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Background: Extremities fractures are a leading cause of death and disability, especially in the elderly. 
Avulsion fracture are also the most commonly missed diagnosis, and delayed diagnosis leads to higher 
litigation rates. Therefore, this study evaluates the diagnostic efficiency of the artificial intelligence (AI) 
model before and after optimization based on computed tomography (CT) images and then compares it with 
that of radiologists, especially for avulsion fractures.
Methods: The digital X-ray photography [digital radiography (DR)] and CT images of adult limb trauma 
in our hospital from 2017 to 2020 were retrospectively collected, with or without 1 or more fractures of the 
shoulder, elbow, wrist, hand, hip, knee, ankle, and foot. Labeling of the fracture referred to the visualization 
of the fracture on the corresponding CT images. After training the pre-optimized AI model, the diagnostic 
performance of the pre-optimized AI, optimized AI model, and the initial radiological reports were evaluated. 
For the lesion level, the detection rate of avulsion and non-avulsion fractures was analyzed, whereas for the 
case level, the accuracy, sensitivity, and specificity were compared among them.
Results: The total datasets (1,035 cases) were divided into a training set (n=675), a validation set (n=169), 
and a test set (n=191) in a balanced joint distribution. At the lesion level, the detection rates of avulsion 
fracture (57.89% vs. 35.09%, P=0.004) and non-avulsion fracture (85.64% vs. 71.29%, P<0.001) by the 
optimized AI were significantly higher than that by pre-optimized AI. The average precision (AP) of 
the optimized AI model for all lesions was higher than that of pre-optimized AI model (0.582 vs. 0.425). 
The detection rate of avulsion fracture by the optimized AI model was significantly higher than that by 
radiologists (57.89% vs. 29.82%, P=0.002). For the non-avulsion fracture, there was no significant difference 
of detection rate between the optimized AI model and radiologists (P=0.853). At the case level, the accuracy 
(86.40% vs. 71.93%, P<0.001) and sensitivity (87.29% vs. 73.48%, P<0.001) of the optimized AI were 
significantly higher than those of the pre-optimized AI model. There was no statistical difference in accuracy, 
sensitivity, and specificity between the optimized AI model and the radiologists (P>0.05).
Conclusions: The optimized AI model improves the diagnostic efficacy in detecting extremity fractures 
on radiographs, and the optimized AI model is significantly better than radiologists in detecting avulsion 
fractures, which may be helpful in the clinical practice of orthopedic emergency.
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Introduction

According to reports, the incidence of traumatic fractures 
is as high as 0.32% in the United States (1) and up to 1.3% 
in China (2), which has become a public health problem 
of global concern. Avulsion fracture, which is the avulsion 
and displacement of bone fragments due to the traction of 
tendons and ligaments after trauma, is easy to be missed 
clinically. A study by Haraguchi et al. (3) showed that the 
incidence of avulsion fractures is high in patients with severe 
inversion injury, especially in children and patients over  
40 years old. Diagnosis of avulsion fracture is usually 
difficult on digital radiography (DR) images. Missed 
fracture on radiograph in the emergency department is 
a common cause of medical incident and litigation (4,5). 
It is reported that the annual litigation rate experienced 
by orthopedic doctors is 14%, which is higher than the 
national average of 7% for physicians (6,7).

Recently, convolutional neural networks (CNNs) in deep 
learning have achieved remarkable results in automatic 
detection of various non-avulsion fractures, ligament 
injures, and classification of bone tumors, including upper 
and lower extremities fractures [e.g., distal radius (8),  
proximal humerus (9), intertrochanteric hip (10)], 
calcaneofibular ligament injuries in the ankle joint (11), 
and pelvic and sacral osteosarcoma classification (12). For 
avulsion fractures, the imaging presentation of fracture 
signs is often challenging to determine, making it difficult 
to obtain a sufficient number of labeled samples for artificial 
intelligence (AI) training to improve their detection. 
At present, there only a few studies have reported the 
application of deep learning in avulsion fractures (13). 
Moreover, most of the studies used imaging reports or 
interpretations of DR images by radiology experts as the 
evaluation reference (14-16), which may be affected by 
individual experience. 

Therefore, this study used computed tomography (CT) 
images to verify the lesion labeling on X-ray radiographs 
and then optimize an AI model for detecting extremity 
fractures. The diagnostic efficiency of the AI model before 
and after the optimization was evaluated and compared with 

radiologists, especially in the aspect of avulsion fractures. 
We present this article in accordance with the STARD 
reporting checklist (available at https://qims.amegroups.
com/article/view/10.21037/qims-23-428/rc).

Methods

Data generation 

The CT and DR images of adult limb trauma in China-
Japan Friendship Hospital from 2017 to 2020 were 
retrospectively collected. Each X-ray examination 
followed the conventional projection views, consisting of  
1–4 radiographs. Anatomical areas included the shoulder, 
elbow, wrist, hand, hip, knee, ankle, and foot. The exclusion 
criteria were as follows: (I) no initial radiological report 
(42 cases); (II) no corresponding CT examination of 
the same anatomical area was performed within 2 weeks  
(2,317 cases); (III) postoperative radiography of the 
fracture (937 cases); and (IV) poor radiographic quality  
(5 cases). Totally, 1,035 cases (anatomical areas) with 3,167 
radiographs were extracted in this study, including 666 
positive cases and 374 negative cases, which were divided 
into a training set (n=675), a validation set (n=169), and a 
test set (n=191) in a balanced joint distribution (Figure 1).  
The number of individual components of the total 
datasets is shown in Figure 2. The study was conducted in 
accordance with the Declaration of Helsinki (as revised 
in 2013). The study was approved by the China-Japan 
Friendship Hospital Institutional Review Board (Medical 
ethics number: 2019-94-k62-1) and the requirement for 
individual consent for this retrospective analysis was waived.

Image labeling

Firstly, 2 radiologists with more than 10 years of experience 
reviewed the CT images to define the site and scope of the 
fractures as a gold standard and then labeled the fractures 
on DR images. DeepWise software (https://label.deepwise.
com/) was applied for annotation. A rectangular bounding 
box was drawn to enclose the fracture line. For a non-
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avulsion fracture, multiple rectangular bounding boxes can 
be labeled for 1 fracture site. 

Preprocessing

Image arrays in 16-bit integer format were extracted 
from Digital Imaging and Communications in Medicine 
(DICOM) files. Then, all the images were resized to the 
scale so that the short side length was close to 1,200 pixels 
while maintaining the aspect ratio. Augmentations were 
employed during training, including random rotation, 

random flip, random brightness, random crop, and contrast 
distortion.

Model architecture and learning policy

In this study, an AI diagnosis system for fracture was 
used for auxiliary diagnosis. The algorithm we propose 
in this paper was based on the ResNeXt-101-32x4d + 
feature pyramid networks (FPN) + Mask-region-based 
CNN (RCNN) model (17), and the adaptive optimization 
was carried out on the above annotation data set of DR 
images. Firstly, pre-processed training data were sent to 
the ResNeXt-101 backbone with FPN to extract multi-
scale features (P2–P6 in Figure 3). Secondly, these features 
from different scale levels were fused to generate global 
features and sent to the region proposal network (RPN) to 
make preliminary box predictions and obtain the proposals. 
In this stage, positive and negative samples were balanced 
by a data balancing method to adapt to the distribution of 
the dataset. Thirdly, the region of interest (ROI) alignment 
was applied to obtain the feature map of the possible 
lesion area, and then the fully connected layers were used 
for classification and box regression to predict fractures 
precisely. In addition, the prediction results were optimized 
through adjustments such as anchor scale and aspect 
ratio, the FPN stages and channels, and gradient learning 
strategies. Finally, label balance was added to shield bad 
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Figure 1 A flow diagram of the enrollment process for patients with fractures. CT, computed tomography.
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gradients, the proposal was relocated and corrected, and 
then the multi-scale fused features of the corresponding 
region were obtained, resulting in a more robust model 
training. A global learning rate of 0.002 was initially used 
with 0.9 momentum and 0.0001 weight decay, divided by 10 
at 15 epochs and 30 epochs, and then the training stopped 
after 45 epochs.

The proposed method was developed using PyTorch 
1.7 open-source deep learning library (https://pytorch.org/
get-started/previous-versions/), a server with 24 Intel(R) 
Xeon(R) E5-2685 v3 @ 2.60 GHz CPUs, and 8 NVIDIA 
TITAN Xp GPU (https://www.nvidia.com/en-au/titan/
titan-xp/). The version of CUDA was 10.1.

Model evaluation

The performances of pre-optimized AI model, optimized AI 
model, and radiologist are evaluated at the lesion and case 
(anatomical area) level, respectively. For the lesion-based 
assessment, all fracture lesions were classified as avulsion 
fractures and non-avulsion fractures. True positive required 
1 box of true positive on any of the projected views. For 
fracture lesion level, since all parts except the fracture 
can be considered negative, the resulting specificity was 
meaningless. Therefore, the detection rate was considered 
as the true positive rate. For case (anatomic area) level, true 
positive required only 1 box of true positive, regardless of 

the number of fractures present.
For the performance of the radiologists,  initial 

radiological reports were evaluated. Reports that indicated 
a fracture with unequivocal diagnosis or probability were 
rated as positive, whereas description of unspecific signs 
without conclusion was treated as negative results.

Statistical methods

The study was statistically analyzed using SPSS 26.0 (IBM 
Corp., Armonk, NY, USA) software, and the count data were 
expressed as n (%). The detection rates of avulsion fractures 
and non-avulsion fractures by the pre-optimized AI model, 
the optimized AI model, and the radiologist were compared, 
respectively, as well as their accuracy, sensitivity, and 
specificity for fractures at each anatomic area by using the 
quality test for paired samples. Significance tests were used to 
compare detection rate, accuracy, sensitivity, and specificity. 
Statistical significance was indicated by a two-tailed P<0.05.

Results

Lesion-based diagnostic efficacy

In the test set (191 cases), a total of 266 lesions were 
identified, including 57 (21.43%) avulsion fractures and 
209 (78.57%) non-avulsion fractures. The detection rate 
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Figure 3 Flow chart of the main algorithm designed for this study. Left: the fractures detection pipeline based on Mask-RCNN. Right: the 
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feature pyramid network; conv, convolution.
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Table 1 Comparison of AI diagnostic efficacy before and after optimization of the test set based on lesion

Fracture type
Detection rate 

t value P value
Pre-optimized AI (%) Optimized AI (%)

Avulsion fracture (n=57) 35.09 57.89 −2.871 0.004

Non-avulsion fracture (n=209) 71.29 85.64 −4.196 <0.001

AI, artificial intelligence.

of avulsion fracture by the optimized AI was significantly 
higher than that by pre-optimized AI (57.89% vs. 35.09%, 
P=0.004), increasing by 22.80%. The detection rate of 
the optimized AI model for non-avulsion fractures was 
significantly higher than that of the pre-optimized AI 
model (85.64% vs. 71.29%, P<0.001), with an increase of 
14.35% (Table 1 and Figure 4). The average precision (AP) 
of optimized AI model for all lesions was higher than that of 
pre-optimized AI model (0.582 vs. 0.425) (Figure 5).

The detection rate of avulsion fracture by the optimized 
AI model was significantly higher than that by radiologists 
(57.89% vs. 29.82%, P=0.002), with 28.07% difference. 
For the non-avulsion fracture, there was no significant 

difference of detection rate between the optimized AI 
model and radiologists (P=0.853). The results are presented 
in Table 2 and Figure 6.

Case-based diagnostic efficacy 

At the case level, the accuracy (86.40% vs. 71.93%, P<0.001) 
and sensitivity (87.29% vs. 73.48%, P<0.001) of the 
optimized AI were significantly higher than those of the pre-
optimized AI model, with an increase of 14.47% and 13.81%, 
respectively, as shown in Table 3. There was no statistical 
difference in accuracy, sensitivity, and specificity between the 
optimized AI and the radiologists (P>0.05) (Table 4).

A
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D

E

F

Figure 4 Results of femoral neck, ulna, and hand detection in pre-optimized model (A,C,E) and optimized model (B,D,F). Fractures 
that were not identified by the pre-optimized model (A and C, red boxes) were detected by the optimized model (B and D, green boxes). 
Optimized AI models (D and F) may help eliminate false positives (C and E, yellow boxes). AI, artificial intelligence.
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Discussion

The study used CT image-based fracture identification 
as the “gold standard” to label and train AI models, and 
then evaluated the diagnostic efficacy of the AI models in 
detecting avulsion fractures and non-avulsion fractures in 
multiple anatomical areas on DR images. The results found 
that the optimized AI model greatly improved the diagnostic 
performance for different anatomical areas and different 
types of extremity fractures compared to the pre-optimized 
AI. The optimized AI model improved the detection rate 
of avulsion fractures compared to radiologists (29.82% vs. 
57.89%, P=0.002). Inagaki et al. reported that an AI model 
improved the detection rate of sacral fractures compared 
to specialists by labeling and training an AI model using 
the results of CT images (accuracy 93.5% vs. 55.3%) (18).  
This study demonstrated the feasibility of using AI for 
fracture detection.

This study used CT images as the gold standard to label 
radiographs for the training set. Most published datasets 
for automated fracture detection have been labeled by 
orthopedic surgeons (19), general radiologists (20-23),  

specialized musculoskeletal radiologists (20,21), or 
orthopedic specialists (16). Tobler et al. (14) used radiology 
reports to label distal radius fractures on radiographs for 
the training set. Another study showed that a considerable 
part of fractures were missed at the initial diagnosis (24). 
Since partial radiology reports and clinicians are susceptible 
to error, the data labeling based on reports had some level 
of inaccuracy. In contrast, the fracture areas were manually 
labeled by radiologists based on the visualization of lesions 
on the corresponding CT images in our study. A previous 
study suggested that subtle fractures are difficult to detect 
on plain films, and CT imaging may be required (25). The 
bounding boxes used to train, validate, and test the models 
were labeled according to each instance corresponding axial 
CT and 3-dimensional (3D) reconstruction images in our 
study; this method could harvest more accurate bounding 
boxes than expert-based data annotations. It is more difficult 
to identify subtle imaging findings for avulsion fractures 
than non-avulsion fractures, so CT localization for small 
fragments and translucent lines can make the labeling more 
accurate. 
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Figure 5 The PR curves (A) and FROC curves (B) of pre-optimized and optimized AI model at lesion level analysis. AP, average precision; 
PR, precision-recall; FROC, free-response ROC; ROC, receiver operating characteristic; AI, artificial intelligence.

Table 2 Comparison of the diagnostic efficacy of radiologists and optimized AI of the test set based on lesion

Fracture type
Detection rate

t value P value
Radiologist (%) Optimized AI (%)

Avulsion fracture (n=57) 29.82 57.89 −3.066 0.002

Non-avulsion fracture (n=209) 86.12 85.64 0.185 0.853

AI, artificial intelligence.
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A C E

B D F

Figure 6 A case with a distal ulna fracture and a triquetral avulsion fracture. Both the initial radiology report (A and C, green boxes) and 
the optimized model (B and D, green boxes) correctly identified the distal ulna fracture. The triquetral avulsion fractures (A and C, red 
boxes) missed on radiographs from the initial radiology report were detected by the optimized model (B and D, green boxes), and the 
corresponding reconstructed CT images showed the fragment of the avulsion fracture (E and F, arrows). CT, computed tomography.

Table 3 Comparison of the diagnostic efficacy of the pre-optimized AI and optimized AI of the test set based on case

Diagnostic efficacy Pre-optimized AI (%) Optimized AI (%) t value P value

Accuracy 71.93 86.40 −4.391 <0.001

Sensitivity 73.48 87.29 −3.964 <0.001

Specificity 65.96 82.98 −1.940 0.058

AI, artificial intelligence.

Table 4 Comparison of the diagnostic efficacy of radiologist and the optimized AI of the test set based on case

Diagnostic efficacy Radiologist (%) Optimized AI (%) t value P value

Accuracy 83.33 86.40 −1.068 0.725

Sensitivity 85.64 87.29 −0.538 0.725

Specificity 74.47 82.98 −1.159 0.252

AI, artificial intelligence.



Quantitative Imaging in Medicine and Surgery, Vol 13, No 10 October 2023 6431

© Quantitative Imaging in Medicine and Surgery. All rights reserved.   Quant Imaging Med Surg 2023;13(10):6424-6433 | https://dx.doi.org/10.21037/qims-23-428 

Olczak et al. (26) used a Visual Geometry Group (VGG)-
16 network to identify fractures. Their dataset contained 
256,000 hand, wrist, and ankle radiographs. The model 
detected fractures with accuracy of 83%. This study is 
considered the first to show that deep learning works for 
orthopedic radiographs. The VGG-1618 network is a 
CNN that classifies entire radiographs into fracture or 
nonfracture categories. This study used a ResNeXt-101 
network and achieved an accuracy of 86.4% in diagnosing 
extremity fractures, which is higher than that of the study 
by Olczak et al. Our study also used the Mask-RCNN 
architecture (17), which is a proposal-based object detection 
CNN. The region proposal-based models mainly include 
the RCNN (27), Faster-RCNN (24), and Mask-RCNN (17).  
In a study performed by Wu et al. (28), the RCNN was 
used to identify fractures from hand, wrist, elbow, shoulder, 
pelvic, knee, ankle, and foot radiographs. In addition, a 
Feature Ambiguity Mitigate Operator (FAMO) model was 
introduced to mitigate feature ambiguity. This model finally 
achieved a sensitivity of 77.5% and a specificity of 93.4%. 
The Mask-RCNN method achieved a sensitivity of 87.29% 
in our study, which is higher than that in the study by Wu 
et al. Increased sensitivity is important to reduce the missed 
diagnosis for clinical practice. 

The most important result of this study was the finding 
that the optimized AI model improved the detection of 
avulsion fractures, which has important implications for 
clinical practice given that avulsion fractures are easily 
missed. Published studies investigating deep learning 
approaches for fracture detection have focused on non-
avulsion fractures, such as those of the hip (29,30), wrist (31),  
shoulder (9), and ankle (20). However, there have been few 
applications of deep learning for the detection of avulsion 
fractures. Ren et al. (13) developed and evaluated a 2-stage 
deep CNN system that mimics a radiologist’s search 
pattern for detecting 2 minor fractures: triquetral avulsion 
fractures and Segond fractures. The specially designed 
training program has greatly improved the detection rate 
of the minor fractures. In our study, the total detection rate 
of avulsion fractures at multiple anatomical areas by the 
optimized AI model was 57.89%, whereas the detection rate 
of radiologists was only 29.82%. These avulsion fractures 
were mostly misdiagnosed in the initial radiological reports, 
and were only identified by the optimized AI model. 
Therefore, the results of our study show that CNNs can be 
trained to improve the detection of avulsion fractures.

Our study had several limitations. Firstly, we concluded 
that CT-based labeling was superior to labeling based 

on a team of experts, but we did not further compare the 
differences between them. Secondly, selection of only 
examinations that had CT follow-up may have created 
spectrum bias toward more severe injuries, and the number 
of negative samples in the test set was relatively small, 
especially for the hand bones; more multi-center data in 
the future are required for testing our model. Thirdly, 
our radiology reports were written by radiology residents 
and radiologists with varying expertise in musculoskeletal 
imaging and were unstructured, which may have influenced 
the diagnostic results. Finally, whether this AI will improve 
the ability of professionals to diagnose fractures needs to be 
tested further in clinical practice.

Conclusions

In conclusion, this study showed that the optimized AI 
model significantly improved the diagnostic efficacy of 
extremity fractures compared with the pre-optimized 
AI model, and the optimized AI model significantly 
outperformed the radiologists in detecting avulsion 
fractures. Therefore, the AI model trained on CNN with 
CT-based labels to detect extremity fractures (especially 
avulsion fractures that are easily missed) on radiographs are 
suitable as an assisted reading tool.
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