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Underestimation of reef fish space use may result in marine reserves that are too small to effectively buffer a portion of the stock
from fishing mortality. Commonly used statistical home range models, such as minimum convex polygon (MCP) or 95% kernel
density (95% KD) methods, require the exclusion of individuals who move beyond the bounds of the tracking study. Spatially
explicit individual-based models of fish home range movements parameterized from multiple years of acoustic tracking data were
developed for three exploited coral reef fishes (red grouper Epinephelus morio, black grouper Mycteroperca bonaci, and mutton
snapper Lutjanus analis) in Dry Tortugas, Florida. Movements were characterized as a combination of probability of movement,
distance moved, and turning angle. Simulations suggested that the limited temporal and geographic scope of most movement
studies may underestimate home range size, especially for fish with home range centers near the edges of the array. Simulations
provided useful upper bounds for home range size (red grouper: 2.28 ± 0.81 km2 MCP, 3.60 ± 0.89 km2 KD; black grouper: 2.06 ±

0.84 km2 MCP, 3.93 ± 1.22 km2 KD; mutton snapper: 7.72 ± 2.23 km2 MCP, 6.16 ± 1.11 km2 KD). Simulations also suggested that
MCP home ranges are more robust to artifacts of passive array acoustic detection patterns than 95% KD methods.

1. Introduction
Many terrestrial and marine vertebrates use specific areas for
their movements [1, 2]. The area utilized for the majority
of animal’s activities and movements during certain time
periods or over particular life stages is referred to as a “home
range” (see review in [3]). Although numerous studies have
documented home ranges for fishes (e.g., [4–9]), few have
precisely quantified movements and habitat space relative to
no-take marine reserve (NTMR) boundaries (but see [10]).
Accurate estimates of home range size are crucial to the
design of efficient NTMRs (e.g., [11–15]); an NTMR smaller
than the home range size of a fishwill afford it little protection
from fishing pressure.

A number of statistical models have been developed
to generate quantitative estimates of home range size from
location data. The most commonly used methods are the

minimumconvex polygonmethod (MCP [16]), which defines
the boundaries of space use and the kernel density model
(KD [17]), which calculates spatial utilization probabilities.
The individual’s MCP or KD home range estimates generated
from daily location data must reach a visible asymptote
through time to be a valid estimate of home range size
[16]. Within a fixed acoustic array, this assumption may
create bias in resultant space-use estimates by excluding
the most mobile individuals as well as individuals who are
only detected at receivers placed in a straight line. Although
extrapolation beyond observed values has limitations, esti-
mating the scope of movements beyond an acoustic array
in a probabilistic fashion provides a useful upper bound to
empirical estimates of home range size. Underestimation of
fish space requirementsmay lead to overconfidence regarding
resource protection in the context of NTMR design [18];
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therefore, a conservative upper bound is most appropriate for
management use.

In this study, we developed a spatially explicit individual-
based simulation model of coral reef fish movements within
a home range, using simple inputs of move frequency, move
distance, and move direction relative to home range center.
These inputs were parameterized from acoustic telemetry
data for groupers and snappers acquired from a broad-scale,
long-term study of reef fish movements and habitat use in
Dry Tortugas, Florida [10]. Using simple behavioral rules
to replicate observed spatial detection frequency patterns,
we explored potential biases and errors in commonly used
home range estimation methods emerging from constraints
on sample size, scope of the acoustic array, duration of
tracking, and number of movements detected. We compared
MCP and KD home ranges of each species derived from
simulated movements to estimates of home ranges derived
from observed movement data. We developed upper bounds
for space use estimates for groupers and snappers, accounting
formovements beyond the scope and duration of the acoustic
tracking program.

2. Methods

2.1. Statistical Home Range Models. We evaluated two widely
used statistical estimators of animal home range: (1)MCP and
(2) KD. The basis of these methods is as follows.

The MCP is a simple heuristic “rule of thumb” model of
home range.TheMCP is constructed by drawing the smallest
possible polygon around the observed position fixes. MCPs
have been broadly used due to their computational simplicity
and ease of comparison between studies, but they have been
criticized for their tendency to overestimate home range size
through the inclusion of unused sites [17, 19–21].

Kernel density (KD) estimation creates a histogram rep-
resentation of a spatial variable (i.e., the 𝑥 or 𝑦 coordinate
of a set of locations), constructed such that each point falls
in the center of a sampling bin. In the simplest version
of this method, the sampling bins overlap, and the points
that are included in any bin are weighted according to a
uniform distribution. Advanced KD methods improve this
approach by replacing the uniform weighting function with
a kernel function. This kernel function is a probability
density function with a distribution defined by the following
equation:

𝑓 (𝑥) = [
1

(𝑛ℎ
2
)
]

𝑛

∑
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(x − Xi)

ℎ
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where 𝐾 is the kernel that determines the shape of the
distribution that is placed over each of the points; ℎ is the
bandwidth, which controls the search radius or width or
the kernel; 𝑛 is the number of location estimates (points)
used in the analysis; and x and X refer to the vectors of
the coordinates of the evaluation point and all other points,
respectively.

In practical applications, a grid size is selected to represent
the most favorable tradeoff between resolution (and hence
smoothness of the resultant probability density function)

and time (coarse grids are more quickly analyzed). For our
study, a grid size of 20m was selected. Using the Geospatial
Modeling Environment [22], a Gaussian kernel function
was fit to the data. Each position fix was evaluated, and
each evaluation point was in turn evaluated based on all
surrounding points. Points surrounded by many other points
have a high density value. To determine which surrounding
points would contribute to the estimation of the density at
the evaluation point, a smoothing factor (bandwidth), ℎ, was
used to describe the search radius about the evaluation point.
Most researchers do not report cell size and bandwidths
used for determining home range sizes, making it impossible
to compare KD home ranges between studies due to the
profound influence of these parameters upon the resultant
home range estimates [23]. For our study, smoothed cross-
validation [24] was used to select the optimal bandwidth;
this method is replicable and is believed to be robust to the
overlapping position fixes commonly obtained from passive
acoustic telemetry studies.

The distance from each point to the evaluation point was
calculated. Based on these distances, a cumulative value was
assigned to the evaluation point.This procedure was repeated
until all the points in the distribution were evaluated. They
were all scored and assigned density values.The values for the
kernel were summed at every point on the surface. Finally,
a surface was created that contained grid cell values of the
kernel density estimate of the distribution. The surface was
then contoured at specified volumes to give percentage home
ranges (i.e., a 95% home range was contoured at 95% of the
volume of the density surface—not at 95% of the area of the
home range).

2.2. Home Range Model: Development. To evaluate the per-
formance of various statistical estimators of coral reef fish
home range, we developed a general stochastic spatially exp-
licit individual-based movement model following the meth-
ods of Holgate [25] and Okubo [26]. In the model, the angle
of rotation 𝜃 between the starting (x0 = (𝑥

0
, 𝑦
0
)) and the

finishing points (x1 = (𝑥
1
, 𝑦
1
)) of movement in a given time

interval Δ𝑡 was defined by
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The Euclidean distance 𝑑 moved by a fish between x0 and x1
in the time interval is
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Fish home range H was expressed as a function of the
statistical distribution of observed directions and distances of
movement

H = ∫𝑓 (𝜃, 𝜃) 𝑑𝜃, (4)

where 𝑓(𝜃, 𝜃)𝑑𝜃 is the probability of moving in direction 𝜃

biased towards the direction of the individual’s home range
center relative to its current position, indicated by the angle
𝜃. The form of the home range function was expressed as a
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Table 1: Input parameters for individual-based mechanistic localizing tendency movement model, based on observedmovements of reef fish
in Dry Tortugas, Florida.

Common name 𝑛 Detections Moves 𝜓 𝜆 ± SE 𝜅 ± SE
Red grouper 44 2,103,428 16,821 0.80% 561 ± 3 3.67 ± 0.04

Black grouper 2 84,108 437 0.56% 456 ± 14 1.19 ± 0.09

Mutton snapper 2 22,006 1,267 5.76% 608 ± 11 3.20 ± 0.11

Note: n denotes number of fish with detected movement used to parameterize model, 𝜓 denotes probability of movement during 5min interval, 𝜆 denotes
mean of exponential distribution of movement distances, and 𝜅 denotes mean of von Mises distribution of turning angles between movements, relative to
home range center.

general von Mises distribution that approximates a normal
probability density function

𝑓 (𝜃, 𝜃) =
1

√2𝜋𝐼
0
(𝜅)

exp [−𝜅 cos (𝜃 − 𝜃)] (5)

with two parameters governing the distribution ofmovement
directions: a mean direction, 𝜃, where −𝜋 ≤ 𝜃 ≤ 𝜋; and
a concentration (variance) parameter 𝜅 (where 𝜅 ≥ 0).
Higher values of 𝜅 are indicative of greater home range affi-
nity. A modified Bessel function, 𝐼

0
(𝜅), normalized 𝑓(𝜃, 𝜃) to

integrate to 1.
The probability of moving from location x0 to x1 was

expressed as probability function relating the product of the
distance moved per unit time and the angle of movement:

𝐾(x0, x1, Δ𝑡) =
𝑓 (𝑑)

𝑑
𝑓 (𝜃, 𝜃) , (6)

where 𝐾 is a kernel that projects the starting and finishing
locations (x0, x1) from Cartesian to spherical coordinates, 𝑑
is the absolute value of the displacement, and 𝜃 is the angle of
movement between the starting and finishing points [27].

2.3. Home Range Model: Parameterization. To obtain data
to parameterize the simulation model, between March 2006
and February 2008, we managed an array of 25–30 VEMCO
VR2 (VEMCO Ltd., Nova Scotia, Canada; http://www
.vemco.com/) hydrophone receivers in the northwestern
quadrant of Dry Tortugas National Park, Florida. This array
provided up to 30 km2 of acoustic coverage over a represen-
tative suite of depths and benthic reef habitats ([10] Figure 1).
VEMCOV16 acoustic transmitters were surgically implanted
in fish captured by hook and line ([10] Table 1). Unique
receiver detection ranges were calibrated using methods
detailed in Farmer et al. [28].

Over two million acoustic detections were registered for
several species of tagged coral reef fish (Table 1). Red grouper,
Epinephelus morio (𝑛 = 45), were the primary empha-
sis for this study, with sensitivity runs performed using para-
meterizations from the movements of opportunistically tag-
ged black grouper,Mycteroperca bonaci (𝑛 = 3), and mutton
snapper, Lutjanus analis (𝑛 = 3). To mitigate the pote-
ntial impacts of transmitter signal collisions, tags were set
with random delay times of 30–180 sec, and fewer than 5
fish were tagged at any given location. Model-weighted mean
position estimates generated on 5-min batching intervals

were considered optimal, following Farmer and Ault [10] and
Farmer et al. [28].

For our home range model input parameters to be
representative of population trends, it was important that
individual fish were not overrepresented. Theoretically, risk
of overrepresentation in the input parameters for the model
would be higher for fish with longer tracking durations or
higher total detections. To quantitatively identify minimal
standards for tracking duration or number of detections and
to evaluate the influence of individual fish (Table 1) on input
parameters, the relationships between red grouper estimated
home ranges and number of detections, number of detected
moves and tracking duration were evaluated using linear
regression models [29], with fish ID as a random factor.
Additional linear regressions were used to test for relation-
ships between days tracked versus number of detectedmoves,
and total detections versus number of detected moves. A
significant relationship between any of these combinations of
variables would suggest that parameterization of home range
models might be overly influenced by a limited subset of
actively moving fish.

A custom Java 6.10 algorithm was developed to pro-
cess time-sequenced observed reef fish movements paths
(“observed”) to estimate distances from previous positions,
𝑑prev; distances from home range center, 𝑑centroid; and turning
angles, 𝜃, between movements, relative to angle to home
range centroid, 𝜃. Data were pooled within species. Move-
ments were expressed as a three-step process: (1) a probability
of moving during the interval, (2) a distance moved, and
(3) a direction moved (if movement occurred). Movement
distances were modeled using “Input Analyzer for Arena”
(Rockwell Automation, Warrendale, PA) to determine the
best fit probability distribution for 𝑑prev. Species-specific
aggregated turning angles relative to home range center (𝜃−𝜃)
were fit to von Mises distributions with the “Circular” pack-
age in R (http://www.r-project.org/).

The sensitivity of the model parameterization to lower
sample sizes was evaluated in two ways. First, to test the
impacts of only low sample size, 1000 bootstrapped samples
of 437 randomly selected movement observations from all
red grouper movement observations (𝑛 = 16, 821) were fit
to exponential distributions, and the mean was compared
to the mean for an exponential distribution fit to all red
grouper observations. This threshold was selected because
only 437 movements were observed from two black grouper.
Becausemeaningfulmovement data were only obtained from
two black grouper and two mutton snapper, the impacts of

http://www.vemco.com/
http://www.vemco.com/
http://www.r-project.org/
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Figure 1: Relative frequency histograms of observed (a)–(c) nonzero movements and (d)–(f) turning angles relative to home range center for
((a), (f)) all tracked red grouper (Epinephelus morio), ((b), (e)) black grouper (Mycteroperca bonaci), and ((c), (f)) mutton snapper (Lutjanus
analis). Means (𝜆) of exponential distribution of movement distance and concentration parameter (𝜅) of von Mises distribution of turning
angles are provided on figures. Fish illustrations copyright Diane Rome Peebles.
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a limited number of individuals upon model parameteriza-
tion was also tested. To test the impacts of having movement
observations from a limited number of individuals, two
observed red grouper were randomly selected, and 500
bootstrapped samples of 437 randomly selected observed
movements were fit to exponential distributions. This test
was iterated 100 times, and the mean across iterations was
compared to the mean for an exponential distribution fit to
all red grouper observations.

2.4. Home Range Model: Simulation Runs. Simulated move-
ment paths and detection sequences were generated using a
spatially explicit model implemented in Java 6.10 using the
Repast Agent-based Modeling Toolkit [30, 31]. This model
parsed the Dry Tortugas, Florida, region into 22,620 cells
of 200m by 200m size. Each cell was assigned a unique
identification code and depth. An array of simulated receivers
was implemented in grid cells corresponding to the locations
of receivers described in Farmer and Ault [10]. For each
simulation run, fish were instantiated with home ranges
centered atop each of the simulated receivers.

For simulations, if a random number drawn from a
uniform distribution between 0 and 1 was less than the
probability of moving a discernible distance (𝜓) in a 5 min
interval, a movement distance was randomly drawn from the
exponential distribution withmean (𝜆) fit to 𝑑prev. Maximum
movement distance was bounded at 6000m per move, as
sustained swimming speeds above 72 km⋅h−1 (45mph) were
deemed unrealistic for reef fish. Movement distances were
converted from meters to simulation grid cell units (i.e.,
200m units). Movements of <200m (i.e., grid cell distance
<1 unit) were beneath the spatial resolution of the position
estimates emerging from the telemetry data [28] and were
considered negligible. Turning angles relative to home range
center were randomly selected from a vonMises distribution
with the concentration parameter (𝜅

𝜏
) for the species under

examination.
A simulated array of receivers was used to provide more

accurate comparisons between empirical and simulated data.
The number of detections registered by a simulated receiver
during a given interval for each fishwas computed by dividing
the length of the interval by the ping rate and thenmultiplying
by the probability of detection at distance [28]. Simulated
movements (“Sim-Actual”) and detection patterns (“Sim-
Detect”) were recorded for one year.

2.5. Home Range Models: Evaluation. Observed and simu-
lated detections were postprocessed using a model-weighted
harmonic mean positioning estimator [10, 28] which incre-
ased positioning resolution during intervals when detections
were recorded atmultiple receivers. Home ranges of observed
and simulated fish were compared. MCP and 95% KD
home ranges were computed for “Observed,” “Sim-Detect,”
and “Sim-Actual” position fixes using Geospatial Modeling
Environment [22]. KD home ranges were computed using
smoothed cross-validation (SCV) bandwidth estimation and
a cell size of 20m.The spatial distribution of error introduced
into empirical studies by fish movements beyond the bounds
of the array was evaluated by comparing “Sim-Detect” and

“Sim-Actual” home ranges for fish with home range centers
at core and peripheral receivers. Receivers were defined as
“peripheral” if they were not completely surrounded by other
receivers.

Although it is broadly accepted that an empirical home
range estimate should only be considered reliable if an asy-
mptote is present when estimated home range size is plotted
against tracking duration, little guidance exists in the litera-
ture regarding minimum tracking duration or detections,
what percent change in home range size constitutes a “useful”
asymptote, or how to account for likelihood of movements
beyond the study area (e.g., “peripheral effects”). To explore
the sensitivity of empirical home range estimates to these
criteria, we computed MCP and KD home ranges for obse-
rved fish under a variety of filters. We also developed a gene-
ralized linear mixed model using SAS Proc GLIMMIX (SAS
Institute, Inc., Cary, NC) to test the relationship between
percentage of final estimated red grouper home range size
versus the fixed effect of tracking duration (months) and ran-
domeffects of individual and interaction effects. Additionally,
estimated home range size for simulated fish was plotted
against months of simulated observation to examine asymp-
totic characteristics.

3. Results

3.1. Home Range Model: Parameterization. Input data did
not appear significantly biased towards overestimation of
movement due to an overabundance of sampling points from
fishwith large home ranges. No trendswere detected between
observed red grouper home ranges and number of detections
or moves (𝑃 > 0.05), days tracked and number of moves
detected (𝐹

1,42
= 0.79, 𝑃 > 0.05), or total detections and

number of moves detected (𝐹
1,42

= 1.02, 𝑃 > 0.05). These
results suggest that simulation model input parameters were
relatively insensitive to the length of observation. By contrast,
a slightly declining trend between days tracked and observed
red grouper home range size (𝛽 = −0.01, 𝐹

1,42
= 9.75, 𝑃 <

0.01) was detected, suggesting that fish leaving the acoustic
array shortly after tagging may have been transient fish, may
have been transitioning between different home ranges, or
may have been behaviorally impacted by the tagging process.
Regression models failed to identify quantitative thresholds
for tracking duration, number of detections, or number of
moves for estimating a home range. However, when the
analysis of home range size versus days tracked was restricted
to observed red grouper exhibiting an asymptotic home range
size estimate and with a home range center towards the
middle of the acoustic array (i.e., “low peripheral effects”),
the relationship between days tracked and home range size
was eliminated (𝐹

1,11
= 2.10, 𝑃 > 0.05). This finding implies

that home range estimates of these individuals was robust
to sampling duration but may also suggest that the common
practice of restricting home range estimates to fish meeting
the asymptotic assumption may underestimate mean space
requirements by excluding more mobile individuals from
consideration.

Input parameters for the home rangemodel are presented
in Table 1. Empirical observations of reef fish movements
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Figure 2: Distribution of spatial positions relative to home range center (m) for (a) observed and (b) simulated red grouper, aggregated
across all individuals. Insets show two-dimensional distribution of position fixes. Simulation output is shown for movements corresponding
to empirical sample size.

indicated that red grouper and black grouper moved infre-
quently (<1% of 5min intervals) as compared tomutton snap-
per (5.76%). For all three species, exponential distributions
provided the best fits with the lowestmean square error to the
nonzero movement data (Table 1, Figure 1); however, some
multimodality was evident in the distribution of distances
moved, resulting in relatively poor fits (𝑃 < 0.05). The best
fit vonMises distributions for turning angles are displayed in
Figure 1. The von Mises concentration parameter was three
times higher for red grouper versus black grouper, suggesting
a comparatively stronger association with a home range
center for red grouper.

The observed spatial distribution of movements relative
to home range centers was reasonably captured by the
simulation (Figure 2); however the emergent pattern from
the “Sim-Detect” movements was more circular and uniform
than the real-world pattern.The shape of the distribution was
controlled by the interplay of the two movement parameters
(𝜆, 𝜅
𝜏
); the magnitude of the distribution was controlled

by the frequency of movement (𝜓) and the number of
individuals tracked. For black grouper and mutton snapper,
the shapes of the simulated distributions were very similar to
those observed. For red grouper, the shape of the observed
distribution was more heavily concentrated on the home
range center than that of the simulated distribution. The
largest movement observed for red grouper was slightly less
than 600m.

Small sample sizes appeared to have little impact on
movement model fits, provided that they were randomly
sampled and representative of the population; there was no
significant difference (𝑃 > 0.05) between the exponen-
tial distribution fit mean (𝜆) based on 16,821 red grouper
movement observations (561.4 ± 2.8) and the exponential
distribution fit 𝜆 based on 1000 bootstrapped samples of
437 randomly selected red grouper observations (560.6 ±

0.55). However, if movements were not representative of the
population,model parameterization could be heavily skewed;
there was a substantial difference between the exponential
distribution fit 𝜆 based on 500 bootstrapped samples of 437
randomly selected red grouper observations drawn from 100
randomly selected pairs of observed red grouper (747.15 ±

34.4; range 288.4–2260.3) and the exponential distribution
fit mean (𝜆) based on all 16,821 red grouper observed
movements (561.4 ± 2.8). These findings suggest that the
relatively low number of observed movements for the two
observed black grouper and two observed mutton snapper
may provide reasonable movement model fits, but only if
the distributions of movement distances for those individuals
were representative of the population. As this assumptionwas
unlikely to be met, subsequent statistics for mutton snapper
and black grouper are provided for contrast to red grouper
only and should not be interpreted as representative of a
population mean.

3.2. Home Range Models: Evaluation. Mean MCP and 95%
KD home range estimates for “Observed,” “Sim-Detect,” and
“Sim-Actual” fish positions are shown in Table 2. KD home
range estimates could not be generated for some fish due to
an overabundance of detections at 1-2 sites impairing SCV
bandwidth estimator performance. MCP and 95% KD home
range estimates differed substantially within species. MCP
home range estimates for mutton snapper were larger than
those of red grouper and black grouper for all three groups.
Surprisingly, red grouper observed 95% KD home ranges
were larger than those of mutton snapper or black grouper.
By contrast, mutton snapper had the largest “Sim-Actual” and
“Sim-Detect” 95% KD home ranges. MCP home range esti-
mates appeared to bemore robust to the detection limitations
of the array, as there was substantially less deviation between
MCP home range estimates across the three groups for each
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Table 2: Estimated home range areas (km2) for empirically observed red grouper, black grouper, and mutton snapper compared to home
range areas from simulated detection patterns and actual paths for simulated fish, with difference between simulated and simulated detection
home range sizes.

Species Stat
Minimum convex polygon (MCP), home range (km2) Kernel density (95% KD), home range (km2)

Observed Simulated Simulated
detections

Simulated-simulated
detections Observed Simulated Simulated

detections
Simulated-simulated

detections

Red grouper

Mean 2.09 2.28 2.49 −0.19 1.71 3.60 7.72 −4.12
sd 2.04 0.81 1.58 1.85 0.48 0.89 4.69 4.75
n 29 32 30 30 29 32 29 29
se 0.38 0.14 0.29 0.34 0.09 0.16 0.87 0.88

Black grouper

Mean 1.44 2.06 1.84 0.34 0.24 3.93 7.16 −3.42
sd 1.48 0.84 1.33 1.65 0.12 1.22 4.70 4.79
n 2 32 30 32 2 32 29 29
se 1.05 0.15 0.24 0.29 0.08 0.22 0.87 0.89

Mutton snapper

Mean 7.64 7.72 5.55 2.17 0.58 6.16 8.01 −1.85
sd — 2.23 3.06 3.67 — 1.11 3.80 4.14
n 1 32 32 32 1 32 32 32
se — 0.39 0.54 0.65 — 0.20 0.67 0.73

of the species. The 95% KD estimates for the “Sim-Detect”
group were overinflated relative to the “Sim-Actual” estimate;
this may indicate the undesirable influence of repeated obser-
vations at the same site, as well as reduced position estimates
at interreceiver locations. By contrast, MCP home ranges
for the “Sim-Detect” group were underestimated due to the
lack of peripheral detections. The distinction between the
MCP and 95%KD home range estimationmethods was most
pronounced for mutton snapper, the most mobile species
evaluated. Long distance movements generated a large MCP
for this species, but the 95%KD for observedmutton snapper
was smaller than that for observed red grouper. Interestingly,
95% KD estimates for the “Sim-Actual” group were larger
than MCP estimates for red grouper and black grouper.

Paired 𝑡-tests for means between “Sim-Actual” and “Sim-
Detect” MCPs indicated that 12-month home ranges were
consistently underestimated by the simulated acoustic array
for black grouper (𝑡 = −2.43, df = 30, and𝑃 < 0.05) andmut-
ton snapper (𝑡 = −6.37, df = 30, and 𝑃 < 0.001) but not red
grouper (𝑡 = −1.24, df = 30, and 𝑃 > 0.05).This suggests that
acoustic array configuration was adequate for red grouper
home range estimation. A comparison of 100% MCP and
95% KD home range areas for “Sim-Detect” versus “Sim-
Actual” paths showed relatively minor differences for red
grouper and black grouper; however, mutton snapper “Sim-
Actual” MCPs were substantially larger than those computed
from simulated detections, suggesting frequent, broad-scale
movements out of the simulated array.

Location of the home range center with respect to the
configuration of the acoustic array influenced “Sim-Detect”
home range size relative to “Sim-Actual” home ranges. Sim-
ulated receivers tended to overestimate home ranges for fish
with home range centers in the core of the array and under-
estimate home ranges for fish with home range centers
on the periphery of the array (Figure 3). One-tailed two-
sample t-tests assuming equal variances revealed significantly

underestimated home range sizes for red grouper (𝑡 = −2.41,
df = 29, and 𝑃 < 0.001), black grouper (𝑡 = −3.82, df = 29,
and 𝑃 < 0.001), and mutton snapper (𝑡 = −1.96, df = 29,
and 𝑃 < 0.05) with home range centers along the edges of the
acoustic array versus those with home range centers in the
core of the array. The configuration of the acoustic array
may also distort the shapes and sizes of KD home ranges;
comparisons between “Sim-Detect” and “Sim-Actual” KD
home ranges showed “Sim-Detect” KD home ranges to be
linearly distorted corresponding to receiver locations and
overextended into the periphery relative to analogous “Sim-
Actual” KD home ranges (Figure 4).

Home range estimates for individual observed tagged fish
are presented inTable 3. Various filtering criteriawere applied
to home range estimates to explore sensitivity of species-
specific home range estimates (Table 4). The most conser-
vative filter (Table 4: bold) resulted in substantial increases
in estimated home range for black grouper, no estimate
for mutton snapper, and minimal changes for red grouper
despite cutting sample size by over 50%.This analysis suggests
that a large sample size (i.e., many tagged individuals) and
a conservative filter likely provide the most robust home
range estimates for fish remaining within the acoustic array.
Tracking duration was a significant factor in estimated MCP
home range size. Mean tracking duration from Farmer and
Ault [10] was approximately three months. Least squares
mean estimates generated from a mixed model regression of
the percent of final MCP home range size versus months of
tracking indicated that the most observed red grouper would
reach nearly 100% of their final estimated home range size
after 2-3 months of observation (Figure 5).

4. Discussion

Home range modeling approaches are generally of three
types [32, 33]: (1) analytical modeling derived from statistical
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Table 3: Empirical movement and home range (MCP: minimum convex polygon; KDE: kernel density estimate; km2) estimates from
acoustically tracked red grouper (RG), black grouper (BG), and mutton snapper (MS) in Dry Tortugas, Florida.

Species ID Total length (cm) Peripheral effect Days tracked Asymptote Home range (km2) Detections % total Moves % total
MCP 95% KD

RG 36 64 Moderate 18 No 8.16 12.21 2,198 0.1% 300 1.8%
RG 37 47 Low 179 Yes 0.47 0.10 64,672 3.1% 85 0.5%
RG 41 47 Low 179 Yes 0.44 0.09 75,732 3.6% 61 0.4%
RG 42 48 Low 179 Yes 0.93 0.07 21,823 1.1% 484 2.9%
RG 47 48 Moderate 11 No 12.3 17.16 1,534 0.1% 57 0.3%
RG 51 66 Low 157 Yes 1.95 0.17 12,329 0.6% 1149 6.8%
RG 170 61 High 93 No Linear Linear 705 0.0% 11 0.1%
RG 171 60 High 98 Yes 0.64 4.89 2,359 0.1% 23 0.1%
RG 172 49 High 3 No 5.14 7.39 471 0.0% 29 0.2%
RG 173 49 Moderate 92 Yes 1.28 4.44 611 0.0% 116 0.7%
RG 175 53 Moderate 96 No Linear Linear 5,190 0.3% 8 0.0%
RG 176 55 High 93 Yes 0.64 3.21 4,512 0.2% 32 0.2%
RG 177 50 High 89 No Linear Linear 373 0.0% 6 0.0%
RG 178 65 High 90 No Linear Linear 2,591 0.1% 193 1.1%
RG 179 57 Moderate 23 Maybe 7.39 19.90 244 0.0% 36 0.2%
RG 180 55 Moderate 40 Maybe 3.19 12.17 380 0.0% 93 0.6%
RG 181 49 High 13 Maybe 1.97 4.07 883 0.0% 38 0.2%
RG 183 48 High 98 Yes 3.22 0.01 8,491 0.4% 1325 7.9%
RG 184 55 Low 43 Yes 1.91 1.06 4,915 0.2% 848 5.0%
RG 185 55 Low 43 Yes 1.9 0.66 8,895 0.4% 171 1.0%
RG 186 51 Moderate 91 Yes 3.49 0.55 12,327 0.6% 1259 7.5%
RG 187 50 Low 92 Yes 1.89 1.31 4,806 0.2% 965 5.7%
RG 190 62 High 101 Yes Linear Linear 55,093 2.7% 25 0.1%
RG 191 51 High 93 Yes 0.63 0.85 36,329 1.8% 38 0.2%
RG 194 54 High 94 Maybe 1.55 0.88 12,928 0.6% 106 0.6%
RG 862 54 Very high 86 Maybe 0.92 1.00 73,728 3.6% 26 0.2%
RG 863 51 High 95 Yes 0.31 5.32 6,728 0.3% 7 0.0%
RG 864 55 High 92 No Linear Linear 44,890 2.2% 892 5.3%
RG 865 56 High 33 Yes 1.28 0.39 14,616 0.7% 1027 6.1%
RG 866 53 High 66 No Linear Linear 424 0.0% 73 0.4%
RG 867 55 High 89 Yes 0.49 0.12 42,058 2.0% 2687 16.0%
RG 868 49 High 88 No Linear Linear 24,533 1.2% 489 2.9%
RG 869 60 High 87 No Linear Linear 21,703 1.0% 2978 17.7%
RG 870 45 High 25 Yes 2.2 2.25 2,528 0.1% 354 2.1%
RG 871 57 High 76 No Linear Linear 400 0.0% 103 0.6%
RG 872 53 High 79 Yes 0.49 0.19 70,316 3.4% 77 0.5%
RG 873 48 Low 280 Yes 6.44 0.01 199,933 9.6% 5 0.0%
RG 874 60 Low 278 Yes 1.4 0.12 313,240 15.0% 173 1.0%
RG 875 52 Low 280 Yes 1.68 0.69 205,442 9.9% 29 0.2%
RG 877 57 Low 280 Yes 0.83 0.33 124,104 6.0% 93 0.6%
RG 878 48 Moderate 44 Yes 5.76 2.96 21,144 1.0% 201 1.2%
RG 880 49 Low 269 Yes 2.59 4.38 35,437 1.7% 14 0.1%
RG 881 50 Low 280 Yes 9.17 1.64 261,025 12.6% 27 0.2%
RG 884 53 Low 280 Yes 1.68 0.25 272,798 13.1% 108 0.6%
BG 43 75 Low 179 Yes 2.48 0.12 72,644 86.4% 410 93.8%
BG 174 50 High 91 Yes 0.39 0.35 11,466 13.6% 27 6.2%
MS 50 43 High 4 No 0.19 0.23 183 0.8% 39 3.1%
MS 53 70 Moderate 168 Yes 7.64 0.58 21,825 99.2% 1228 96.9%
Note: KDE bandwidths (x, y, and xy covariance) available upon request.
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(a) (b)

Figure 3: (a) Configuration of acoustic array relative to bathymetry (m) and management boundaries and (b) systematic bias in estimated
red grouper home range size attributable to location of individual home range centers. White circles indicate locations of simulated acoustic
receivers; numbers within circles indicate percent of under- or overestimation by minimum convex polygon (MCP) home range method for
simulated fish with home range center at location of circle. Inset in (a) shows study area relative to state and federal management boundaries.
FKNMS: Florida Keys National Marine Sanctuary; DTNP: Dry Tortugas National Park; RNA: Research Natural Area; TNER: Tortugas North
Ecological Reserve.

physics [27, 34, 35], (2) individual-basedmodeling developed
based on optimal foraging theory [36], and (3) statistical
modeling based on life history dynamics and behavioral
ecology [2, 17]. In this study, we employed a hybrid statistical-
analytic modeling process in an individual-based simulation
environment to explore the sensitivity of commonly used
statistical home range models to acoustic array design,
tracking duration, and interspecific differences in fish home
range movements. Our simulation model replicated basic
features of observed reef fish space utilization patterns and
was useful in identification of potential biases in home range
estimates.

We generated MCP and KD home range estimates from
empirical observations and simulation model outputs. Diag-
nostic testing suggested that statistical home range models
were most robust for red grouper. This is not surprising, as
field observation sample size for this stock was much higher
than sample sizes for black grouper or mutton snapper. Boot-
strapped simulations suggested that model parameterization
was robust to small sample size, provided that sampled fish
movements were representative of the population; thus, the
results for black grouper and mutton snapper may be useful
for the contrast they provide with red grouper and possibly
also to understand some unique characteristics of the space
requirements for these species.

Our home range simulationmodel parameters had simple
biological and physical interpretations. When considered
jointly with probability of movement (Ψ), the mean of the
exponential distribution for movement (𝜆) is a proxy for
overall mobility; a large 𝜆 value indicates that the species
is capable of moving substantial distances. Similarly, the
concentration parameter 𝜅 indicates affinity to a home range
center; larger values of 𝜅 imply higher affinities to a core

home range. Red grouper affinity to a home range center
was nearly three times that for black grouper. Simulations
suggested that red grouper and black grouper have similar-
sized home ranges, but black grouper had a limited range
and were less associated with core habitats. On the other
hand, red grouper made periodic forays to nearby sites but
often returned to a core habitat. Both groupers are ambush
predators; however, black grouper are more piscivorous and
less associated with the bottom [37, 38]. Mutton snapper
exhibited higher mobility than groupers but maintained
a strong association within a home range center. Mutton
snapper in the Dry Tortugas are usually observed in low relief
hard bottom habitats, patrolling sand channels along reef
edges.

Comparing empirical animal location data with pre-
dictions from mechanistic or individual-based models is
challenging [39], requiring an appropriate choice of sampling
interval for discretizing continuous paths [34, 40]. We sim-
plified this decision by creating a simulated array of acoustic
receivers to replicate field detection patterns. As expected,
simulated movement patterns were more homogeneous than
empirically observed patterns. The duration and consistency
of tracking across all individuals provided smoothing that
may have masked individual patterns. In addition, many
aspects of population dynamics, demographics, and life
history influence fish movement patterns. Many of these
factors were not captured by this simple modeling approach.
For example, fish communities are comprised of both mobile
and sedentary fractions [41], although it is unclear whether
populations or individuals only exhibit one strategy or switch
off occasionally throughout their lives [42]. Our model is
most appropriate for describing the routine movements of an
organism within a home range.



10 The Scientific World Journal

Table 4: Availability and sensitivity of minimum convex polygon (MCP) and 95% kernel density (KD) home range (km2) estimates from
acoustically tracked reef fish in Dry Tortugas, Florida (from [10]) to filtering criteria.

Species Days Detections Asymptote Peripheral effect 𝑁
MCP 95% KD

Mean SE Mean SE
Red grouper All All All All 44 2.77 0.44 3.26 0.75
Red grouper All All All Low to moderate 22 3.56 0.71 3.82 1.29
Red grouper All All All Low 14 2.38 0.65 0.78 0.31
Red grouper >30 All All All 38 2.04 0.33 1.71 0.43
Red grouper >60 All All All 33 1.88 0.37 1.33 0.31
Red grouper All All Yes or maybe All 32 2.22 0.38 2.39 0.73
Red grouper All All Yes All 27 2.07 0.41 1.39 0.33
Red grouper All >1000 All All 35 2.60 0.50 2.17 0.65
Red grouper >60 >1000 Yes Low 12 2.46 0.76 0.73 0.36
Red grouper >30 All Yes or maybe Low to high 28 2.08 0.39 1.74 0.51
Black grouper All All All All 2 1.44 1.05 0.24 0.12
Black grouper All All All Low to moderate 1 2.48 0.12
Black grouper All All All Low 1 2.48 0.12
Black grouper >30 All All All 2 1.44 1.05 0.24 0.12
Black grouper >60 All All All 2 1.44 1.05 0.24 0.12
Black grouper All All Yes or maybe All 2 1.44 1.05 0.24 0.12
Black grouper All All Yes All 2 1.44 1.05 0.24 0.12
Black grouper All >1000 All All 2 1.44 1.05 0.24 0.12
Black grouper >60 >1000 Yes Low 1 2.48 0.12
Black grouper >30 All Yes or maybe Low to high 2 1.44 1.05 0.24 0.12
Mutton snapper All All All All 2 3.92 3.73 0.41 0.18
Mutton snapper All All All Low to moderate 1 7.64 0.58
Mutton snapper All All All Low 0
Mutton snapper >30 All All All 1 7.64 0.58
Mutton snapper >60 All All All 1 7.64 0.58
Mutton snapper All All Yes or maybe All 1 7.64 0.58
Mutton snapper All All Yes All 1 7.64 0.58
Mutton snapper All >1000 All All 1 7.64 0.58
Mutton snapper >60 >1000 Yes Low 0
Mutton snapper >30 All Yes or maybe Low to high 1 7.64 0.58
Note: estimates in italics were published in Farmer and Ault (2011). Estimates in bold represent the most conservative filtering criteria explored.

The multimodality observed in the input distributions of
distances moved (Figures 1(a)–1(c)) may be attributable to
occasional large movements such as those associated with
spawning migrations, low sample sizes for black grouper and
mutton snapper, and the inclusion of individuals that did
not appear to utilize a home range. Additional behavioral
rules could be added to our model to capture biphasic reef
fish movement strategies, such as ontogenetic migrations
[43] or directed spawning migrations [10, 44, 45]. Alterna-
tively, drawing movements from the observed distribution
of movements rather than a smoothed statistical distribu-
tion might also provide greater heterogeneity in simulation
output. The individual-based nature of the model design
simplifies incorporation of these terms or other behaviors
such as territoriality, visitation of foraging or cleaning sites, or
avoidance of particular habitats. Although our data provided

some hints that these factorsmight be important, the accurate
parameterization of these additional behavioral terms would
be challenging.

In general, simulation data indicated that home range
estimates for observed red grouperwere robust tomovements
beyond the arraywithin the tracking duration because sample
sizewas high enough to allow computations to be restricted to
only include fish whose movements were constrained by the
array. Additional analyses of empirical data failed to identify
a relationship between estimated home range size from
field observations and tracking duration. Analyses suggested
that 3-4 months were a reasonable time period to obtain
a reliable home range estimate for red grouper. Estimates
of home range size for observed fish presented in Table 2
were constrained by the assumptions of statistical home range
methods, namely, that home range estimates must reach
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Figure 4: Configuration of simulated acoustic array (white circles) relative to actual path (gray squares) and simulated detections (×), with
95%, 90%, and 50% kernel density home ranges for simulated detections and actual simulation path of red grouper (a)–(c), black grouper
(d)–(f), and mutton snapper (g)–(i).
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Figure 5: Least squares mean estimates from mixed model regres-
sion of percent of final minimum convex polygon (MCP) home
range attained versus months of observation for red grouper. Bars
denote standard error.

an asymptote when plotted over time as area-observation
curves [46]. This led to the exclusion of 1 of 3 black grouper
(33%), 12 of 45 red grouper (27%), and 1 of 2 mutton snapper
(50%). Most of these organisms were excluded because they
moved outside the acoustic array. As such, their actual home
rangesmay have been larger than the individuals whose home
ranges were estimated or these animals may have relocated
their home ranges. Because our simulations incorporated
movements and turning angles from all individuals tracked
within each species, it is not surprising that simulated reef fish
movements resulted in larger estimates of home range size.

Empirical observations suggested that exploited groupers
and snappers require at least 1-2months of monitoring before
their space use reaches a visually recognizable asymptote [10],
and 3-4months is an optimummonitoring period. Estimated
space use in a passive tracking study is a stepwise process,
with substantial leaps in cumulative home range estimates
each time a new receiver registers detections. The likelihood
of detections at peripheral sites increased with time, tighter
spacing of the array, and/or increasedmobility of the fish.Our
simulations suggested that researchers seeking to empirically
estimate home range size should tag fish near the core of
their acoustic array, attempt to track them for at least several
months, and seriously consider the tradeoffs between desired
positioning resolution and the risk of undetected movements
outside the array ([28], this study). Unfortunately, most reef
fish movement studies to date have been limited in both
scope and scale (review in [10]). Researchers should also be
aware that 100% MCP and 95% KD home range estimates
can be substantially different, even when generated from the
same data ([47, 48], this study). Our simulation indicates
that the MCP method is more robust than the 95% KD with
SCV bandwidth estimation to artifacts of acoustic tracking
programs utilizing a passive array, such as high numbers of
repeated positioning estimates from the same location. The
common lament that MCP methods may overestimate home
range size [17, 19–21] was not borne out in our study. The
large 95%KDestimates further stress the need for researchers
to report home ranges using both methods and reporting

the bandwidth estimation method and cell size for their KD
estimation procedure, as these factors may have substantial
impacts on resultant home range estimates.

Understanding the daily space requirements of exploited
stocks is critical to the efficient design of no-take marine
reserves (NTMRs). The protection afforded to a stock by an
NTMR is dependent upon the fishing pressure surrounding
theNTMRand the percentage of time the “protected” portion
of the stock spends outside NTMR boundaries. Most models
of marine protected areas either assume no fish movement
or grossly oversimplify the dynamics of fish mobility [49–
59]. The simple modeling process employed in this study
was based on the concept that mobility of an organism is a
process of three linked behaviors: probability of movement,
distance moved, and turning angle. An organism that moves
frequently (e.g., high 𝜓) or moves large distances (e.g., high
𝜆) may not be “highly-mobile” in the strictest sense if it has a
high affinity to a home range center (e.g., high 𝜅) that restricts
its overall dispersal; however, the percentage of time spent
beyond the bounds of the protected area becomes a critical
consideration in NTMR planning. The simple formulation
of our model allows for easy manipulation of home range
affinity and distances moved, allowing for easy extension to
variousmovement strategies and extrapolation to new species
as data become available. Our model provided useful upper
bounds for empirically observed home range estimates. It
could be easily extended into spatial population dynamic
simulation models to assess NTMR performance or suggest
appropriate NTMR designs relative to the spatial scale of
movements.
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Jr., “Preliminary evidence of increased spawning aggregations
of mutton snapper (Lutjanus analis) at Riley’s Hump two years
after establishment of the Tortugas South Ecological Reserve,”
Fishery Bulletin, vol. 103, no. 2, pp. 404–410, 2005.
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