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Abstract: Background: Human SP-A1 and SP-A2, encoded by SFTPA1 and SFTPA2, and their genetic
variants differentially impact alveolar macrophage (AM) functions and regulation, including the
miRNome. We investigated whether miRNome differences previously observed between AM from
SP-A2 and SP-A1/SP-A2 mice are due to continued qualitative differences or a delayed response
of mice carrying a single gene. Methods: Human transgenic (hTG) mice, carrying SP-A2 or both
SP-A genes, and SP-A-KO mice were exposed to filtered air (FA) or ozone (O3). AM miRNA levels,
target gene expression, and pathways determined 18 h after O3 exposure. RESULTS: We found
(a) differences in miRNome due to sex, SP-A genotype, and exposure; (b) miRNome of both sexes
was largely downregulated by O3, and co-ex had fewer changed (≥2-fold) miRNAs than either
group; (c) the number and direction of the expression of genes with significant changes in males
and females in co-ex are almost the opposite of those in SP-A2; (d) the same pathways were found
in the studied groups; and (e) O3 exposure attenuated sex differences with a higher number of
genotype-dependent and genotype-independent miRNAs common in both sexes after O3 exposure.
Conclusion: Qualitative differences between SP-A2 and co-ex persist 18 h post-O3, and O3 attenuates
sex differences.
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1. Introduction

Ozone (O3) is a reactive oxidant gas that is a major component of air pollution [1,2]. The primary
effect of O3 occurs in the lung, causing a range of respiratory ailments [3–5]. The mechanism by
which O3 mediates these effects involves the generation of reactive oxygen species (ROS), triggering
oxidative stress (OxS) [6]. Several studies reported sex differences in the incidence and prognosis
of pollution-induced respiratory diseases and have shown that women are at increased risk of
adverse health outcomes from O3 and particulate matter exposure than men [7–10]. The initial
defense against inhaled pathogens, allergens and air pollutants, and other harmful substances in the
environment are performed by cells and molecules present in the lung. For example, the alveolar
macrophage (AM), the principal effector cell for innate immunity, interacts with the innate host defense
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molecule, the surfactant protein A (SP-A), and together they provide the first line of defense against
pathogens [11–17] and inhaled toxic compounds [2,18] and thus protect the lung from potential hazards
by initiating a cascade of inflammatory reactions upon O3 exposure [2,19].

Pulmonary surfactant is a lipoprotein complex that lines the entire surface of the alveoli and
prevents alveolar collapse by lowering the surface tension at the air–liquid interface of the alveoli [20].
Some of the surfactant proteins play a key role in innate immunity. Surfactant protein A (SP-A)
is the major protein component of pulmonary surfactant and regulates lung innate immunity and
surfactant-related functions under basal conditions [14,16,21–23] and in response to various insults,
such as infection and OxS [24–30]. The human SP-A locus consists of two functional genes, SFTPA1 and
SFTPA2, and one pseudogene [31,32]. The functional genes encode human SP-A1 and SP-A2 proteins,
respectively, and each gene has been shown to have several genetic and splice variants [31,33,34].

Previous studies have demonstrated differences between SP-A1 and SP-A2 that include both
qualitative (i.e., functional, biochemical, and/or structure) [35–48] and quantitative (regulatory)
changes [49–59]. A recent study [60] examined SP-A genotype-dependent alterations in the
bronchoalveolar lavage (BAL) proteome, and explored the effects of sex, infection, and ozone-induced
oxidative stress on these changes. The authors also reported changes in proteins involved in several
important signal transduction pathways, including the Nuclear factor kappa-light-chain-enhancer of
activated B cells (NF-kB) of the acute phase response, the nuclear factor erythroid-2-related factor 2
(Nrf2)-mediated oxidative response, and others. However, BAL proteins are derived from a variety
of sources so conclusions could not be drawn about which lung cells were affected by SP-A1 and/or
SP-A2. Other studies have focused on the AM and have shown that SP-A1 and SP-A2 variants differ in
their ability to modulate gene expression and the proteomic expression profile of AM and the AM
actin cytoskeleton [61–64]. The proteome profile of AM from the SP-A-KO mice, after treatment with
exogenous SP-A1 or SP-A2, resulted in several significant changes in proteins. These included proteins
involved in the OxS response pathway and actin-related cytoskeletal proteins. With regards to these
processes, females were more responsive to SP-A1, whereas males were more responsive to SP-A2.
The latter included proteins involved in OxS, protease balance/chaperone function, and regulation
of inflammation [61]. A single-cell analysis based on actin staining revealed alveolar macrophage
phenotypic subpopulations as well as sex- and age-related differences in KO mice in response to SP-A1
and SP-A2 proteins [63]. Moreover, sex differences have been observed between SP-A1 and SP-A2
and among variants in survival and lung function mechanics in response to bacterial infection [42,43].
SP-A1 compared to SP-A2 exhibits a higher efficiency in pulmonary surfactant reorganization and
surfactant inhibition by serum proteins [65]. The major contributor for at least some of these differences
appears to be amino acid 85 of the precursor molecule, where SP-A1 has a cysteine and SP-A2 has an
arginine [31,45].

In the lung, miRNAs play important roles in developmental processes and maintenance of
homeostasis and their dysregulation has been associated with the development and progression
of various pulmonary diseases [66–71]. miRNAs can be oxidized in response to OxS, via guanine
hydroxylation, altering their ability to bind target mRNA sequences [72]. In addition, miRNAs are
involved in various important biological processes, such as the immune response, cell differentiation,
developmental processes, and apoptosis [73,74]. The role of miRNAs in lung development was
first elucidated in mice, where conditional deletion of Dicer (an important enzyme of the miRNA
synthesis pathway) in lung epithelial cells resulted in impaired epithelial branching and developmental
abnormalities and also led to dysregulated cell death [75]. In addition, abnormal expression of miRNAs
has been correlated with the occurrence of pulmonary disorders in both children and adults [76–80].
Despite the known sex disparities in the incidence and severity of diseases [81,82], there are currently
very few studies exploring the role of miRNAs in mediating the sex-biased disease outcomes [83].
Recent studies showed that SP-A1 and SP-A2 differentially regulate in a sex-specific manner the
AM [39] and the type II cell [84] miRNome in response to O3 exposure. In both cases (AM and type
II cell), gonadectomy had a major impact on the miRNome of males when compared to females



Antioxidants 2020, 9, 1190 3 of 23

under both control (filtered air exposure) and experimental (O3 exposure) conditions, indicating a
likely role of sex hormones. SP-A1 by itself did not have any major effect on the AM miRNome
in response to O3 exposure. However, in the presence of SP-A2 (i.e., in co-ex mice expressing
SP-A1 and SP-A2), although there was some overlap between the two groups (SP-A2 and co-ex),
some significant differences were observed at the 4 h post-O3 time point [39,85]), in terms of gene
expression and pathways.

In the present study, we investigated whether inherent qualitative differences between SP-A2 and
co-ex explain the observed differences on the AM miRNome at 4 h post-ozone exposure or whether
SP-A2, in the absence of SP-A1, has a delayed response on the AM miRNome in response to O3.
Towards this, SP-A2 (1A0) and co-ex (SP-A1 (6A2)/SP-A2 (1A0)) male and female mice were exposed to
filtered air (FA) or O3 and 18 h after exposure the expression level of miRNAs, target mRNAs of the
significant miRNAs, and pathways involved were studied. Mice expressing SP-A1 alone were not
included in this study because our previous study found no changes in AM miRNome after a 4-h O3

exposure. We found significant differences in the AM miRNome in terms of genotype, sex, and exposure.
The miRNome data, along with the expression levels of the validated miRNA-mRNA targets identified
by IPA, as well as the IPA-identified pathways, indicated that the differences between SP-A2 and
co-ex are qualitative in nature, and perhaps both gene products are needed for optimal AM regulation.
Moreover, ozone appears to attenuate sex differences as more miRNAs were found to be in common
between males and females in response to ozone compared to FA.

2. Materials and Methods

2.1. Animals

Twelve-week-old humanized transgenic (hTG) mice carrying a single SP-A2 (1A0) variant, or both
SP-A1/SP-A2 (6A2/1A0, co-ex) gene variants, as well as SP-A knockout (KO) mice, were used in this
study. The hTG mice were generated on the C57BL/6J SP-A (KO) background [86]. The male and female
mice used in this study were raised and maintained in a pathogen-free environment, as described
previously [42,43]. The females were synchronized with regards to the estrous cycle as described
previously (by group housing and exposure to the bedding from male mice) [42,43]. A total of 81 mice
(45 for miRNA analysis and 36 for target gene validation by qRT-PCR analysis) were used in the
present study. All the procedures involving animals (protocol #44968) were approved by The Penn
State Hershey Medical Center Institutional Animal Care and Use Committee (IACUC).

2.2. Filtered Air (FA) and Ozone (O3) Exposure

The animals were exposed to FA or O3 (2ppm) in parallel as described previously [28,30].
This ozone dose in rodents was shown in a comparative study [87] to equate to a human dose of
0.4 ppm, a level frequently encountered in urban environments. A group of 4 animals/sex/condition
(FA, O3, except for SP-A2 (1A0) and co-ex male, 3 animals/condition) for miRNA analysis and a group
of 3 animals/sex/condition for target gene validation by qRT-PCR (males, females) were exposed to FA
or O3 for 3 h, and alveolar macrophages (AMs) were isolated after 18 h of recovery as described [88].

2.3. RNA Preparation, Library Construction, and Sequencing

Total RNA extraction from AM cells, library construction, and sequencing were performed as
described previously [85]. The differentially expressed miRNAs between FA and O3-exposed males
and females were identified by using the edgeR [89] and the TCC v1.14.0 R package [90] with the false
discovery rate (FDR) adjusted P-value of 0.1 as a significance cutoff.

2.4. miRNA Data Analysis

We successfully identified 310 (SP-A2 (1A0)), 165 (co-ex), and 244 (KO) miRNAs (from 3 out of
4 mice, Supplementary Materials File S1). The expression levels (fold change) of miRNAs in response
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to FA or O3 from SP-A2, co-ex, and KO were analyzed and compared to identify the differentially
expressed miRNAs in SP-A2, co-ex, or KO males and females. The differentially expressed miRNAs
between SP-A2, co-ex, or KO males and females were determined by dividing the levels of a specific
individual miRNA identified in males by the corresponding female miRNA levels and vice versa
(Supplementary Materials File S1)

2.5. Ingenuity Pathway Analysis (IPA)

To understand the role of differentially expressed miRNAs in males and females in response to
O3 exposure, Ingenuity Pathway Analysis (IPA, www.qiagen.com/ingenuity Qiagen, Redwood City,
CA, USA) was performed as described earlier [39,85]. The miRNAs that had their levels significantly
changed after comparison with ANOVA and Bonferroni correction in response to O3 exposure were
used to identify mRNA targets.

2.6. Gene Expression Analysis

Based on IPA analysis, the expression of a number of genes was validated in subsequent
experiments. The expression levels of the following genes were studied by qRT-PCR as described
previously [85] in male and female SP-A2, co-ex, and KO AM: AGO2, AKT1, ARG1, BCL2, CASP3,
CASP8, CASP9, CCND1, CCND2, CCNE1, CDK2, CDK7, CDKN2A, CTNNB1, DDX20, E2F3, EGR2,
FOXO1, GADD45A, IL6, IL10, IL2RG, JUN, MDTH, MMP9, MYC, MYD88, PPARA, PTEN, SMAD2,
STAT3, TLR2, TLR3, TLR4, TNF, and TNFSF12. The RT2 qPCR Primer assays were purchased from
Qiagen. The AM cell samples (3 animals/sex/treatment (FA or O3)) were analyzed in triplicates/animal
and quantified relative to GAPDH mRNA.

2.7. Statistical Analysis

The statistical differences of the miRNA expression level in males and females (FA compared
to O3 and vice versa) were evaluated by a two-tailed t-test and nonparametric Mann–Whitney test.
For multiple comparison analysis, one-way analysis of variance (ANOVA) was employed followed by
Bonferroni correction for multiple comparisons. Values of p < 0.05 were considered to be statistically
significant. All the data points are means ± standard deviation, and analyses were performed using
Graph-Pad Prism software version 5.0 (Graph-Pad Software, San Diego, CA, USA).

3. Results

3.1. Effect of SP-A2 (1A0), SP-A1/SP-A2 (6A2/1A0, co-ex), and KO on the Expression of AM miRNome

A total of 310 (SP-A2), 165 (co-ex), and 244 (KO) miRNAs in response to filtered air (FA) or ozone
(O3) were identified from males and females combined (listed in Supplementary Materials File S1).
We observed significant differences (p < 0.05) in the expression of AM miRNAs between FA and O3 for
all groups (SP-A2, co-ex, and KO) of combined male and female mice studied by the two-tailed t-test
and nonparametric Mann–Whitney test (data not shown).

Sex Differences

One-way ANOVA and Bonferroni multiple comparison correction showed (a) no significant
differences in response to FA between males and females in any of the studied groups (SP-A2, co-ex,
and KO); (b) no significant differences in response to O3 between males and females in SP-A2 and co-ex,
but in contrast, in the absence of SP-A (i.e., KO), a significant difference was observed between sexes
(Figure 1A); and (c) significant differences were observed between FA and O3 in KO males (Figure 1A),
SP-A2 females (Figure 1B), and in co-ex males and females (Figure 1C).

www.qiagen.com/ingenuity
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Figure 1. Regulation of the AM miRNome in SP-A2 (1A0), co-ex, and KO males (M) and females
(F) after filter air (FA) and ozone (O3) exposure. Significant differences were determined by one-way
ANOVA and subsequent Bonferroni multiple comparisons correction in KO males (A), and SP-A2 and
co-ex females (B,C) as a function of exposure, co-ex males (C), and as a function of sex (KO males and
females) after O3 exposure (A). Comparison analysis for the 163 miRNAs that were detectable in all
of the studied groups (SP-A2, co-ex, and KO) after FA and O3 exposure. Significant differences are
observed after Bonferroni multiple comparisons in KO males (D), SP-A2 and co-ex females (E,F) as a
function of exposure, and co-ex males (F), and as a function of sex (KO males and females) after O3

exposure (A,D). * p < 0.05, ** p < 0.001, *** p < 0.0001.

Next, we focused our attention on miRNAs found in common (i.e., detectable) in all the study
groups (SP-A2, co-ex, and KO), after either FA or O3 exposure, in order to further understand the
impact of SP-A gene variants (presence or absence) on miRNA expression. We identified 163 such
miRNAs (Supplementary Materials File S2) and used these in comparison studies to assess the effect of
SP-A2, co-ex, and KO, as well as the interaction among gene, sex, and treatment. One-way ANOVA
and Bonferroni multiple comparison correction showed significant differences that were similar to the
results shown in panels 1A–C, when all the identified miRNAs, and not only the ones in common,
were considered. Significant differences between FA and O3 were observed for KO males (Figure 1D),
SP-A2 females (Figure 1E), and co-ex males and females (Figure 1F). In addition, a significant difference
was observed between KO males and females after O3 exposure (Figure 1D).

3.2. miRNAs, the Levels of which Changed ≥2-Fold in Response to FA, O3, and Sex

We studied the AM miRNAs, whose expression was altered ≥2-fold in response to FA or O3 from
SP-A2, co-ex, and KO and compared them between males and females (Supplementary Materials File S1).
To identify specific miRNA expression changes after O3 exposure, we compared the expression levels
of miRNAs that significantly either increased (≥2-fold) or decreased (≥2-fold) in FA compared to O3

(FA vs. O3) and vice versa in males and females. The results are shown in Table 1 and Supplementary
Materials File S1. A large number of miRNAs, the levels of which changed (≥2-fold either increasing
or decreasing) in response to O3 compared to FA exposure, were observed for all three groups in both
males and females (Table 1). The co-ex had the lowest number of miRNAs increased or decreased
(≥2-fold) with significantly changed levels.
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Table 1. The total numbers of miRNAs identified from SP-A2 (1A0), co-ex, and KO males and females
with ≥2-fold change after FA and O3 exposure are shown.

Gene Variant and
Number of miRNAs

Identified

Male Female

FA vs. O3 FA vs. O3

≥2-fold (Increase) ≥2-fold (Decrease) ≥2-fold (Increase) ≥2-fold (Decrease)

SP-A2 (1A0) (n = 310) 41 * 70 * 37 * 66 *

co-ex (n = 165) 19 * 36 * 13 * 48 *

KO (n = 244) 25 * 69 * 38 * 61 *

The number (n = ) of miRNAs analyzed is shown in parentheses in the first column. * Number of miRNAs that
significantly changed ≥2-fold either increasing or decreasing in FA (Filtered air) compared to O3 (FA/O3) in males
and females.

A comparison of miRNAs in males and females in response to FA or O3 exposure revealed the
following. In response to FA, a number of the significantly (≥2-fold) changed miRNAs, shown in
Table 1, were found to be in common in males and females, indicating that the expression of these
miRNAs is independent of sex. These included eight miRNAs for SP-A2, two miRNAs for co-ex,
and two miRNAs for KO, leaving the expression of the majority of the changed miRNAs under the FA
condition to be present only in either males or females. However, in response to O3, a significantly
larger number of miRNAs were found to be in common between males and females in all three groups.
SP-A2 had 33 in common, co-ex had 25, and 36 for KO (Figure 2, Supplementary Materials File S1).
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Figure 2. Comparison of miRNAs that are regulated (≥2-fold) by FA or O3 in SP-A2 (1A0), co-ex,
and KO males and females. The changed miRNAs (≥2-fold) were used in the Venn diagrams shown.
In response to FA and O3, for SP-A2, co-ex, and KO males and females, 310, 165, and 244 miRNAs were
identified, respectively. Each Venn diagram shows the total number (n) of miRNAs for each group,
the number of miRNAs specific to one or another, and the miRNAs found in common between any
two groups. (A,B) show results as a function of exposure or sex for SP-A2, and similar results are
shown for co-ex (C,D) and for KO (E,F). After FA in SP-A2, a comparison of differentially regulated
miRNAs between males and females showed 41 miRNAs ≥ 2-fold in males and of these 33 were
specific to males, and in females of the 37 miRNAs identified with ≥ 2-fold, 29 were specific to females.
Eight miRNAs were identified to be in common between males and females after FA exposure (A).
In response to O3 exposure in SP-A2, 70 miRNAs ≥ 2-fold were identified in males, and of these 37
were specific to males. In females, 66 miRNAs ≥ 2-fold were identified and of these 33 were specific to
females. Thirty-three miRNAs were identified to be in common between males and females after O3

exposure (B). Comparable findings are shown for co-ex (C,D) and KO (E,F).
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3.3. Shared miRNAs among the Three Studied Groups in Response to FA or O3 in Males and Females

For this analysis, we used miRNAs (n = 163) found to be present/detectable (regardless of the
level of expression) in all three groups. The Venn diagrams in Figure 3 show that in response to FA,
there are either no miRNAs (males) or only one miRNA (females) in common among the three groups.
However, in response to O3, there is a significantly higher number of miRNAs found in common in
males (n = 14) and females (n = 18) among the three groups (Figure 3, Supplementary Materials File S2).
Collectively, the data in Figures 2 and 3 indicate that in response to O3, although gene/genotype- and
sex-specific differences remain in terms of the AM miRNome compared to FA, more miRNAs are found
to be in common among the three groups in males and females.
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163 miRNAs, in response to FA, no miRNAs (≥2-fold) were found to be in common in males in the
three groups, but one miRNA (≥2-fold) was found to be in common in the three groups in females
(A,B). In response to O3 exposure, 14 and 18 miRNAs (≥2-fold) were in common in the three study
groups in males and females, respectively (A,B). The miRNAs found to be changed (≥2-fold) in all
three groups are likely independent of SP-A regulation.

3.4. Ingenuity Pathway Analysis (IPA) Pathways

IPA was performed to identify target genes of the significantly changed miRNAs and pathways
involved in SP-A2, co-ex, and KO males and females under the studied conditions. The results of the
IPA analysis were subjected to one-way ANOVA before and after the Bonferroni correction for each
study set (i.e., SP-A2 females in FA vs. O3) yielded identical signaling networks and pathways because
the miRNA data input in the IPA was same. The target genes of the differentially expressed miRNAs
identified by IPA are involved in anti-apoptosis, cell cycle, cellular growth and proliferation, as well as
proinflammatory responses. The miRNA target genes included AGO2, AKT1, ARG1, BCL2, CASP3,
CASP8, CASP9, CCND1, CCND2, CCNE1, CDK2, CDK7, CDKN2A, CTNNB1, DDX20, E2F3, EGR2,
FOXO1, GADD45A, IL6, IL10, IL2RG, JUN, MDTH, MMP9, MYC, MYD88, PPARA, PTEN, SMAD2,
STAT3, TLR2, TLR3, TLR4, TNF, and TNFSF12. The miRNAs that significantly changed in response to
O3 exposure and their targets in SP-A2, co-ex, and KO males and females are listed in Table 2.
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Table 2. Expression levels of SP-A2 (1A0), co-ex, and KO AM miRNAs (males and females) in response
to O3 exposure that significantly changed, and their mRNA targets were identified by IPA analysis.

miRNA ID
SP-A2 (1A0) co-ex (SP-A1 (6A2)/SP-A2 (1A0) KO

Target MoleculeFold Change
in Males

Fold Change
in Females

Fold Change
in Males

Fold Change
in Females

Fold Change
in Males

Fold Change
in Females

let-7a-5p 1.395 0.942 0.912 1.356 0.498 1.020

AGO2, CCND1,
CCND2, CCNE1,
CDKN2A, CDK7,

E2F3, MMP9, PPARA,
TLR4, TNF, TNFSF12

miR-16-5p 1.621 0.787 1.045 2.301 † 0.620 0.929

CCND1, CCND2,
CCNE1, CDK7,
TNFSF12, E2F3,

BCL2, JUN

miR-17-5p 1.994 † 0.734 0.960 0.953 0.212 † 0.199 †

CCND1, CCND2,
CCNE1, CDK7, STAT3,

EGR2, E2F3, MYC,
PPARA, TNFSF12

miR-21a-5p 0.649 0.553 1.338 0.563 0.966 0.994 BCL2, AKT

miR-23a-3p 1.111 0.842 0.808 0.895 0.782 1.225 E2F3, TNFSF12

miR-25-5p 0.692 1.692 0.557 0.807 1.219 0.235 † SMAD2

miR-27a-3p 1.253 1.085 0.960 2.045 † 1.163 1.206 E2F3, TNFSF12

miR-28-3p 1.216 0.587 0.203 † 0.826 0.177 † 0.843 MTDH

miR-29b-3p 0.546 1.402 1.540 1.258 2.539 † 0.707 AGO2, TLR3

miR-30c-5p 1.293 0.870 0.976 0.987 1.617 0.864 AGO2, DDX20,
PPARA

miR-101b-3p 0.456 † 1.146 1.153 2.339 † 1.001 1.147 MTDH

miR-103-3p 1.027 0.869 1.219 1.108 0.680 1.005 E2F3, PPARA,
AGO2, TLR4

miR-125b-5p 1.556 6.921 † 1.643 5.025 † 3.585 † 2.030 † TLR2, TNF,
ARG1, MYD88

miR-130b-3p 4.656 † 3.584 † 0.128 † 0.505 1.207 0.554 PPARA

miR-130b-5p 2.613 † 1.204 2.263 † 0.420 † 0.582 0.236 † MYD88

miR-139-5p 5.637 † 2.121 † 0.961 1.422 3.378 † 1.527 AGO2, JUN

miR-141-3p 0.888 1.362 2.015 † 6.530 † 6.623 † 5.760 † CTNNB1, GADD45A

miR-143-3p 3.613 † 4.148 † 4.202 † 16.191 † 9.130 † 5.773 † E2F3, PPARA

miR-151-5p 1.345 2.847 † 35.602 † 7.713 † 2.508 † 1.670 PTEN, AGO2

miR-155-5p 6.792 † 0.192 † 1.077 2.088 † 0.421 † 2.479 † IL-6, TLR2,
MYD88, STAT3

miR-181a-5p 0.788 0.970 0.578 0.585 0.875 1.040 SMAD2

miR-182-5p 1.622 1.216 0.375 † 3.279 † 1.984 1.235 PPARA, MTDH

miR-191-5p 1.311 1.093 1.029 0.960 0.707 1.017 IL-6, TLR3

miR-193a-5p 0.677 0.842 0.758 0.701 1.277 0.796 IL-10, IL2RG

miR-199b-3p 5.455 † 2.659 † 1.829 0.543 7.971 † 3.341 † PTEN, TNFSF12

miR-320-3p 0.802 1.498 0.994 0.942 1.072 0.649 MYD88

miR-320b 1.114 0.324 † 0.700 0.876 0.333 † 0.773 MMP9, SMAD2

miR-340-5p 0.843 0.748 1.607 0.646 2.031 † 0.438 † MTDH, MYD88

miR-378-3p 1.246 0.631 0.764 1.004 0.778 0.808 PPARA, FOXO1,
CASP9

miR-455-3p 3.142 † 5.087 † 2.554 † 3.777 † 4.915 † 3.509 † TNFSF12

miR-503-5p 0.934 0.984 2.333 † 0.919 0.498 1.468 CDK2

miR-532-5p 1.235 0.632 0.424 † 0.922 0.566 0.795 MYC

miR-92a-3p 1.338 2.008 † 0.903 0.888 1.131 0.380 †

CCND1, CCNE1,
CDK7, IL-6, TLR2,
TLR3, EGR2, JUN,

E2F3, TNF, SMAD2

miR-718 1.053 0.932 0.819 2.754 † 1.214 1.187 TNF, AKT

miR-1195 1.392 0.431 † 0.375 † 0.699 0.655 0.767 STAT3

† indicates miRNAs that had expression value with either ≥2-fold increase (values ≥ 2) or ≥2-fold decrease
(values ≤ 0.5), and are highlighted in yellow (p < 0.05).
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3.5. Validation of miRNA Target Genes

The expression of miRNA target genes identified by IPA was next validated by qRT-PCR analysis
on AM cell samples isolated from SP-A2, co-ex, and KO males and females after FA or O3 exposure
(Figure 4). In response to O3, the expression levels of 12 genes: ARG1, BCL2, CASP3, CCNE1, CDK7,
CDKN2A, DDX20, E2F3, GADD45A, IL-10, PPARA, and TNF, significantly increased in co-ex and
SP-A2 males compared to females (Figure 4A,B) whereas the expression levels of another 12 genes:
AKT1, CASP8, CASP9, CCND2, CTNNB1, IL2RG, JUN, MMP9, MTDH, PTEN, STAT3, and TLR2,
significantly increased in co-ex and SP-A2 females compared to males (Figure 4A,B). The expression
levels of the other validated genes were discordantly either increased or decreased between SP-A2
and co-ex males and females. The expression levels of MYC, SMAD2, TLR3, and TNFSF12 in SP-A2
(Figure 4B), and CDK2 and SMAD2 in co-ex (Figure 4A) remained similar between sexes. In contrast,
in SP-A-KO, in response to O3, the expression levels of nearly all of the genes studied significantly
increased in males compared to females (Figure 4C), with the exception of CDK2, which did not change
between sexes, and the CCNE1, and PPARA, which significantly increased in females in response to
O3 compared to males (Figure 4C).

In summary, in the absence of SP-A, in KO, the overwhelming majority of the validated target
genes (n = 33) showed increased expression in males compared to females. Two showed a significant
increase in females compared to males and one gene (CDK2) showed no sex differences. In the presence
of the SP-A2, a larger number of genes in females (n = 20) exhibited increased expression compared
to males (n = 12). Four genes (MYC, SMAD2, TLR3, and TNFSF12) did not show sex differences
in their expression. In the presence of both gene products (co-ex), similarly to SP-A2, there was a
large number of genes that exhibited increased expression. Two genes (CDK2 and SMAD2) did not
show sex differences in their expression. However, in co-ex, the larger number of genes that exhibited
increased expression was in males (n = 21) than in females (n = 13). The number and direction of
expression (increase or decrease) of genes that showed a significant change in co-ex males or females is
almost the opposite of what is observed in the presence of SP-A2, where the larger number of genes
exhibiting increased expression was in females. This may indicate an interactive role of SP-A1 and
SP-A2 in the observed sex differences. The presence of SP-A1 (in addition to SP-A2) may bring about a
downregulation of miRNA-target genes in females, and a relative upregulation in males as depicted
in co-ex vs. SP-A2 alone. In the absence of SP-A, as shown in the KO, there is an overwhelming
upregulation in males. Thus, both gene products are required for perhaps a more balanced gene
expression in males and females. This is consistent with the lower number of miRNAs with changed
levels observed in co-ex than either SP-A2 or KO in response to O3 (Table 1).
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Figure 4. Effect of O3 exposure on mRNA targets of co-ex, SP-A2 (1A0), and KO. (A–C) show the
gene expression levels for co-ex, SP-A2, and KO, respectively, in males and females. In co-ex (A),
the expression of the levels of AGO2, ARG1, BCL2, CASP3, CCND1, CCNE1, CDK7, CDKN2A, DDX20,
E2F3, EGR2, FOXO1, GADD45A, IL-6, IL-10, MYC, MYD88, PPARA, TLR3, TLR4, and TNF were
significantly upregulated in males compared to females. The levels of AKT1, CASP8, CASP9, CCND2,
CTNNB1, IL2RG, JUN, MMP9, MTDH, PTEN, STAT3, TLR2, and TNFSF12 were upregulated in
females compared to males. The levels of CDK2 and SMAD2 remained similar in both sexes. Levels of
expression of the studied genes in SP-A2 (1A0) and KO are shown in (B,C), respectively. Blue and pink
bars show the expression levels of specific genes in males and females, respectively. The expression
levels were normalized to GAPDH and significant differences (p < 0.05) between sexes are noted by
an asterisk (*).
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3.6. In Response to O3 Exposure

3.6.1. SP-A Genotype-Independent miRNAs (i.e., Found in Common among the Three Groups
(SP-A2, co-ex, KO))

Of the miRNAs (n = 163) found to be in common in all three groups (SP-A2, co-ex, and KO) and
changing in response to O3 exposure, 14 and 18 miRNAs (≥2-fold) were present in males and females,
respectively, in all 3 groups (Figure 3 and Supplementary Materials File S2), indicating that these are
SP-A genotype independent. Out of these, 13 miRNAs were found to be in common in both males and
females. The IPA analysis of these (n = 14 in males; n = 18 in females) miRNAs identified target genes
predicted (TargetScan) to be involved in proinflammatory (TNF, TNFSF12, TLR2, TLR3, and TLR4),
cell cycle, growth, and proliferation (CCND1, CCND2, CCNE1, CDK7, E2F3, JUN, PPARA, and PTEN).
The expression levels of these target genes were significantly altered in response to O3 exposure in
males and females, as shown in Figure 4.

Although a substantial number of the miRNAs used in IPA were found to be in common (n = 13)
in males and females after O3 exposure, their target gene expression differed between males and
females in all three groups, except for TLR3 and TNFSF12, which did not change between sexes in
SP-A2. Thus, other mechanisms may contribute directly or indirectly to the regulation of the target
genes of these SP-A genotype-independent miRNAs.

3.6.2. SP-A Genotype-Dependent miRNAs (i.e., Not Found in Common among the Three Groups)

IPA of miRNAs that are not common (n = 149 and 145 for males and females, respectively) in all
three groups (SP-A2, co-ex, and KO) (Supplementary Materials File S2) in response to O3 exposure
showed that the targets of these miRNAs are associated with the same pathways as noted above for the
miRNAs found to be in common among the three groups. These include proinflammatory (IL6, MTDH,
TLR2, TLR3, TNF, and TNFSF12), and cell cycle, growth, and proliferation (CCND1, CCNE1, CTNNB1,
CDK7, E2F3, FOXO1, and PPARA).

In summary, it is evident that the group of miRNAs found to be in common in all three study
groups and the group of miRNAs not found to be in common in the three study groups, although
different, some of these, target the same genes. The pathways identified by IPA based on the miRNome
in response to O3 exposure include proinflammatory and cell cycle, growth, and proliferation pathways.
We speculate that AMs initiate these pathways as recovery mechanisms to alleviate the impact of O3

exposure regardless of SP-A genotype or lack of SP-A, but the degree of success may in part depend on
the combination of miRNAs that regulate the genes involved. This putative combination of miRNAs
may consist, among others, of miRNAs specific to a given SP-A genotype, miRNAs specific to males or
females, and miRNAs specific to the interaction of SP-A genotype/sex/O3 exposure.

The collective information indicates that O3 exposure has a significant impact on the expression
of miRNAs and their target genes in an SP-A genotype-specific and sex-specific manner. A pictorial
integration and summary of all molecules studied here is shown in Figure 5 for the co-ex. These include
the significantly changed miRNAs, their validated targets, and the signaling pathways identified by
IPA. Supplementary Materials Figure S1A,B depict a similar summary for SP-A2 and KO, respectively,
as shown in Figure 5 for co-ex.
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Figure 5. Schematic representation of the identified miRNAs in co-ex AM and their targets in response
to O3. These include pathways of cell cycle, and cellular growth and proliferation, as well as pathways
of the proinflammatory response and anti-apoptosis, in co-ex males and females. The miRNAs and
their gene targets studied in the present study are highlighted with yellow. Up (↑) and down (↓) arrows
in blue and pink color indicate an increase and decrease, respectively, in males or females.

4. Discussion

Four hours after a 3 h O3 exposure, both sex- and SP-A gene-specific differences were observed in
the AM miRNome, with SP-A2 males exhibiting significant differences [39]. No significant differences
were observed in AMs from mice expressing SP-A1. AMs from mice that expressed both gene products
(co-ex) [85] when compared to SP-A2 male mice after O3 exposure [39] exhibited both similarities
and differences in the miRNA-targeted genes and pathways [85]. In the present study, we wished to
investigate the effect of O3 exposure at a later time point to determine whether the AM miRNome
from SP-A2 mice exhibits a delayed response compared to co-ex or whether it remains qualitatively
different from that in co-ex. Towards this, human transgenic (hTG) mice, expressing SP-A2 (1A0),
or both gene products (co-ex), and SP-A-KO were exposed to filtered air (FA) and O3 and AM miRNA
levels were identified at 18 h after a 3 h O3 exposure. The target genes of the significant miRNAs
were validated and studied by IPA to identify signaling pathways. The observations made include
(i) significant differences in AM miRNome of SP-A2, co-ex, and KO in terms of sex and exposure; (ii) the
AM miRNome was largely downregulated significantly in response to O3 compared to the control (FA)
in both males and females in all studied groups; (iii) the expression of the overwhelming majority of
miRNA targets in KO males was increased compared to females. In SP-A2, about 56% of the targets
showed an upregulation in females compared to males, whereas in co-ex, the opposite was observed,
with 58% being upregulated in males; (iv) miRNA-mRNA targets of all three study groups were
involved in proinflammatory response, anti-apoptosis, cell cycle, cellular growth, and proliferation
pathways. These data indicate that although the overwhelming majority of miRNAs are downregulated
in response to O3 and similar pathways are observed for the three study groups, the expression of the
miRNA-mRNA targets differs as a function of SP-A genotype and sex. This indicates that mechanisms
other than those mediated by miRNA play a role. Moreover, the presence of SP-A1 as shown in co-ex
appears to play a significant role in the regulation of miRNA targets in a sex-specific manner.
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4.1. Anti-Apoptosis, Cell Cycle, Growth, and Proliferation

The mRNA levels of anti-apoptotic protein BCL2 were significantly increased in both SP-A2 and
co-ex males but decreased in females at 18 h post-O3. This is consistent with observations made at
4 h post-O3 exposure [39,85]. Several studies showed that the expression of BCL2 was significantly
increased in response to various environmental insults [91–93]. The expression of miR-16-5p and
miR-21a-5p, which target BCL2 [94–97], was significantly decreased in the present study in both SP-A2
and co-ex except in co-ex females where miR-16-5p increased. Although O3 differentially affects BCL2
expression in males and females, there appears to be a disconnect between miRNA expression and
target gene expression, indicating that miRNAs not studied here or other mechanisms contribute
directly or indirectly to the BCL2 regulation after O3 exposure.

O3 exposure differentially affected the expression of molecules involved in cell cycle and growth
and proliferation in the studied groups. A number of miRNAs whose expression was for the most part
downregulated after O3 exposure were predicted to target genes involved in cell cycle and growth and
proliferation pathways, such as CCND1, CCND2, CCNE1, CDK2, CDK7, CDKN2A, E2F3, GADD45A,
and MYC (Table 2). For example, miR-16-5p and miR-17-5p, which are predicted to bind CCND1,
CCND2, CCNE1, CDK7, E2F3, and MYC mRNAs, have been shown in several studies to regulate
these genes [98–101]. The mRNA levels of CCNE1, CDK7, CDKN2A, E2F3, and GADD45A were
increased in males, which is consistent with the downregulation of miRNAs regulating their expression.
In females, on the other hand, there was a decreased expression of these genes in spite of the miRNA
downregulation. The opposite was observed for other genes in this pathway. The mitogen-activated
protein kinase (MAPK) pathway has the potential to regulate genes involved in cell cycle, growth,
and proliferation, as well as proinflammatory and anti-apoptosis [102–104]. In the present study,
we found the expression of several genes involved in the MAPK pathway to be altered after O3

exposure. For example, an increase of FOXO1 was observed in both co-ex and SP-A2 males, and the
miRNA that targets FOXO1 and miR-378-3p was significantly downregulated in both co-ex and SP-A2
(Figure 5 and Supplementary Materials Figure S1B). FOXOs are transcription factors involved in the
homeostasis of ROS and can function as a negative feedback loop to control cellular reactive oxygen
species [105]. FOXO1 regulates the expression of antioxidant genes, such as CAT and SOD2, both of
which are known to neutralize free radicals generated by ROS. We have previously shown that at 18 h
post-O3 exposure, the level of SOD2 mRNA was decreased in SP-A2 males, whereas, in KO, both SOD2
and CAT were significantly increased, indicating that SP-A2 may play a role in the homeostasis of
ROS [39]. In fact, our recent studies indicate that SP-A2 contributes/regulates the NAD(H) redox status
in a sex-dependent manner [106]. Thus, the observed FOXO1 upregulation may be a mechanism that
alleviates the ROS impact on AM cells of male SP-A2 and co-ex compared to females.

4.2. Proinflammatory Responses

The pro- and anti-inflammatory cytokine IL-6 is regulated by miR-191-5p, miR-155-5p,
and miR-92-3p [39,107], the expression of which was variably changed in the study groups. Of these,
the up- and downregulation of miR-155-5p was consistent in the present study with the down-
and upregulation of IL-6 in the various groups. However, the expression level of the other two
miRNAs predicted to bind IL-6 was not consistent with the IL-6 expression levels. miR-155-5p
is a multi-functional miRNA that regulates inflammatory signaling pathways [108], and is shown
to negatively regulate the IL-6-triggered proinflammatory pathway by preventing Janus kinase 2
(JAK2)/signal transducer and activator of transcription 3 (STAT3) activation [107,109]. IL-6 is secreted
by immune cells and lung endothelial and epithelial cells in response to environmental insults [110,111],
and via its pleiotropic effects modulates pathogenesis, progression, and severity of various chronic
lung diseases [112–114]. The level of IL-6 significantly decreased in SP-A2 males compared to females,
whereas the opposite was observed in co-ex males and females at 18 h post-O3 exposure. However,
at 4 h post-O3, an increase was observed in males of SP-A2 or co-ex [39,85]. This variable IL-6 regulation
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in the presence of the SP-A2 single gene product and in co-ex indicates an interplay of both gene
products in the IL-6 regulation.

Moreover, MMP9, which has been implicated in the pathogenesis of several lung diseases
and injury [115–118], has been shown to increase the expression of IL-6 in response to O3 [119].
The expression of MMP9, on the other hand, is enhanced in AM cells and other cells in the lung by
various stimuli, and specifically by ozone [120–122]. In the present study, the expression of let-7a-5p
and miR-320-3p, predicted to bind MMP9, was downregulated in both SP-A2 and co-ex, and MMP9
expression was increased in both SP-A2 and co-ex females compared to males, but in KO, its expression
was instead increased in males vs. females. The increase in MMP9 expression may upregulate the
expression of IL-6 in SP-A2 (but not in co-ex) females as shown in a previous study with wild-type
mice [119].

Intracellular signaling mediated by STAT3 has been implicated in lung inflammation and in the
pathogenesis of various lung diseases [123–128]. In response to O3, STAT3 gets phosphorylated and
this results in the activation of genes involved in inflammation and injury [129]. miR-17-5p, miR-1195,
and miR-155-5p are predicted to bind and regulate STAT3. The expression of these miRNAs was
variably changed in the study groups in response to O3. Of these, the expression of miR-1195 is
consistent with the observation made. Its decreased expression in SP-A2 and co-ex (males and females)
is associated with increased expression of STAT3 in SP-A2 and co-ex females compared to males.
Although some of the miRNAs were downregulated in males after 18 h post-O3, which should have
resulted in an increase in the expression of STAT3, the opposite was observed, indicating that either the
regulation of STAT3 by these (and perhaps other) miRNAs is dysfunctional or mechanisms other than
miRNAs regulate its expression in males at 18 h post-O3. This differs from a previous observation where
males showed a significant increase in STAT3 levels in response to 4 h post-O3 [39,85], indicating that
in the presence of the single SP-A2 or both genes, STAT3 expression is differentially regulated in males
and females at different time points, as a function of SP-A genotype. Moreover, a number of target
genes involved in the regulation of the proinflammatory cytokines via STAT3 were significantly and
variably altered in response to O3. However, the role of these miRNA target genes in regulating the pro-
or anti-inflammatory response to environmental pollutants in males and females remains unexplored
as a function of SP-A genotype.

In general, the up- and downregulation of several of the genes studied in the various groups did
not fully correlate with changes in the miRNAs that targeted these genes, as most miRNAs exhibited a
downregulation. The varied gene expression was largely sex and SP-A genotype specific. Sex-specific
and SP-A genotype-dependent differences in survival after infection [42] and O3 [25,27] have been
shown in animal studies and sex hormones were shown to play a role [130]. These together point
to underlying complexities of sex-mediated mechanisms in response to SP-A genotype that cannot
be addressed by the miRNome alone, although miRNAs may partially contribute to mechanisms in
response to various insults.

5. Overall Comments

SP-A-KO mice exhibited significantly poor survival after infection compared to wild-type mice [27]
or compared to humanized transgenic mice where each expresses a different SP-A variant. Rescue with
SP-A significantly improved survival [42], and the proteomic profile of the rescued KO AM resembled
that of the wild type [131]. Observations, however, of the KO AM proteome [29,132], miRNome [39,85],
or gene expression [133] are somewhat perplexing or paradoxical. These, among others, indicated that
unchallenged AMs in the absence of SP-A may be in a state of OxS [29] as suggested by previous
studies, where, after infection, the KO AM proteome was reminiscent of the uninfected wild-type
proteome [132]. In the latter, proteins with pathogen defense functions were increased in the KO,
indicating perhaps an attempt for the KO to overcome its host defense deficits. Similarly, in the present
study, the KO AM miRNome shared similarities with SP-A2 and co-ex. However, in spite of various
attempts of the KO AM to respond to insults in ways that may resemble those of the SP-A-expressing
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mice, they cannot overcome their host defense deficits as shown by their poor survival following
infection [26,27,42]. A recent paper using a Toponomic imaging system provided some insight into
“pattern of expression” or combinational molecular phenotypes (CMPs) within individual cells [134].
In an SP-A1 rescue experiment, the patterns of expression or CMPs overlapped between KO and
SP-A1-rescued KO AM, and the rescued AMs exhibited more diversity in the form of CMPs than the
KO. This diversity/heterogeneity and the overlap of CMPs may in part explain the AM functional
differences [25–27], where the presence of SP-A lead to a better outcome as shown with the ultimate
readout survival [26,27,42].

Although, SP-A1 alone in the original study [39] did not show any significant effect on the AM
miRNome at 4 h after O3 exposure, together with SP-A2 in co-ex, and regulated genes involved in the
cell cycle, anti-apoptosis, and growth and proliferation pathways as early as 4 h post-O3 [85]. This is
in contrast to SP-A2 males, where the cell cycle pathway was not detected at the 4 h time point but
instead, the ROS homeostasis pathway was identified as playing a role [39]. One may postulate that in
the absence of SP-A1, SP-A2 alone at the 4 h post-O3 time point affects ROS-related mechanisms and
one of these mechanisms may be via its ability to regulate the NAD(H) redox status [106]. However,
at a later time point (18 h), SP-A2 shifts to recovery mechanisms by perhaps activating the cell cycle,
growth, and proliferation pathway (present study). However, even though the general pathways
identified here for the three study groups (SP-A2, co-ex, and KO) were the same at 18 h, the processes
involved in the regulation of the miRNome and the miRNA-mRNA targets differed significantly among
the groups. The co-ex compared to SP-A2 had a lower total number of miRNAs either increased or
decreased in response to O3 exposure. It was 49% (males) and 59% (females), approximately half of
those in SP-A2. The expression of most of the target genes increased in SP-A2 females compared to
males, but the opposite was true for the co-ex. Collectively, these indicate that a) qualitative differences
exist between AM from SP-A2 and co-ex up to at least 18 h after O3 exposure, b) the presence of both
genes may be necessary for optimal AM functioning, and c) a regulatory interplay between SP-A1
and SP-A2 may exist, even though the SP-A1 by itself did not show any significant differences at
4 h post-O3 exposure in either males or females [39]. In humans with no known pulmonary disease,
the ratio of SP-A1 to total SP-A in bronchoalveolar lavage (BAL) varies [54]. However, this ratio
increases significantly in patients with cystic fibrosis, asthma, and positive bacterial culture [54].
Thus, a putative relative imbalance of the SP-A gene expression products in BAL may under certain
conditions contribute to lung disease. This postulate is in part supported by animal studies, where
animals with single-gene products survive equally well under unprovoked conditions, but in response,
for example, to infection, their survival varies significantly [42]. Although the data of this study are
largely in line with our previous observations, the current study has a few limitations: (a) the validation
analysis was performed only for genes that are targeted by significantly changed miRNAs in co-ex,
SP-A2, and KO males and females, and we did not look at the protein levels of the targeted mRNAs;
and (b) we did not study the molecular mechanisms of the identified pathways. However, the result of
this study advances our knowledge of the differential impact of SP-A genotype and sex on the AM
miRNome in response to O3 exposure.

6. Conclusions

(a) In response to O3 qualitative differences in the AM miRNome, target genes and signaling
pathways were observed as a function of SP-A genotype and sex. (b) Fewer miRNAs were increased or
decreased (≥2-fold) in co-ex than either group (SP-A2, KO). (c) O3 exposure attenuated sex differences
as shown: (i) more miRNAs were found to be in common between males and females in each studied
group compared to FA exposure, with co-ex having the lower number than either group (SP-A2 or KO);
and (ii) more miRNAs were found to be in common in males or females among the three studied groups
(i.e., regardless of SP-A genotype) compared to FA exposure. Together, these point to underlying
complexities and an interplay of O3 effects, sex, and SP-A genotype.
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