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Abstract: Fractalkine (FKN, CX3CL1) is a transmembrane chemokine expressed by neurons in the
central nervous system (CNS). CX3CL1 signals through its unique receptor, CX3CR1, that is expressed
in microglia. Within the CNS, fractalkine acts as a regulator of microglia activation in response to
brain injury or inflammation. During the last decade, there has been a growing interest in the roles
that the CX3CL1/CX3CR1 signaling pathway plays in the neuropathology of a diverse array of brain
disorders. However, the reported results have proven controversial, indicating that a disruption of
the CX3CL1 axis induces a disease-specific microglial response that may have either beneficial or
detrimental effects. Therefore, it has become clear that the understanding of neuron-to-glia signals
mediated by CX3CL1/CX3CR1 at different stages of diseases could provide new insight into potential
therapeutic targets. Hence, the aim of this review is to provide a summary of the literature on the
emerging role of CX3CL1 in animal models of some brain disorders.
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1. Introduction

Fractalkine (FKN, CX3CL1) is a member of the CX3C chemokine family and is constitutively and
abundantly expressed in neurons. Fractalkine expression can also be induced in microglia, astrocytes,
and vascular endothelial cells [1,2]. CX3CL1 is the only chemokine that is more highly expressed in the
CNS than in the periphery [3]. In addition, unlike other chemokines, CX3CL1 can exist either as a static
membrane-bound glycoprotein that mediates cell adhesion or as a soluble isoform; this soluble isoform
is a product of proteolytic cleavage by disintegrins and metalloproteinases (ADAM10 and ADAM17)
and exhibits chemotactic features [4–6] (Figure 1). The properties of both the CX3CL1 adhesive and
chemotactic isoforms are mediated by a specific G-protein coupled, seven-transmembrane domain
receptor (CX3CR1) that is present exclusively on microglial cells. However, these CX3CL1 isoforms
may exhibit different affinities and distinctive biological activities associated with specific mediators.
The intracellular transmission of signals is mediated by the activation of numerous signaling molecules,
including several secondary messengers, transcription factors, signal transducers, and the transcription
activator protein AP-1 [7–9]. The reciprocal interaction between the microglial chemokine receptor
and the neuronal ligand CX3CL1 allows precise and effective communication between neurons and
microglial cells and thus plays a key role in coordinating many aspects of brain function. For example,
this interaction determines the proper neuronal network, influences synapse maturation and plasticity,
regulates cognitive function, and controls immune processes [10–12]. Substantial data, in this regard,
suggest that the high level of endogenous CX3CL1 expressed in neurons limits CX3CR1 activation on
microglia and thus keeps microglia in a quiescent state [13,14].
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Figure 1. Schematic of the fractalkine (CX3CL1) structure. Fractalkine is expressed as a membrane-
bound molecule with a chemokine domain, a heavily glycosylated mucin stalk-like domain attached 
via a transmembrane domain to the cell surface and a short cytoplasmic domain. Cleavage of CX3CL1 
is mediated under physiological and pathological conditions by the proteases ADAM10 and 
ADAM17. 

The altered functionality of the CX3CL1/CX3CR1 pathway in several different pathological 
states may, on the other hand, promote the activation of microglia and stimulate the release of 
inflammatory factors [15–19]. The understanding of conveying messages from injured neurons and 
thus modulating glial cell function has emerged from a number of studies on neuroinflammatory and 
neurodegenerative disease models during the last decade [20–24]. Recent advances in this field 
suggest that CX3CL1/CX3CR1 signal disruption is one of the most important elements in the 
pathogenesis of CNS-related disorders [21,25,26]. 

The loss of the crosstalk that leads to the activation of microglia differently affects the patterns 
of brain disorders. This loss of crosstalk may either be beneficial for promoting neuronal survival or 
cause harm to the surrounding cells depending on disease stage and progression (Figure 2). The 
specific response, neurotoxic or neuroprotective, most likely depends on the type of destructive 
factor, the CNS area, and the local concentrations of CX3CL1 and CX3CR1 [27]. During the last 
decade, new approaches have been developed that target the genes encoding the factors of interest 
(knockout animals), thus shedding light on the role of the fractalkine/receptor axis in several 
physiological and pathological processes. In this paper, we review literature updates and summarize 
the current knowledge about the opposing role of the CX3CL1/CX3CR1 signaling pathway in selected 
neuropathologies (including ischemia, epilepsy, and neurodegenerative diseases). 

Figure 1. Schematic of the fractalkine (CX3CL1) structure. Fractalkine is expressed as a membrane-bound
molecule with a chemokine domain, a heavily glycosylated mucin stalk-like domain attached via a
transmembrane domain to the cell surface and a short cytoplasmic domain. Cleavage of CX3CL1 is
mediated under physiological and pathological conditions by the proteases ADAM10 and ADAM17.

The altered functionality of the CX3CL1/CX3CR1 pathway in several different pathological
states may, on the other hand, promote the activation of microglia and stimulate the release of
inflammatory factors [15–19]. The understanding of conveying messages from injured neurons and
thus modulating glial cell function has emerged from a number of studies on neuroinflammatory and
neurodegenerative disease models during the last decade [20–24]. Recent advances in this field suggest
that CX3CL1/CX3CR1 signal disruption is one of the most important elements in the pathogenesis of
CNS-related disorders [21,25,26].

The loss of the crosstalk that leads to the activation of microglia differently affects the patterns of
brain disorders. This loss of crosstalk may either be beneficial for promoting neuronal survival or cause
harm to the surrounding cells depending on disease stage and progression (Figure 2). The specific
response, neurotoxic or neuroprotective, most likely depends on the type of destructive factor, the CNS
area, and the local concentrations of CX3CL1 and CX3CR1 [27]. During the last decade, new approaches
have been developed that target the genes encoding the factors of interest (knockout animals),
thus shedding light on the role of the fractalkine/receptor axis in several physiological and pathological
processes. In this paper, we review literature updates and summarize the current knowledge about
the opposing role of the CX3CL1/CX3CR1 signaling pathway in selected neuropathologies (including
ischemia, epilepsy, and neurodegenerative diseases).
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Figure 2. CX3CL1-CX3CR1 signaling between microglia and neurons in physiological and 
neuropathological conditions. Fractalkine is a membrane-bound or soluble molecule. CX3CL1 bound 
to the membrane is important for cell adhesion and acts as an “off” signal for microglia. The cleavage 
of fractalkine is achieved by the ADAM10 and ADAM17 proteases, and this soluble form of CX3CL1 
acts as a chemoattractant for inflammatory cells. Disruption of CX3CL1-CX3CR1 signaling in 
neuropathological diseases may lead to neuroprotective (b, c) and detrimental (a, d, e, f, g) effects. 

2. CX3CL1/CX3CR1 Signaling in Cerebral Ischemia 

It is now widely recognized that brain ischemia triggers a widespread inflammatory reaction 
that, in conjunction with excitotoxic and oxidative responses, significantly contributes to ischemia-
induced neuronal death. Inflammation driven primarily by activating inflammatory glial cells that 
reside in the CNS together with infiltrating cells of the peripheral immune system (macrophages, 
mast cells, and monocytes) produces several proinflammatory factors (cytokines, chemokines, NOS, 

Figure 2. CX3CL1-CX3CR1 signaling between microglia and neurons in physiological and
neuropathological conditions. Fractalkine is a membrane-bound or soluble molecule. CX3CL1 bound
to the membrane is important for cell adhesion and acts as an “off” signal for microglia. The cleavage of
fractalkine is achieved by the ADAM10 and ADAM17 proteases, and this soluble form of CX3CL1 acts as
a chemoattractant for inflammatory cells. Disruption of CX3CL1-CX3CR1 signaling in neuropathological
diseases may lead to neuroprotective (b, c) and detrimental (a, d, e, f, g) effects.

2. CX3CL1/CX3CR1 Signaling in Cerebral Ischemia

It is now widely recognized that brain ischemia triggers a widespread inflammatory reaction that,
in conjunction with excitotoxic and oxidative responses, significantly contributes to ischemia-induced
neuronal death. Inflammation driven primarily by activating inflammatory glial cells that reside



Cells 2020, 9, 2277 4 of 17

in the CNS together with infiltrating cells of the peripheral immune system (macrophages,
mast cells, and monocytes) produces several proinflammatory factors (cytokines, chemokines, NOS,
reactive oxygen species, excitatory amino acids and death receptor agonists), which lead to a disruption
of cellular homeostasis and structural damage of brain tissue. The recognition of inflammation as the
key response to brain injury has stimulated the use of new therapies. A large body of data from cerebral
ischemia of different severities consistently shows that at least some neuroprotective effects, including
reduced brain damage, can be achieved by decreasing the level of microglial activation [28,29]. A broad
range of anti-inflammatory drugs that affect the intracellular pathways in microglial cells serve to
protect against insults to the central nervous system.

Recently, a chemokine, fractalkine (CX3CL1), and its unique receptor (CX3CR1) were shown to be
able to regulate the activation of microglia to maintain these cells in a quiescent state and thus inhibit
the release of inflammatory cytokines [14]. A number of studies have demonstrated that treating
microglial or mixed glial cultures with the soluble fractalkine isoform suppresses the lipopolysaccharide
(LPS)-induced activation of microglial cells and reduces the production of inflammatory factors, such as
NO, IL-6, TNFalpha, and IL-1beta [16,30,31]. Since this noteworthy discovery, it has been postulated
that there is a strong link between inflammatory processes and fractalkine signaling pathways, and this
theory continues to generate considerable interest. In fact, over the past decade, remarkable advances
have been made in understanding and elucidating the phenomenon of the immunosuppressive
and neuroprotective potency of fractalkine signaling in a number of different experimental models,
including focal and global, transient or permanent ischemia. Several independent studies show that
interruption of the CX3CL1/CX3CR1 signaling pathway, either by deletion of cx3cl1 or deficiency in
cx3cr1 (cx3cr1GFP/GFP), reduced post-ischemic brain injury. The neuroprotective effect was observed
based on the decreased neurological deficit, the diminished release of inflammatory markers (IL-1beta
and TNF-alpha), and the ameliorated neuronal death [20,23,24,32,33]. The list of neuroprotective effects
also includes the suppression of CNS microglia proliferation, abrogation of macrophage recruitment
from the periphery, and promotion of angiogenesis and tissue repair [32,34].

Importantly, there is also evidence that fractalkine reduces microglial activation, maintaining these
cells in an “off” state, and inhibits inflammatory cytokines, thereby contributing to its protective
activity. According to this statement, the intracerebroventricular administration of exogenous CX3CL1
results in a long-lasting neuroprotective effect against cerebral ischemia in rodents [24,35]. Importantly,
exogenous fractalkine participates in angiogenesis in rats subjected to focal ischemia (MCAO).
Fractalkine stimulates endothelial cells in the ischemic penumbra to proliferate and migrate, leading to
enhanced blood vessel density, which correlates with better functional recovery after ischemic
stroke [20,36–38]. The mechanism considered above produced a positive effect that may involve
inhibition of the caspase 3 activity and pPARP cleavage induced by ischemia [24].

However, although an attempt was made to modulate the immune system of the brain during
the acute phase after experimental global cerebral ischemia, fractalkine signaling induced completely
different effects. Using small interfering RNA (siRNA), researchers observed that inhibiting the function
of CX3CR1 exacerbated the ischemia-induced chronic increase in microglia activation, enhanced the
expression of IL-1beta, and worsened the ischemia-induced chronic impairment of cognition [39].
However, there was no significant effect on ischemia-induced neurodegeneration in the hippocampus.
Most likely, the regional heterogeneity of microglial cells may contribute to varying sensitivities
to the same pathological signal [40]. This fact remains in disagreement with a previous report of
a focal ischemia model, in which CX3CR1 deficiency decreased cortical degeneration [20,23,24,32].
These observations may suggest that the protection afforded by this chemokine in temporary occlusion
models is more pronounced than that offered in permanent global ischemia models. The contradictory
results described above may have occurred due to different experimental models, degrees of injury,
and timing of the activation of specific environmental signals, including effector molecules. Furthermore,
it is not possible to compare the expression levels of fractalkine/CX3CR1 after insults, as these levels
were measured at different times, namely, over a period of 1 week in the acute phase of recovery vs.
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a period of 1 month after global ischemia. This fact may determine the functional state of activated
microglia during the acute and/or late response to ischemic challenge. Indeed, it has previously been
reported that microglia produce both beneficial and detrimental effects during cerebral ischemia,
which indicates highly complex microglial acute/late function in damage formation, inflammation,
and tissue repair.

3. CX3CL1/CXCR1 Signaling in Epilepsy

Epilepsy is a chronic neurological disorder characterized by an enduring predisposition to
unprovoked seizures. The clinical manifestation of epilepsy includes sudden and transitory abnormal
episodes of motor, sensory, autonomic, or psychic origin. Continuous seizure activity may lead to
neuronal cell death [41,42].

Seizure episodes are a result of abnormal hypersynchrony of neuronal activities in the brain
that are caused by an imbalance of excitatory and inhibitory transmissions [43–45]. Recently,
some neuroinflammatory processes within the brain, including a predominant role of microglia,
have been considered to be the key elements that contribute to seizure reoccurrence and precipitation
in both epileptic patients and animal models [46–51]. Indeed, it has been reported that mesial temporal
lobe epilepsy (MTLE), one of the most common forms of focal epilepsy, is associated with pathology in
the hippocampus characterized by acute inflammatory responses, activated parenchymal microglial
cells, neurodegeneration, aberrant synaptic reorganization, and increased adult neurogenesis [52–58].
It has been suggested that microglia, through communication with neuronal elements mediated by the
CX3CL1/CX3CR1 axis, monitor and alter synaptic activity under epileptic conditions [59–61].

However, only a few studies have shown the role of fractalkine/CX3CR1 axis signaling in the
pathogenesis of epilepsy and the accompanying cell death [51,62,63]. These studies have shown
increased expression of fractalkine and CX3CR1 in surgically resected brain samples collected from
MTLE patients and experimental animal models [63,64]. Blocking the axis with the anti-CX3CR1
antibody diminishes electrical epileptic seizure-induced microglial activation, neurodegeneration,
and neuroblast formation in the adult rat hippocampus. Ablation of CX3CR1 receptors in mice
leads to reduced epilepsy induced microglial activation, as observed by an increased number of
ramified/surveying microglia and a reduced percentage of phagocytic microglial cells, in the hippocampi
of the DG. The reduction in microglial cells and the decreased number of degenerated neurons was
also described after infusion of a CX3CR1 antibody into the pilocarpine-induced model of epilepsy [61].
An analysis of fractalkine expression showed upregulation of this protein in a rat model and in
neocortexes of patients with temporal lobe epilepsy (TLE). Elevated levels of CX3CL1 were also found
in the serum and CSF. Unfortunately, most patients who provided brain specimens were unwilling to
provide the samples [63]. The observed reduction in the number of neurons after epilepsy is consistent
with previous studies [65–67]. Therefore, a deficiency in fractalkine signaling is associated with many
types of seizures [50].

Recently, Roseti et al. showed that CX3CL1 is responsible for positively regulating the function
of the GABA A receptor from human TLE brain tissue when it was expressed in Xenopus oocytes.
This effect was mediated by reducing the rundown current of the GABA A receptor. Most likely,
this receptor was of epileptogenic origin, as it was absent in the nonepileptogenic control tissue [64].
These data may suggest that the GABAergic system is significantly modulated by CX3CL1 released in
epileptic foci. This indicates that the CX3CL1/CX3CR1 neuroglial communication axis is a modulator of
potentially neuroprotective microglia-neuron physical interactions when neurons tend to be hyperactive.
This finding may represent an important challenge for the prevention of epileptogenesis, and the
identification of new immunomodulatory compounds remains of utmost importance [64].

4. CX3CL1/CX3CR1 Signaling in Neurodegenerative Diseases

Neurodegenerative diseases are a heterogeneous group of disorders that increase in incidence as
the population ages. These disorders are characterized by a progressive decline in cognitive function
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and memory formation, which correlate with reduced neurogenesis and deficits in LTP maintenance in
elderly people [68]. Increasing brain and spinal cord damage gradually impairs the function of the
central and peripheral nervous systems. This increasing damage finally leads to mental retardation and
motor and behavioral problems. The most common neurodegenerative diseases include Alzheimer’s
disease (AD), Parkinson’s disease (PD), and amyotrophic lateral sclerosis (ALS). Despite advancing
knowledge of the biochemical and molecular processes involved in the pathogenesis of neurological
impairments, clinical approaches have failed to prevent the progression of the characteristic symptoms.
An important issue regarding neurodegenerative diseases is the identification of appropriate drug
targets. Contemporary research suggests that age-dependent neuroinflammatory processes are
important contributing factors in most neurological disorders, and while they may not be considered
the primary causes, they may contribute to the symptomatic phase [69]. Recently, the signaling
pathway mediated by fractalkine CX3CL1 and its receptor CX3CR1 has received considerable attention
as an important mediator of inflammatory responses in several neurological disorders [70]. Indeed,
several studies have shown that impaired CX3CL1/CX3CR1 axis signaling is accompanied by abnormal
microglial activation in various animal models of central nervous system diseases [71–76]. Two genetic
variants of the CX3CR1 gene, namely, V249I and T280M, have been described to affect CX3CR1 protein
activity [77,78]. According to the reported data, both variants have been associated with several
inflammatory and degenerative human conditions, including age-related macular degeneration [79,80],
Crohn’s disease [81], AIDS [82], MS [83], ALS, and AD [84,85]. However, to confirm the relevance of
these polymorphic variants of CX3CR1, these studies require replication.

Furthermore, fractalkine, the ligand of the CX3CR1 receptor, appears to be protective in some
contexts, whereas it contributes to neuronal damage in other contexts. Comparison of the soluble or
membrane-bound forms of fractalkine showed that overexpression of soluble fractalkine in knock-out
mice has the ability to restore neurogenesis and LTP, whereas membrane-bound CX3CL1 does not have
such beneficial effects [86]. This finding might lead to the design of an effective strategy to ameliorate
symptoms accompanying many diseases. Our present review summarizes the current data related to
the role of the CX3CL1/CX3CR1 signaling pathways in animal models of selected neurodegenerative
diseases and their potential use in the clinic.

4.1. Fractalkine/CX3CR1 Signaling in Alzheimer’s Disease

Alzheimer’s disease (AD) is one of the most common neurodegenerative disorders and the fifth
leading cause of death for individuals aged 65 or older. AD accounts for approximately 80% of all cases
of dementia due to progressive cognitive impairment and decreased memory formation associated
with neuronal dysfunction [68]. AD is also characterized by noncognitive symptoms such as delusions,
agitation, and changes in mood and personality [87].

The two pathological hallmarks of AD are extracellular senile neuritic plaques, of which amyloid
beta is the principal component [88], and an intraneuronal accumulation of hyperphosphorylated
microtubules associated with the protein Tau, which are known as neurofibrillary tangles.
The aggregation of amyloid-β (Aβ) fragments (peptides 40–42) that accumulate to form oligomers
induces neurotoxic effects that lead to the neural synaptic and cognitive degradation seen in AD [89].
Intracellular neurofibrillary tangles, as the second hallmark of AD pathology, are involved in the
dispersion of microtubules and contribute to the progression of the disease [90].

A body of recently collected evidence indicates that the fractalkine ligand and its microglial
receptor (CX3CL1/CX3CR1) affect Aβ and Tau pathologies by regulating microglial movement and
recruiting monocytes into the brain. For research purposes, different genetic models (hTau, APP/PS-1,
and CRND8) exhibiting specific aspects of the AD disorder were used [91–93]. By frequent observation
of the brains of both humans and animals with AD, it was concluded that amyloid plaques are
surrounded by activated, phagocytic microglia. The fact that microglia proliferate faster and cluster
around fibrillar amyloid plaques is probably due to dysregulated fractalkine/CX3CR1 signaling by
deletion of the CX3CR1 receptor [25,92,93].
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As a result, the total levels of Aβ (particularly Aβ 40 and 42) [93] and the number of amyloid
plaques were reduced, most likely by arginase-1-expressing microglia and enhanced microglial selective
phagocytic ability [94]. A similar effect occurred when the CX3CL1 was absent. The absence of CX3CL1
reduced Aβ deposition and induced microglial overactivation and cytokine release (IL-6 and IL-1α) in
transgenic mice (APP/PS-1) [95]. With disease progression, microglia become less efficient in clearing
fibrillar Aβ and heightened activation may help increase microglial engulfment of fibrillar amyloid. [96].
Altogether, it could be assumed that microglia can regulate the levels and deposition of Aβ in the brain.
Notably, despite the increased density of microglia, there was no effect of CX3CR1 deletion on the
degree of neuronal and synaptic damage surrounding the plaques [93]. In addition, Fuhrmann et al.
observed that the absence of CX3CR1 prevented neuronal loss in 3xTg-AD mice and that this event
was independent of Aβ accumulation [97]. Nevertheless, several subsequent studies indicated that
disrupting the CX3CL1 signaling pathways by knocking out the CX3CR1 receptor on microglia is
beneficial in models of amyloid deposition [92,93]. Therefore, it is postulated that the net effect of the
absence of CX3CR1 may likely depend on a particular pathological condition [98].

Conversely, a follow-up study surprisingly revealed that ablation of the fractalkine receptor
resulted in enhanced Tau pathology, as demonstrated by increased Tau phosphorylation
and aggregation, which correlates with worsened behavioral and cognitive deficits [91,99].
Reactive microglia are also involved in enhancing and spreading Tau pathology, which induces
neurobrilary tangles (NFT) [100]. Thus, it is likely that the neuroprotective role of the CX3CR1 receptor
is not directly associated with amyloid beta but with Tau. This hypothesis may be supported by
evidence of substantially improved health in mice affected by Tau pathology after overexpression of
soluble fractalkine [25].

In addition, two variants of the CX3CR1 gene, namely, V249I and T280M, could represent new
factors that regulate the onset and progression of pathology in patients with AD. There is data described
association of variant CX3CR1-V249I with neurofibrillary pathology. The analysis provides further
evidence of the involvement of the CX3CR1 pathway in the pathogenesis of AD [85].

Current evidence has shown that interruption of CX3CL1/CX3CR1 signaling affects the
neuron–microglia interaction in AD pathology and it may trigger beneficial or detrimental effects.
The beneficial effect is expressed by inhibition of inflammation and amyloid clearance, whereas the
negative effect is associated with the enhancement of Tau phosphorylation. The discrepancies in the
effects caused by the ligand/receptor axis may result from the use of different models, different stages
of disease development, and the utilization of different experimental strategies.

Recently, a novel idea that Tau can directly bind to CX3CR1 and then compete with the natural
ligand of this receptor was proposed [101]. This competition may lead to the disruption of neuronal–glial
communication and thus uncouple microglial activation. Notably, the binding of Tau to the microglial
receptor leads to its own internalization by microglia. Little is known about the consequences of these
phenomena in brains of patients with AD, and fully understanding these phenomena may help to
design a better, more effective treatment.

An important issue regarding AD pathology is the definition the biological functions of the
fractalkine isoforms. It is possible that the signals initiated by either the membrane-bound isoform
or soluble isoform may play different roles in amyloid beta clearance and Tau phosphorylation.
Importantly, studies have confirmed that overexpressing the soluble form reduced the effect of Tau
and did not affect amyloid pathology. This remains consistent with the documented increase in
Tau pathology in CX3CR1 null mice and the interruption of the fractalkine signaling pathway [102].
Furthermore, using an adeno-associated viral vector to increase the expression of the soluble CX3CL1
isoform in the rTG4510 mouse model of tauopathy led to reductions in the pathology related to both
soluble and insoluble phospho-Tau, ameliorated neuronal loss, and reduced microglia activation [102].
Examining this finding further may lead to the conclusion that soluble CX3CL1 is a potential target for
preventing Tau-mediated degeneration. In contrast, membrane-bound fractalkine appears to govern
Aβ pathology, as was observed in transgenic APP/PS-1 mice. However, the deficiency in signaling
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mediated by this isoform causes the intraneuronal microtubule-associated protein Tau (MAPT) to
accumulate despite the reduction in Aβ [25].

According to a recently published report, other chemokines and their receptors may compensate
for deficiency in CX3CR1. One of these studies suggested the involvement of the chemokines CCL2 or
CXCL16 [103]. It was found that CCL2 release is able to reduce plaque formation in mice deficient in
the receptor CX3CR1 which is specific for CX3CL. This observation could help to develop a therapeutic
strategy for AD [104]. Further research studies that focus on the issue described above are needed to
confirm this observation.

4.2. CX3CL1/CX3CR1 Signaling in Amyotrophic Lateral Sclerosis

Amyotrophic lateral sclerosis (ALS) is a chronic neurodegenerative disease that mainly affects
lower (spinal cord and bulbar) and upper (corticospinal) motor neurons (MNs) [105]. The most common
symptoms include progressive muscle weakness, paralysis, and death within 5 years after onset of the
disease [106]. Although the mechanism precipitating death of motor neurons has not been precisely
defined, studies on animal models of ALS and patients with ALS have revealed many alterations,
such as synaptic terminal degeneration, glial cell activation, and sustained neuroinflammation. All these
processes have been shown to contribute to motor neuron degeneration in ALS [107,108]. However,
the primary events leading to pathology are still controversial. To address this question, different
transgenic mice overexpressing mutant SOD1, in which glycine at amino acid position 93 is substituted
by alanine or glycine at amino acid position 86 is substituted by arginine (G93A or G86R), were used
as ALS models. These animals exhibit key clinical features that are strikingly similar to those of human
disease [109–111].

Recent findings have confirmed that intercellular communication between motor neurons and
microglia plays an important role in the pathogenesis of ALS [108,111,112]. The neuron–glia interaction
was disrupted even before the onset of ALS symptoms. However, general information about the
relevance of CX3CL1 and CX3CR1 in ALS is rather rare, except that disruption of MN-microglia
communication as the result of CX3CR1 receptor deficiency in transgenic SOD1G93A mice accelerates
disease progression and exacerbates neuronal death [21]. This observation indicates that the protective
role of CX3CR1 signaling has been proven [112,113]. In addition, CX3CR1 was postulated to be a
potential gene that regulates the survival and progression of ALS [113]. However, a study performed on
a large population of ALS patients showed that neither of the investigated variants, that is, neither V249I
nor T280M, was associated with an increased risk of disease.

This finding directly contradicts a study performed on a much smaller population of individuals,
where the presence of V249I was associated with shorter survival [114,115]. Thus, it is obvious that
larger cohorts of patients should be enrolled in studies to properly determine the effect of gene
polymorphisms on ALS.

4.3. Fractalkine/CX3CR1 Signaling in Parkinson’s Disease

Parkinson’s disease (PD) is the second most common neurodegenerative disease, affecting 1–2%
of the population over the age of 65 [116,117]. The main features of this pathology are
progressive motor dysfunction, such as hypokinesia, resting tremors, rigidity, and postural
instability. Moreover, nonmotor symptoms, such as olfactory deficits, constipation, sleep behavior
disorders, mood disturbances, and dementia, are also observed in PD patients [117,118].
The neuropathological hallmarks of PD are the presence of Lewy bodies, in which alpha-synuclein is the
principal component, and the degenerative processes of dopaminergic neurons in the substantia nigra
pars compacta (SNpc), which cause depletion of dopamine in striatal projections [119,120]. Notably,
Lewy bodies can also be found in neuronal cells in other neurodegenerative diseases, and they are
more prominently produced in the SNpc of individuals with PD.

Although the mechanisms that trigger brain degeneration in PD are unknown, several etiological
factors are involved in contributing to the disease, and mitochondrial dysfunction, oxidative stress,
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proteosomal dysfunction, and neuroinflammation thought to be the key components in the pathogenesis
of PD [69,121–123]. A comparative study showed that the inflammatory factors found in the brains
and cerebral spinal fluid extracted from human PD patients post-mortem (including extensive reactive
microgliosis, elevated proinflammatory cytokine expression, lymphocyte infiltration, and loss of
TH+ cells in the SNpc) are also observed in rodent and non-human primate models of the disease
(viral overexpression model, transgenic and neurotoxin – MPTP, MPP+, 6-OHDA models) and cause
the onset and progression of PD [124,125].

Increasing evidence has indicated that the chemokine CX3CL1 and its receptor, CX3CR1,
play important roles in modulating the inflammatory response in PD and in other neurological
disorders [71,76,126,127].

A series of experiments performed on mice deficient in the microglial receptor CX3CR1 showed
that dopaminergic neuronal loss was more pronounced after the neurotoxins MPTP or 6-OHDA had
been administered [21,76]. Conversely, intact CX3CL1 to CX3CR1 signaling significantly dampens
the effect of 6-OHDA. In addition, injection of CX3CL1 was neuroprotective. Exogenous CX3CL1
counteracted neuronal cell death in the striatum and led to a marked reduction in microglia [76].
Similarly, the beneficial effect associated with CX3CL1 overexpression in the alpha-synuclein PD model
was noted by Nash et al. [126].

Furthermore, a detailed study by Morganti et al. about the relative contributions of the soluble
and uncleaved membrane-bound fractalkine isoforms allowed these authors to discover, through the
use of rAAV gene therapy, that only the soluble fractalkine isoform attenuates the neurotoxic effect of
MPTP toxin [127]. Importantly, the neuroprotective action of the soluble form of fractalkine was also
juxtaposed with the damage caused by the overexpression of alpha-synuclein [126,128]. The beneficial
effects of fractalkine were demonstrated by the improved motor coordination, diminished lesion
site, reduced microglial activation and proinflammatory cytokine levels and protected dopaminergic
neurons in the SNpc. In contrast, the membrane-bound isoform of fractalkine did not demonstrate
neuroprotective capabilities in the investigated models [126,127]. Thus, this important finding may
provide evidence that proteolytic cleavage could be a potential mechanism for regulating fractalkine
activity in vivo. This observation remains consistent with previous data showing that the exogenous
truncated CX3CL1 peptide was able to decrease 6-OHDA-induced neurotoxicity in a rat model of
PD [76]. However, the key question that has not yet been fully answered is whether native CX3CL1
was present in the examined animal. Furthermore, Lyon et al. stated that the membrane-bound
CX3CL1 isoform exhibits anti-inflammatory activities similar to those of its soluble counterpart [31];
however, this statement remains controversial, as the authors did not compare their results with those
obtained after inhibition of the constitutive cleavage mechanism. It seems logical to state that such an
experimental paradigm could offer an accurate interpretation.

Taken together, the current data were obtained in studies of neurotoxin models with CX3CR1
deficiency and include contradictory evidence about axis signaling and its effects on the progression of
disease. Thome et al. reported that in an alpha-synuclein overexpression model of PD (AA2SYN),
deficiency of the receptor attenuates inflammation and fails to exacerbate neurodegeneration [129].
Moreover, an in vitro study of primary mouse microglia showed that the absence of CX3CR1 reduced
phagocytosis and the uptake of aggregated alpha-synuclein. Thus, these data suggest that CX3CR1
might influence the progression of synucleopathies in the course of disease. It was further confirmed
by Castro-Sanchez et al. [71] that dopaminergic degeneration is exacerbated and that proinflammatory
marker production is increased in Cx3cr1−/− mice. Most likely, the mechanism that governs the
microglial response after alpha-synuclein has been administered is different from the mechanism that
is specific to toxin-induced PD [130].

Finally, the differences in the fractalkine signaling pathways could be attributed to the natures
of the models and the events that trigger the degenerative processes. For example, the absence of
the CX3CL1/CX3CR1 axis yields no nigral dopaminergic neuron loss in either intranasal MPTP- or
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6-OHDA-treated mice. In contrast, the absence of the CX3CL1/CX3CR1 axis was deleterious after
intraperitoneal MPTP infusion [128].

In the field of PD, fractalkine signaling appears to have potent effects on the neuroinflammatory
processes in PD models, but these effects are complex and depend on the nature of the initiating events.
It is important to better understand the state of fractalkine signaling in human disease in order to
develop neuroprotective strategies to delay the onset or progression of the disease.

5. Conclusions

Over the past decade, the understanding of the role the fractalkine pathway plays in brain
pathology has greatly advanced. Although there is a growing body of literature, which is supported by
extensive studies on the role of the CX3CL1/CX3CR1 signaling pathway in brain diseases, the published
results are relatively controversial. While disruption of the fractalkine signaling pathway is beneficial
in some pathological states (ischemia), it is detrimental in other neurodegenerative diseases (PD).
Furthermore, analysis of AD models suggests that deletion of CX3CR1 may lead to both neuroprotective
and detrimental effects. In other neurodegenerative diseases, such as ALS, the reported results are rather
rare and do not allow us to precisely determine the role of fractalkine signaling. Furthermore, there is
also no complete agreement about the role of the fractalkine isoforms in the development of pathological
processes. It only seems logical that future research should be focused on understanding the precise
mechanism by which disrupted CX3CL1/CX3CR1 signaling affects microglia and leads to either
beneficial or deleterious actions. In summary, emerging evidence suggests that the CX3CL1/CX3CR1
axis is an attractive potential therapeutic target due to its ability to control inflammation in the
neurological disorders. Therefore, one of the most urgent issues is to unravel the frame windows
where the modulation of neuroinflammatory response suits the different stages of the pathologies.
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