3D-printing technology was adopted to prepare verapamil hy-
drochloride gastric-floating formulations. Cylinder-15, capsule-0, capsule-15, hemisphere-0
and hemisphere-15 (infill percentage at 0% or 15%) were designed and prepared. A series
of in vitro characterizations were carried out to evaluate the drug-loaded filament and the
3D-printed gastric-floating formulations, including morphology, X-ray diffraction (XRD),
thermogravimetric analysis (TGA), differential scanning calorimetry (DSC), weight vari-
ation, hardness, floating behavior, drug content, and in vitro drug release. In addition,
the hardness of the formulation is tested in two orthogonal directions since the geometric
shape and interior structure of the 3D-printed formulations is more complicated than
conventional tablets.

2. Materials and Methods
2.1. Materials

Verapamil hydrochloride was purchased from Wuhan Yuancheng Gongchuang Tech-
nology Co., Ltd. (Wuhan, China). Commercial verapamil hydrochloride sustained-release
tablets were purchased from Jiangsu Hengrui Medicine Co., Ltd. (Lianyungang, China). Hy-
droxypropyl methylcellulose (Affinisol™ HPMC HME 100lv) was donated by DOW Chem-
ical Co., Ltd. (Shanghai, China). Polyvinyl caprolactam-polyvinyl acetate-polyethylene
glycol copolymer (Soluplus®) was donated by BASF Co., Ltd. (Ludwigshafen, Germany).
Polyethylene glycol (PEG 400) was purchased from Coolaber Technology Co., Ltd. (Beijing,
China). Methanol (chromatographic grade) was purchased from ThermoFisher Co., Ltd.
(Waltham, MA, USA). Other chemicals were of analytical grade and were used as received.

2.2. Preparation of Gastric-Floating Formulations
2.2.1. Design of Formulations

The shapes of the 3D-printed gastric-floating formulations were designed to be cylin-
ders, capsules and hemispheres, with 3D models as shown in Figure 1. The cylinder is the
most commonly used shape for oral formulation, and the capsule and hemisphere are easily
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to float. Besides, all three shape formulations could be printed at low infill percentages.
Moreover, the rectilinear grid infill pattern was chosen for the printed formulations, which
could provide higher hardness when the infill percentage was low [24]. The infill percent-
age was set to be 0% for capsule-0 and hemisphere-0, and 15% for cylinder-15, capsule-15
and hemiphere-15. The digital model for printing the formulations was designed with Au-
toCAD 2014® (Autodesk, San Rafael, CA, USA) and exported as a stereo lithography (.stl)
file into the MakerWare software (v. 3.8.0.373, MakerBot, New York, NY, USA). The external
dimension, layer height and shell number for the formulations were shown in Table 1.
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Figure 1. 3D digital models (A) cylinder; (B) capsule; (C) hemisphere) of the FDM 3D-printed
formulations.

Table 1. The parameters of the FDM 3D-printed formulations.

Formulation Size (mm) Infill
Percentage (%)

Layer Height
(mm)

Shell
Number

Surface Area
(mm2)

Volume
(cm3) Weight (mg) Density

(g/cm3)a 1 b 1

Cylinder-15 12.0 4.0 15 0.2 3 377.0 0.452 373.5 ± 9.8 0.827
Capsule-0 6.8 17.7 0 0.2 3 377.7 0.560 372.3 ± 17.5 0.664

Capsule-15 6.8 17.7 15 0.2 3 377.7 0.560 404.5 ± 10.3 0.723
Hemisphere-0 11.4 7.8 0 0.2 4 365.1 0.588 374.5 ± 18.8 0.638

Hemisphere-15 11.4 7.8 15 0.2 4 365.1 0.588 389.7 ± 10.1 0.663
1: a and b are shown in Figure 1.

2.2.2. Preparation of Filaments

Filaments were prepared using the HME method. Beforehand, homogeneous mixing
of the excipients and drug was obtained by the incremental method and thoroughly
grinded with a mortar and pestle. To prepare the drug-loaded filaments, the verapamil
hydrochloride, HPMC, Soluplus® and PEG 400 were mixed homogeneously at a weight
ratio of 10:42.5:42.5:5. The mixture was then extruded by a single-screw hot-melt extruder
(FilaBot® FOV1, USA) at 115 ◦C. The nozzle diameter of the extruder was 1.7 ± 0.1 mm.
Blank filaments were also prepared by HME. The composition of blank filaments was
HPMC, Soluplus® and PEG 400 at a weight ratio of 47.2:47.2:5.6 (close to 42.5:42.5:5). The
extruding condition was the same as that of the drug-loaded filaments.

2.2.3. 3D Printing of Gastric-Floating Formulations

The drug-loaded filaments were used to fabricate the designed formulations by a desk-
top 3D printer (MakerBot Replicator 2X, MakerBot, New York, NY, USA). The temperatures
for the nozzle and building platform were 195 ◦C and 90 ◦C, respectively. The speed of ex-
truding and traveling for the printing head was 90–100 mm/s and 150 mm/s, respectively.

2.3. Morphology

Photographs of the blank filaments, drug-loaded filaments and 3D-printed formula-
tions were taken with a digital camera (Canon IXUS 220 HS, Tokyo, Japan). The surface
and section images of the blank filaments, drug-loaded filaments and 3D-printed formula-
tions (at magnifications 30× and 1000×) were separately obtained by a scanning electron
microscopy (SEM, JSM-IT300 Scanning Microscope, JEOL, Tokyo, Japan) at an accelerating
voltage of 5.0 kV.
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2.4. X-ray Powder Diffraction

X-ray powder diffraction (XRD, Mini Flex 600, Rigaku, Japan) was performed to
assess the physical state of verapamil hydrochloride in the drug-loaded filaments and
formulations. The analysis was carried out using a Cu X-ray source, and the operating
current and voltage were set at 15 mA and 40 kV, respectively. All samples including
verapamil hydrochloride, HPMC, Soluplus®, physical mixture (composed of verapamil
hydrochloride, HPMC, Soluplus® and PEG 400 at weight ratio of 10:42.5:42.5:5), drug-
loaded filaments and 3D-printed formulations were scanned from 2θ of 5◦ to 60◦at a speed
of 5◦/min [25–27].

2.5. Thermal Analysis

A thermogravimetric analyzer (Q600 SDT, TA Instruments, New Castle, DE, USA) was
employed to assay the thermal stability of verapamil hydrochloride, HPMC, Soluplus®,
physical mixture, drug-loaded filaments and 3D-printed formulations. The samples (about
5 mg) were weighted accurately, loaded in ceramic pans, and heated from room temperature
to 500 ◦C. The test was carried out at a heating rate of 10 ◦C/min under a nitrogen purge of
100 mL/min. The data were analyzed using TA 2000 analysis software [28,29].

Differential scanning calorimetry (DSC, Q100 DSC, TA Instruments, USA) analysis
was also conducted. After being dried in a desiccator, samples (about 5 mg) were loaded on
aluminum pans, and the test was performed at a heating rate of 10 ◦C/min under a nitrogen
purge of 50 mL/min. The heat scan from −20 to 200 ◦C was conducted for verapamil
hydrochloride, HPMC, Soluplus®, physical mixture, drug-loaded filaments and 3D-printed
formulations. Then, PEG 400 was scanned from −50 to 100 ◦C. Verapamil hydrochloride
was assayed by a heat, quench and heat process. The data were analyzed using TA 2000
analysis software [30,31].

2.6. Weight

The 3D-printed formulations were weighed using an electronic analytical balance
(ME104, Mettler Toledo, Zurich, Switzerland) (n = 10). The average weight and weight
variances of the formulations were calculated, respectively.

2.7. Hardness

The hardness of 3D-printed formulations was measured with a texture analyzer
(MultiTest 2.5-I, Mecmesin, Slinfold, UK). A vertical pressure was put on the formulations
by a 75 mm diameter probe at a speed of 1 mm/s and the maximum force of 800 N.
The measurements were performed at two mutually perpendicular directions for each
formulation (illustrated as Figure 2) (n = 6), considering that the structure of 3D-printed
formulations was anisotropic, compared with that of traditional pressed formulations [10].

2.8. In Vitro Floating Behavior

The in vitro floating capacity of the formulations was tested according to the previous
literatures [32,33]. Then, 100 mL of 0.1 mol/L hydrochloric acid solution was added in
a beaker as floating medium and kept at 37 ± 0.5 ◦C in a thermostatic water bath. Each
of the 3D-printed formulations was put into the medium and the floating behavior of the
formulation was monitored and recorded. The tests were performed in triplicate for each
formulation (n = 3).

2.9. Drug Content

Samples of the drug-loaded filaments and 3D-printed formulations (approximately
0.4 g) were precisely weighed and separately dissolved in 0.1 mol/L hydrochloric acid
solutions (n = 3). After a proper dilution, the drug content of each sample was determined
by high-performance liquid chromatography (HPLC).

Agilent UV-HPLC 1260 series (Agilent Technologies, Germany) were employed with
Agilent Zorbax Extended C18 column (150 mm × 4.6 mm, particle size 5 µm) maintained at
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40 ◦C. The mobile phase consisted of methanol and acetate buffer solution (pH was adjusted
to 4.1 with triethylamine) at a volume ratio of 45:55. The flow rate of the mobile phase was
1.0 mL/min and the volume of sample injected was 20 µL. The analytical wavelength of
the UV detector was set at 278 nm [21,22].
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2.10. In Vitro Drug Release

The in vitro drug release of 3D-printed gastric-floating formulations was tested accord-
ing to the United States Pharmacopeia (USP) dissolution apparatus I, and the commercial
sustained-release verapamil hydrochloride tablet was used as a control (n = 6). 900 mL of
0.1 mol/L hydrochloric acid solution was added into each vessel and kept at 37.0 ± 0.5 ◦C
with a stirring speed of 100 r/min [21,22]. 10 mL of the released medium was withdrawn
at each predetermined time point, and replaced immediately with fresh medium at the
same volume and temperature. All samples were filtered through a 0.2-µm filter and the
concentrations of verapamil hydrochloride were assayed by HPLC at the same condition of
drug content.

2.11. Statistical Analysis

In this study, t-test was employed using GraphPad Prism software (version 6.01) to
analyze the results. Differences in results where p < 0.05 were considered significant, and
p < 0.01 were considered extremely significant.

3. Results and Discussion
3.1. Morphology

The appearance and SEM photographs of the blank and drug-loaded filaments are
shown in Figure 3. Both filaments showed smooth surface and homogeneous color
(Figure 3A,E). The blank filaments were more transparent than the drug-loaded filaments.
In the low magnification (30×) SEM side view, the blank filaments (Figure 3B) showed a
smoother surface than drug-loaded filaments (Figure 3F), and both blank and drug-loaded
filaments (Figure 3C,G) showed non-porous cross-sections. In the high magnification
(1000×) side view, no crystal of the drug was observed on the surface of drug-loaded
filaments (Figure 3H) compared with that of blank filaments (Figure 3D).
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Figure 3. Photographs (A,E) and SEM (B–D,F–H) images of the blank and drug-loaded filaments.

The appearance and SEM photographs of the cylinder-, capsule- and hemisphere-
shaped formulations are shown in Figure 4. All the three shapes of formulations designed
were successfully printed without printing defects (Figure 4A–C). SEM view at low magnifi-
cation (30×) (Figure 4D–F) showed the tight layer-to-layer conjunctions in all three printed
formulations, confirming good printing quality in the microstructure. No crystals of drug
could be observed on the surface of all formulations in the SEM view at high magnification
(1000×) (Figure 4G–I). As the temperature (195 ◦C) for printing formulations was higher
than the melting point of verapamil hydrochloride (146 ◦C), the drug was supposed to
disperse molecularly or in an amorphous state [23,34].

Pharmaceutics 2022, 14, x FOR PEER REVIEW 7 of 15 
 

 

 
Figure 4. Photographs (A–C) and SEM (D–I) images of the cylinder, capsule and hemisphere for-
mulations. 

The appearance and SEM photographs of the cross-sections of the three formulations 
are further shown in Figure 5, presenting the inner structure of the printed formulations. 
Low infill percentage was designed for all formulations to ensure the feasibility of float-
ing. When the infill percentage was set at 0% for cylinder formulations, the flat top tended 
to collapse, whereas capsule-0 and hemisphere-0 formulations were printed successfully 
by the effective support of arched structures. Thus, only 15% of the infill percentage was 
designed for the cylinder formulations (cylinder-15). In order to obtain comparable for-
mulations among the three shapes of formulations, 15% of infill percentage was also uti-
lized for capsule-15 and hemisphere-15. 

 
Figure 5. SEM section view (A–E) and corresponding photographs (F–J) of the formulations.  

3.2. X-ray Powder Diffraction 
The result of XRD is shown in Figure 6. The pure verapamil hydrochloride showed 

several characteristic peaks at 2θ of 10.61°, 14.50°, 17.09°, 18.09°, 18.86°, 20.20°, 21.32°, 
23.09°, 23.79°, and 26.35°, which was close to the literature reports that the prominent 
peaks from pure verapamil hydrochloride were observed at 2θ of 10.59°, 14.45°, 17.07°, 
18.1°, 18.84°, 20.29°, 21.32°, 23.06°, 23.75°, and 26.29° [25,35]. The HPMC and Soluplus® 
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formulations.

The appearance and SEM photographs of the cross-sections of the three formulations
are further shown in Figure 5, presenting the inner structure of the printed formulations.
Low infill percentage was designed for all formulations to ensure the feasibility of floating.
When the infill percentage was set at 0% for cylinder formulations, the flat top tended
to collapse, whereas capsule-0 and hemisphere-0 formulations were printed successfully
by the effective support of arched structures. Thus, only 15% of the infill percentage
was designed for the cylinder formulations (cylinder-15). In order to obtain comparable
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formulations among the three shapes of formulations, 15% of infill percentage was also
utilized for capsule-15 and hemisphere-15.
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Figure 5. SEM section view (A–E) and corresponding photographs (F–J) of the formulations.

3.2. X-ray Powder Diffraction

The result of XRD is shown in Figure 6. The pure verapamil hydrochloride showed
several characteristic peaks at 2θ of 10.61◦, 14.50◦, 17.09◦, 18.09◦, 18.86◦, 20.20◦, 21.32◦,
23.09◦, 23.79◦, and 26.35◦, which was close to the literature reports that the prominent peaks
from pure verapamil hydrochloride were observed at 2θ of 10.59◦, 14.45◦, 17.07◦, 18.1◦,
18.84◦, 20.29◦, 21.32◦, 23.06◦, 23.75◦, and 26.29◦ [25,35]. The HPMC and Soluplus® showed
broad peaks with the peak of maximum intensity at 9.09◦ and 18.06◦, respectively, which
indicated their amorphous behavior. The diffraction peaks of verapamil hydrochloride
could be found in the physical mixture but disappeared in the drug-loaded filaments and
3D-printing formulations, indicating that there was no drug crystal existing after HME and
the 3D-printing process [36]. This was consistent with the SEM photograph in which no
drug crystal was founded on either filament or formulation.
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3.3. Thermal Analysis

As shown in the Figure 7, the TGA result showed that the drug and excipients were
all thermally stable at the temperature of HME (115 ◦C) and FDM printing (195 ◦C). All
samples showed less than 5% weight loss at 195 ◦C, indicating their thermostability under
FDM condition. The weight loss under 60 ◦C was considered as attributing to be the
evaporation of water. The hygroscopicity of Soluplus® and HPMC was in accordance with
the previous reports [37–39].
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The DSC result is shown in Figure 8. An endothermic peak of verapamil hydrochloride
showed a melting point at 145.9 ◦C, which was consistent with literature (138.5 ◦C~148.1 ◦C) [34].
An endothermic peak of physical mixture was also observed at 135.8 ◦C, indicating the
existence of verapamil crystal. The decrease in melting point was supposed to be related
with the plasticization of PEG 400. However, no obvious endothermic peak was observed
in drug-loaded filaments or 3D-printing formulations, indicating that most of the drug did
not exist in crystal form. The result was consistent with those of SEM and XRD. Combining
the thermograms of verapamil hydrochloride (glass transition temperature (Tg) at 52.3 ◦C,
Figure S1 in Supplementary Materials) and PEG 400 (melting point at 5 ◦C, Figure S2 in
Supplementary Materials), the transitions of physical mixture, filament and formulations
from 40 to 60 ◦C demonstrated that the amorphous drug existed and gradually became less
in them. Still, the drug did not distribute molecularly homogenous in the formulations,
which might have potential implications to the dissolution findings. Additionally, the
Tg of pure Soluplus® was at 78.4 ◦C, which was close to the previous report [40]. The
Tg of Soluplus® decreased successively in the order of physical mixture, filament and
formulations, indicating the mixture was more homogeneous and the plasticization of PEG
400 was more effective.
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3.4. Weight

The average weight of the 3D-printed gastric-floating formulations is shown in Table 1.
The average weights of the cylinder-15 (373.5 ± 9.8 mg), capsule-0 (372.3 ± 17.5 mg)
and hemisphere-0 (374.5 ± 18.8 mg) were close to each other (p > 0.05) and consistent
with the model designed, which made it easier for evaluating the influence of external
shapes on the floating and drug-release behavior of the formulations. For the capsule- or
hemisphere-shaped formulations, those with lower infill percentage had smaller average
weights. The average weights of capsule-0 and capsule-15 were 372.3 ± 17.5 mg and
404.5 ± 10.3 mg (p < 0.01), and the average weights of hemisohere-0 and hemisphere-15
were 374.5 ± 18.8 mg and 389.7 ± 10.1 mg (p < 0.05), respectively.

The relative standard deviation (RSD) of the formulation weight was calculated ac-
cording to the standard deviation and average weight in Table 1. The data obtained were
in the range of 2.62% to 5.02%. The RSD of the weight of 3D-printed formulations was
supposed to reflect the printing precision and reproductivity in certain aspects [41]. For
FDM 3D-printed formulations at average weight between 300 mg to 500 mg, the RSD of
weight was reported from 0.31% to 8.17% [13,29,42–46], and the number of formulations
reported for determining the weight variation was from 3 to 10 [29,42,47]. In this study, the
RSD of weight (2.62~5.02%) and the number of formulations (n = 10) were both within the
scope of literatures.

3.5. Hardness

The hardness of formulations is shown in Table 2. All formulations had sufficient
hardness in the two testing directions (shown in Figure 2). The hardness of formulations
was observingly affected by the tested direction, infill percentage and axial symmetry.
Firstly, a decrease in hardness was observed more so in direction B than in direction A,
especially for the cylinder- and hemisphere-shaped formulations. The result was supposed
to be owing to the layer-by-layer structure of 3D-printing formulations, as the lateral force
to layers in direction B broke the adhesion between layers more easily than vertical force
to layers in direction A. Secondly, the formulations with higher infill percentage showed
higher hardness, which could be found in the comparation of data between capsule-0
and capsule-15 or between hemisphere-0 and hemisphere-15 in both directions. The
increase in infill percentage was considered to reinforce the mechanical strength of the
formulations [48]. Thirdly, the symmetry of the formulation also affected its hardness
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behavior, especially when the force of the test direction was parallel to the layer. In the case
of the cylinder- and capsule-shapes, the formulations were axial symmetric to the test force
in both front and side view, and indeed exhibited good hardness. While the hardness of
the hemisphere formulation significantly decreased where the shape was asymmetric in
the side view. This phenomenon could be explained by the fact that the force added did
not distribute evenly to the formulation, and broke it easily.

Table 2. In vitro characterization results of formulations.

Formulation
Hardness (n) Floating Time

(h)
Drug Content

(% w/w)Direction A * Direction B *

Cylinder-15 >800 344.8 ± 39.0 6.13 ± 0.50 10.07 ± 0.06
Capsule-0 161.7 ± 7.4 158.6 ± 12.9 5.03 ± 0.33 10.22 ± 0.04

Capsule-15 193.6 ± 28.0 178.3 ± 6.2 5.28 ± 0.06 9.91 ± 0.06
Hemisphere-0 475.7 ± 55.0 78.2 ± 13.1 4.24 ± 0.19 10.13 ± 0.05
Hemisphere-15 505.1 ± 48.4 90.9 ± 16.8 4.55 ± 0.42 10.04 ± 0.15

*: p < 0.05.

3.6. In Vitro Floating Behavior

The in vitro floating time of the 3D-printed formulations is shown in Table 2. There
was no floating lag time observed in all the tests, as shown in Figure 9. The phenomenon
was supposed owing to the density designed (0.638~0.827 g/mL, as shown in Table 1) which
was lower than that of gastric juice (1.004 g/mL) [49]. The floating lag time was reported
to raise the risk of gastric-floating formulations being expelled from the stomach before
drug release [6]. Hence, the complicated work in traditional manufacturing processes,
such as optimizing the formulation composition and the production process to avoid the
floating lag time of gastric-floating formulations, was greatly reduced by the 3D-printing
technology. On the other hand, as the infill percentage of the 3D-printed formulations was
low in this study, the penetration of gastric fluid into the sealed center of formulation was
easy, leading to the floating time being relatively short. A combinatory approach, such
as a floating and expandable combinatory system, was suggested in a recent published
literature which may help to overcome the limitation [50].
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In this study, different external shapes of formulations were designed to investigate
the influence of shape on the in vitro floating behavior. Though the theoretically calculated
floating force of the hemisphere- or capsule-shaped formulations was larger than that of
the cylinder-shaped formulations, the practical result revealed that the floating time of the
hemisphere- and capsule-shaped formulations was shorter than that of the cylinder-shaped
formulations (p < 0.05). During the in vitro floating test, the rupture of the hemisphere-
and capsule-shaped formulations was observed faster than that of the cylinder-shaped
formulations, which was considered to be owing to the less connective area between
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filaments in the curved surface of hemisphere- and capsule-shaped formulations, compared
with that in the flat surface of the cylinder-shaped formulations. Thus, it was easy for
gastric fluid to penetrate into the hemisphere- and capsule-shaped formulations resulting
in rapid expanding and the rupture of the formulation. Moreover, the rupture of the
hemisphere-shaped formulations was found more quickly than that of the capsule-shaped
formulations. The reason was assumed for the poorer axial symmetry of the hemisphere.

The floating time of capsule-0 and capsule-15 was 5.03 ± 0.03 h and 5.28 ± 0.06 h, and
that of hemisphere-0 and hemisphere-15 was 4.24 ± 0.19 h and 4.55 ± 0.42 h, respectively.
The result indicated that when comparing the same shape of the formulations, those with a
higher infill percentage had a slightly longer floating time.

3.7. Drug Content

The average drug loading of the drug-loaded filaments was measured to be 9.90 ± 0.05%
(w/w). Drug content of the formulations is shown in Table 2. The drug contents of drug-
loaded filaments and printed formulations were between 99.1 to 102.2% of the drugs added
in the preparation, indicating that there was no drug loss in either the HME or FDM
3D-printing processes.

3.8. In Vitro Drug Release

The in vitro drug release result is shown in Figure 10. Compared with the commercial
verapamil hydrochloride tablets, all the 3D-printed formulations achieved a similarly
sustained release. The time of 80% drug release was 8 h, 8 h, 16 h, 8 h and 10 h for cylinder-
15, capsule-0, capsule-15, hemisphere-0 and hemsphere-15 formulations, respectively. The
results demonstrated that the drug-loaded filaments prepared in this study were suitable
for manufacturing sustained-release formulations.
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Figure 10. In vitro drug release profiles of verapamil hydrochloride commercial tablet and FDM
3D-printed formulations (n = 6).

The surface area of the three kinds of formulations (shown in Table 1) was designed
close to each other in order to ensure a similar rate for water penetrating into the formu-
lations. The results of drug release revealed that the formulations with higher weight
released the drug more slowly. Capsule-15 was the heaviest formulation and showed the
slowest drug release rate. The weight of cylinder-15, capsule-0 and hemisphere-0 was close,
and their release profiles were almost overlapping (p > 0.05). In addition, the formulations
with higher infill percentages showed slower release rates when comparing capsule-0 with
capsule-15 or hemisphere-0 with hemsphere-15, which was consistent with the results
reported in literatures [51,52].
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As the 3D-printed formulations tended to stick on the paddles (in USP-II apparatus)
and prolong the floating time in the drug release test, USP-I apparatus was used in this
study [16]. To ensure the sufficient contact of formulations to medium, several dissolution
methods were developed and reported [53]. Regarding the influence of in vivo gastric
physiology (i.e., gastric motility, transit times, etc.) to the 3D-printed formulations, physio-
logical parameters in the dissolution test, such as fluid volume, pH, agitation speed and so
on, should be considered in the future work [54].

4. Conclusions

The drug-loaded HME filament composed of HPMC, Soluplus®, PEG 400 and vera-
pamil hydrochloride was newly developed and proved highly reliable for FDM 3D-printing
sustained-release formulations. The gastric-floating cylinder-, capsule- and hemisphere-
shaped formulations with low infill percentage (0% and 15%) were carefully designed
and successfully fabricated through FDM 3D-printing technology. The 3D-printed gastric-
floating formulations showed desired shapes, elegant appearance, suitable mechanical
strength, and good constancy in both formulation weight and drug content. All the for-
mulations floated successfully in vitro with no floating lag time, and released the drug
sustainedly for more than 8 h. All the components were thermally stable throughout the
whole preparation process and the verapamil hydrochloride was dispersed in an amor-
phous state, or molecularly. The formulations presented higher mechanical strength when
the testing force was added vertically to the orientation of filaments or axial symmetrically
to the formulations. The floating time of the formulations depended on their ability to
keep intact (not rupture), which was related to the external shape of the formulations. As
the surface area of the formulations was designed to be similar, the drug release rate was
mainly associated with the weight of the formulations. Moreover, this work demonstrated
the potential of preparing FDM 3D-printed gastric floating beyond traditional formulation
shapes and infill percentages, to control floating behavior and drug release.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/pharmaceutics14020281/s1, Figure S1: DSC results of verapamil
hydrochloride. Figure S2: DSC results of PEG 400.
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