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Immune-Related Gene Signature
Associated With Hepatocellular Carcinoma
Patient Prognosis

Jiasheng Lei, MSc1, Dengyong Zhang, MSc1, Chao Yao, MSc1,
Sheng Ding, MSc1, and Zheng Lu, PhD1

Abstract

Background: Hepatocellular carcinoma (HCC) remains the third leader cancer-associated cause of death globally, but the etiological
basis for this complex disease remains poorly clarified. The present study was thus conceptualized to define a prognostic immune-
related gene (IRG) signature capable of predicting immunotherapy responsiveness and overall survival (OS) in patients with HCC.

Methods: Five differentially expressed IRG associated with HCC were established the immune-related risk model through
univariate Cox regression and least absolute shrinkage and selection operator (LASSO) regression analyses. Patients were
separated at random into training and testing cohorts, after which the association between the identified IRG signature and OS
was evaluated using the “survival” R package. In addition, maftools was leveraged to assess mutational data, with tumor mutation
burden (TMB) scores being calculated as follows: (total mutations/total bases) � 106. Immune-related risk term abundance was
quantified via “ssGSEA” algorithm using the “gsva” R package.

Results: HCC patients were successfully stratified into low-risk and high-risk groups based upon a signature composed of 5
differentially expressed IRGs, with overall survival being significantly different between these 2 groups in training cohort, testing
cohort and overall patient cohort (P¼ 1.745e-06, P¼ 1.888e-02, P¼ 4.281e-07). No association was observed between TMB and
this IRG risk score in the overall patient cohort (P¼ 0.461). Notably, 19 out of 29 immune-related risk terms differed substantially
in the overall patient dataset. These risk terms mainly included checkpoints, human leukocyte antigens, natural killer cells,
dendritic cells, and major histocompatibility complex class I.

Conclusion: In summary, an immune-related prognostic gene signature was successfully developed and used to predict survival
outcomes and immune system status in patients with HCC. This signature has the potential to help guide immunotherapeutic
treatment planning for patients affected by this deadly cancer.

Keywords
hepatocellular carcinoma, immune-related genes, prognostic signature, immune landscape, tumor mutation burden

Received June 9, 2020. Received revised October 7, 2020. Accepted for publication October 23, 2020.

Introduction

Liver cancer remains the second most prevalent form of

cancer-associated death globally,1 and the prognosis of patients

with advanced or metastatic hepatocellular carcinoma (HCC) is

very poor.2 HCC is the most common liver cancer subtype,3

and is associated with many risk factors including chronic
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hepatitis B viral infection, chronic hepatitis C viral infection,

smoking, alcohol consumption, obesity, diabetes mellitus, and

a range of other metabolic and autoimmune diseases.4 Different

treatments are selected for HCC patients including resection,

ablation, hepatic transplantation, transarterial chemoemboliza-

tion or transarterial radioembolization, systemic treatment, or

palliative care as per the Barcelona Clinic Liver Cancer.5,6 As it

can eliminate any underlying disease while maintaining organ

function, hepatic transplantation is the optimal treatment for

HCC patients.7,8 However, the number of livers available for

transplantation is limited, and this treatment can be expensive

and associated with risks of immune-mediated transplant rejec-

tion. Important, such transplantation often fails to improve

patient quality of life or to prolong survival.9,10 The develop-

ment of novel immunotherapeutic treatment modalities for

HCC has, in contrast, offered a promising clinical approach

to enhancing patient prognosis.11,12 There is some evidence

to suggest that antitumor immune responses are generally

inhibited in HCC patients as the liver typically provides a

tolerogenic and immunosuppressive microenvironement.13 As

such, immunotherapeutic interventions represent an attractive

approach to treating HCC, with immune checkpoint inhibitors

specific for PD-1/PD-L1 and CTLA4 being the most promising

such approaches.12 Other researchers have also proposed the

adoptive transfer of in vitro-expanded neoantigen-specific T

cells or the application of neoantigen-specific tumor vaccines

as alternative strategies well-suited to preventing or treating

HCC.14,15 However, as HCC is a complex disease, the specific

molecular mechanisms governing its onset and progression

remain poorly understood.16

The present study was conceptualized with the goal of iden-

tifying a signature of differentially expressed (DE) immune-

related genes (IRGs) associated with HCC patient prognosis in

order to reliably gauge patient outcomes and to guide patient

treatment. After developing this IRG risk signature, we then

compared its relationship with key clinical characteristics (age,

sex, grade, stage, TNM classification) and patient overall,

disease-free, and progression-free survival (OS, DFS, and PFS,

respectively). We also assess the relationship between this IRG

signature and immune cell infiltration, immune signaling activ-

ity, and tumor mutational burden (TMB) in HCC. Together, we

believe that our IRG risk signature may represent a valuable

and comprehensive approach to guiding precision immunother-

apy treatment for patients with this deadly form of liver cancer.

Materials and Methods

Data Collection

HCC patient clinical information, mutation profiles, and

mRNA expression data were downloaded from The Cancer

Genome Atlas (TCGA; https://portal.gdc.cancer.gov/). IRGs

were identified using the Immunology Database and Analysis

Portal (ImmPort) database (https://immport.niaid.nih.gov),

enabling us to identify genes associated with key immunologi-

cal processes.17

Differentially Expressed IRG Identification

Key HCC-related DE genes were identified by using the edgeR

package to compare gene expression profiles in 374 tumor and

50 healthy control samples.18 DE genes were identified using

the following criteria: false discovery rate (FDR) < 0.05, |log2

(fold change [FC])| > 1.19 DE IRGs were then identified by

assessing the overlap between this DE gene list and the above-

mentioned list of IRGs.

Functional Enrichment Analyses

To explore the mechanisms whereby the 353 identified DE

IRGs may influence HCC patient outcomes, Gene Ontology

(GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG)

functional enrichment analyses were conducted with the

“cluterprofile” R package.20 The top 15, 10, and 15 biological

process (BP), cellular component (CC), and molecular function

(MF) GO terms, respectively, and the top 30 KEGG pathways

with an FDR < 0.05 were identified as being significant using

the “ggplot2” R package.21

Immune-Related Risk Signature Construction and
Validation

In order to construct and validate a reliable immune-related

model for the evaluation of HCC patient prognosis, the “caret”

R package was used to randomize patients into a training

cohort (n¼ 169) and a testing cohort (n¼ 168). Data pertaining

to 37 of the patients were omitted from these analyses due to an

absence of clinical data (n ¼ 3), a lack of survival data (n ¼ 1),

a survival time of 0 (n ¼ 5), a lack of tumor grade information

(n ¼ 5), a lack of stage information (n ¼ 21), a lack of T stage

information (n ¼ 1), or a lack of N stage information (n ¼ 1).

Our immune-related risk signature was first developed by

assessing the relationship between DE IRGs and patient OS

in the training cohort,22 after which the prognostic value of this

model was confirmed in the testing cohort. A univariate Cox

proportional hazard regression analysis was employed to eval-

uate associations between individual DE IRGs and patient OS

in the training cohort. Those DE IRGs which were significant

in this initial analysis (P < 0.05) were then incorporated into a

least absolute shrinkage and selection operator (LASSO)-pena-

lized Cox proportional hazards regression model to identify an

optimal risk signature model without the risk of overfitting

using the “glmnet” R package.23 Risk signature scores were

defined as follows: Risk score ¼ expression of Gene 1 � coef-

ficient þ expression of Gene 2 � coefficient þ . . . expression

of Gene n � coefficient.24 These scores were individually cal-

culated in the training, testing, and overall cohorts, with sam-

ples being separated into high- and low-risk groups using the

median risk score in the training cohort as a cut-off value. The

“timeROC” R package was used to validate the prognostic

utility of this immune-related risk signature by assessing the

area under the curve (AUC).25 In addition, Kaplan-Meier
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curves were used to compare the OS of high- and low-risk

patients stratified as above using the “survival” R package.26

Evaluation of the Association Between Immune-Related
Risk Signatures and HCC Patient Prognosis

To validate the association between the developed IRG risk

score and HCC patient prognosis, Kaplan-Meier survival

curves were used to compare the PFS and DFS of low- and

high-risk patients in the overall cohorts. In addition, correla-

tions between patient age, sex, grade, stage, TNM status, and

immune-related risk scores were assessed in the overall patient

cohort.

Mutation Analysis

HCC patient somatic variant data stored in the mutation anno-

tation format (MAF) were downloaded from TCGA and ana-

lyzed using maftools.27 TMB scores were calculated for each

patient as follows: (total mutation/total covered bases)� 106.28

ssGSEA Analysis

The associations between immune cell infiltration, immune

pathway activity, immune functionality, and immune-related

risk signatures were assessed with the ssGSEA program to

establish immune-related term enrichment scores. The ssGSEA

function in the “gsva” R package was used to quantify immune

cell infiltration.29 Both innate and adaptive immune cell types

were included in these analyses of ssGSEA gene signatures.30

Scores corresponding to 29 different immune-related terms

were determined for all HCC patients. HLA and immune

checkpoint gene expression levels were assessed in high- and

low-risk patient groups. The “vioplot” R package was also used

to visualize differences in the distributions of immune-related

terms in the low- and high-risk patient groups from the overall

cohort.

Statistical Analysis

All statistical analyses were conducted using Rstudio (v.3.6.1).

Continuous data are given as medians or as means + SE.

Receiver operating characteristic (ROC) curves were used to

assess the prognostic accuracy of developed immune-related

risk signatures in HCC patients. The area under the ROC curve

(AUC) was calculated with the “timeROC” R package, while

patient survival outcomes were analyzed using Kaplan-Meier

curves and log-rank tests with the “survival” R package. Data

were compared using w2 test, with a 2-sided P < 0.05 as the

significance threshold.

Results

DE IRG Identification

We began by downloading HCC patient clinical and gene

expression data from TCGA (374 tumor samples, 50 control

Table 1. Clinical Variables in the Training and Testing Sets.

Variables Group Total set (n ¼ 337) Training set (n ¼ 169) Testing set (n ¼ 168) Method P value

Survival time(days) 792.37 + 40.118* 767.83 + 56.463 817.05 + 57.115 t-test 0.540
Vital status dead 110(32.6%) 55(32.5%) 55(32.7%) Chi-Square test 0.970

Alive 227(67.3%) 114(67.5%) 113(67.3%)
pathologic grade G1 45(13.3%) 21(12.4%) 24(14.3) Chi-Square test 0.874

G2 166(49.3%) 84(49.7%) 82(48.8%)
G3 114(33.8%) 59(34.9%) 55(32.7%)
G4 12(3.6%) 5(3%) 7(4.1%)

Clinical stage I 168(49.8%) 82(48.5%) 86(51.1%) Chi-Square test 0.942
II 82(24.3%) 41(24.2%) 41(24.4%)
III 83(24.6%) 44(26%) 39(23.2%)
IV 4(1.1%) 2(1.2%) 2(1.2%)

T stage T1 170(50.4%) 82(48.5%) 88(52.4%) Chi-Square test 0.303
T2 83(24.6%) 42(24.9%) 41(24.4%)
T3 74(21.9%) 37(21.9%) 37(22%)
T4 10(3%) 8(4.7%) 2(1.2%)

N stage N0 247(73.3%) 120(71%) 127(75.6%) Chi-Square test 0.249
N1 4(1.1%) 1(0.6%) 3(1.8%)
NX 86(25.5%) 48(28.4%) 38(22.6%)

M stage M0 258(76.5%) 124(73.3%) 134(79.7%) Chi-Square test 0.411
M1 3(0.9%) 2(1.2%) 1(0.6%)
MX 76(22.6%) 43(25.4%) 33(19.6%)

Age <65 207(61.4%) 103(60.9%) 104(61.9%) Chi-Square test 0.857
�65 130(38.6%) 66(39%) 64(38%)

Gender Male 230(68.2%) 110(65%) 120(71.4%) Chi-Square test 0.211
Female 107(31.8%) 59(34.9%) 48(28.5%)

* The data are presented as mean + SE. MX: unknown M stage, NX: unknown N stage.
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samples). HCC patients were then randomized into training and

testing cohorts, with no significant differences in measured

clinical variables being observed between these 2 cohorts

(P > 0.05; Table 1).

DE genes (P < 0.05, |log2 [fold change]| > 1) associated with

HCC were next identified using the edgeR package, leading to

the identification of 5197 total DE genes of which 3968 and 1229

were up- and down-regulated in HCC patient samples, respec-

tively. Furthermore, we identified 1881 IRGs based upon a gene

list obtained from ImmPort. By comparing these 2 gene lists, we

ultimately identified 353 DE IRGs that were represented on both

of these gene lists (Figure 1A). Enrichment analyses of these DE

IRGs were next performed (Figure 1B), with the top immune-

related functions enriched for these genes including the follow-

ing: “signaling receptor activator activity,” “cytokine activity,”

“growth factor activity,” “cytokine receptor binding,”

“transforming growth factor-beta receptor binding.” The top

KEGG pathways mainly enriched for these DE IRGs included

“JAK-STAT signaling pathway,” “TNF signaling pathway,”

“Cytokine-cytokine receptor interaction,” “NF-kappa B signal-

ing pathway.” “Toll-like receptor signaling pathway,” and

“EGFR tyrosine kinase inhibitor resistance” (Figure 1C).

Construction and Validation of a Prognostic Immune-
Related Gene Signature

A univariate Cox regression analysis was next conducted in

order to identify DE IRGs that were significantly associated

with HCC patient OS in the training cohort. In total, 83 of these

DE IRGs were ultimately found to be significantly associated

with the survival of these patients (P < 0.05). A LASSO regres-

sion analysis of these 83 genes was next conducted to lower the

risk of model overfitting, ultimately leading to the identifica-

tion of 5 key survival-related DE IRGs (Figure 2A and B).

These IRGs and their corresponding regression coefficient val-

ues were then used to establish the following prognostic model

score: Risk score ¼ (0.04407 � NR0B1) þ (–0.06788 �
NR3C2) þ (0.03542 � SPP1) þ (–0.04658 � ANGPTL1) þ
(–0.00847 � PGLYRP2). Two of these 5 DE IRGs were asso-

ciated with elevated risk (NR0B1, SPP1; Coef > 0), whereas 3

were protective genes associated with decreased risk (NR3C2,

ANGPTL1, PGLYRP2; Coef <0).

This risk scoring methodology was used to score all sam-

ples. Median risk score values in the training cohort were

used to separate patients into low-risk (n ¼ 85) and high-risk

Figure 1. Differentially expressed immune-related gene identification. (A) DE IRGs associated with liver cancer were identified using a Venn
diagram to analyze the intersection between the DE gene and IRG datasets. (B) GO analysis results. (C) The top 6 most significantly enriched
KEGG pathways.
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(n ¼ 84) patient cohorts. This same cutoff value was used to

separate patients in the testing cohort into low-risk (n¼ 94) and

high-risk (n ¼ 74) groups. In the training cohort, the OS of

patients in the low-risk group was significantly longer than that

of patients in the high-risk group (P ¼ 1.745e-06; Figure 2C)

with 1-, 3-, and 5-year AUC values of 0.74, 0.78, and 0.79,

respectively (Figure 2D).

Assessment of the Prognostic Utility of This Immune-
Related Risk Signature

We next used the developed immune-related prognostic model

to analyze the testing and total patient cohorts in order to vali-

date the predictive value of this model. The OS of patients in

the low-risk group was significantly longer than that of patients

in the high-risk group (P¼ 1.888e�02; Figure 3A), with 1-, 3-,

and 5-year OS AUC values of 0.74, 0.64, and 0.61, respectively

(Figure 3B). Using the same cut-off score, similarly found that

high-risk patients in the overall patient cohort exhibited a sig-

nificantly shorter OS relative to low-risk patients in this cohort

(P ¼ 4.821e-07; Figure 3C), with 1-, 3-, and 5-year AUC

values of 0.74, 0.71, and 0.7, respectively (Figure 3D).

The Relationship between Immune-Related Risk Scores
and Patient Prognosis

We next assessed the relationship between these immune-

related risk scores and HCC patient age, sex, pathologic stage,

TNM status, DFS, and PFS in this TCGA dataset. In the overall

patient cohort, we found that PFS and DFS different signifi-

cantly between low- and high-risk patients in the overall cohort

(P ¼ 1.353e-02, P ¼ 6.332e-03; Figure 4A and B). These

findings suggested that high-risk patients were more likely to

suffer from tumor progression and to exhibit reduced DFS

relative to low-risk patients. We also examined the differences

in patient age, gender, pathologic stage, and TNM status

between low- and high-risk patient groups. The grade, clinical

stage and T stage were significantly differences in high-

risk cohort relative to low-risk cohort. (P ¼ 6.374e-06,

P ¼ 0.004637, P ¼ 0.005542; Figure 5A and B).

Figure 2. Development of a prognostic immune-related risk signature associated with HCC patient outcomes. (A-B) Using LASSO regression
analyses, 5 genes associated with HCC patient OS were identified, and 10-round cross-validation was conducted to avoid overfitting. (C) High-
and low-risk HCC patient OS was evaluated using Kaplan–Meier curves. (D) Time-dependent ROC analyses of the identified immune-related
risk signature in the training cohort.
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The Association Between Immune-Related Risk Scores
and HCC Patient TMB

Mutational data corresponding to 327 HCC patients within

the present sample cohort was next analyzed and used to

calculate TMB scores (Figure 6A). Risk scores were used to

stratify these patients into high-risk (n ¼ 154) and low-risk

(n ¼ 173) groups as above. Mutations and mutation frequen-

cies in the top 20 genes were then assessed in the training

cohort (Figure 6B) and the testing cohort (Figure 6C). How-

ever, no significant relationship was observed between these

immune-related risk score values and patient TMB scores

(P ¼ 0.461; Figure 6D). These 327 patients were additionally

stratified into high-TMB score (n ¼ 164) and low-TMB score

(n ¼ 163) groups based upon median TMB score values.

However, OS did not differ significantly between these

2 groups (P ¼ 0.076; Figure 6E). These data thus suggested

that immune-related risk signature scores were unrelated to

TMB in HCC patients.

The Association Between Immune-Related Risk Scores,
Immune Cell Infiltration, and Immune Pathway Activation

Lastly, we explored the association between the developed

immune-related risk signature and immune-related cell infiltra-

tion, immune-related pathway activity, and immune functionality

in HCC patients via ssGSEA analyses of HCC patient transcrip-

tomic data. Immune cells that infiltrate the HCC tumor micro-

environment (TME) play diverse roles in modulating anti-tumor

immune responses.30 In total, 29 different immune-related terms

were incorporated into this analysis in order to evaluate immune

cell infiltration in these HCC patients in a comprehensive fash-

ion. In total, 19 of these 29 terms differed significantly between

the high- and low-risk groups in the overall patient cohort (Figure

7A). Notably, the expression of HLA family genes, CD80, and

CD86 were significantly increased in high-risk HCC patients

relative to low-risk HCC patients (Figure 7B-D). In addition,

immune-related risk scores were significantly positively corre-

lated with many immune-related terms and cell types, including

Figure 3. Immune-related risk signature validation. (A) High- and low-risk liver cancer patient OS was evaluated in the testing cohort. (B) A
time-dependent ROC analysis of the immune-related risk signature in the testing cohort. (C) The OS of high- and low-risk liver cancer patients
was assessed via Kaplan–Meier curve analyses in the overall cohort. (D) A time-dependent ROC analysis of the immune-related risk signature in
the overall cohort.
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checkpoints, natural killer (NK) cells, HLA, and mast cells (Fig-

ure 8A-E). These findings may thus offer insight into the predic-

tive utility of our immune risk model.

Discussion

Herein, we developed and validated a novel immune-related

risk signature that could be effectively used to gauge HCC

patient prognosis. This signature may also offer prognostic

value as a means of predicting the treatment responses of

patients. In this study, we aimed to evaluate the relationship

between immune cell infiltration and a prognostic IRG signa-

ture in HCC patients.

HCC remains a leading cause of cancer-associated death, and

patients with advanced-stage disease cannot be effectively

treated via traditional or combination chemotherapy

Figure 4. Correlations between immune-related risk signatures and liver cancer patient PFS and DFS. (A) The PFS of high- and low-risk liver
cancer patients in the overall patient cohort was assessed using Kaplan-Meier curves. (B) The DFS of high- and low-risk liver cancer patients in
the overall patient cohort was assessed using Kaplan-Meier curves.

Figure 5. The association between immune-related risk signatures and HCC patient clinical characteristics. (A, B) Differences in risk scores as a
function of patient age, sex, clinical stage, T stage, N stage, and M stage were assessed.

Lei et al 7



F
ig

u
re

6
.
H

ig
h
-
an

d
lo

w
-r

is
k

H
C

C
p
at

ie
n
t

m
u
ta

ti
o
n

p
ro

fil
es

an
d

T
M

B
va

lu
es

.(
A

)
Su

m
m

ar
iz

ed
m

u
ta

ti
o
n
al

d
at

a
fr

o
m

3
2
7

p
at

ie
n
ts

.(
B
,C

)
M

u
ta

ti
o
n
al

fr
eq

u
en

ci
es

in
th

e
to

p
2
0

ge
n
es

in
th

e
tr

ai
n
in

g
an

d
te

st
in

g
co

h
o
rt

s.
(D

)
T

h
e

re
la

ti
o
n
sh

ip
b
et

w
ee

n
im

m
u
n
e-

re
la

te
d

ri
sk

sc
o
re

s
an

d
T

M
B
.
(E

)
T

h
e

O
S

o
f
h
ig

h
-

an
d

lo
w

-r
is

k
T

M
B

liv
er

ca
n
ce

r
p
at

ie
n
t

gr
o
u
p
s

w
as

as
se

ss
ed

u
si

n
g

K
ap

la
n
-M

ei
er

cu
rv

es
.

8



approaches.31 The tumor immune microenvironment (TIME),

however, has recently been found to be a key determinant of

HCC progression,32-34 and immunotherapeutic agents have

increasingly been used to treat advanced-stage HCC

patients.35,36 Immunotherapy, however, only achieves long-

turn durable anti-tumor efficacy in a limited subset of HCC

patients.37 As the immunological mechanisms governing

HCC onset and progression are still incompletely understood,

optimal treatment modalities are not administered to many

patients due to a lack of robust patient stratification tech-

niques.35,38 It is thus essential that immune-related biomarkers

capable of predicting HCC patient survival and treatment out-

comes be identified to guide appropriate patient care.

In the present study, we began by identifying 5 key survival-

associated IRGs in a randomly selected HCC patient training

cohort via univariate Cox and LASSO regression analyses.

These 5 DE IRGs were then used to develop an immune-

related risk score model that was successfully used to separate

HCC patients into high- and low-risk groups with statistically

significant differences in OS outcomes in both the training,

testing and overall cohorts. This prognostic signature was also

significantly associated with T stage, clinical stage, and grade.

Consistent with these associations, we also found that clinical

stage (I, II/III, IV), T stage (T1, T2/T3, T4), and tumor grade

(G1/G2/G3/G4) all exhibited significant prognostic utility in

these HCC patients. Many studies to date have identified

immune-related biomarkers associated with cancer patient

prognosis, but few such studies have specifically focused on

IRGs capable of predicting HCC patient OS. As such, the

immune-related risk scoring model established in this study

Figure 7. The relationship between immune-related risk signatures, immune cell infiltration, and immune functionality in liver cancer patients.
(A) The relative enrichment of 29 immune-related risk terms in high- and low-risk liver cancer patients. (B) HLA family gene expression in high-
and low-risk liver cancer patients. (C-D) CD80 and CD86 expression levels in low- and high-risk liver cancer patients.

Lei et al 9



Figure 8. The association between immune-related risk scores and 19 differentially expressed immune-related terms.
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offers value as a novel tool for the prediction of HCC patient

outcomes.

We conducted GO and KEGG functional enrichment anal-

yses of these 353 identified DE IRGs. Top KEGG pathways

enriched for these DE IRGs, included the JAK-STAT, TNF,

cytokine-cytokine receptor, NF-kB, Toll-like receptor, and

EGFR tyrosine kinase inhibitor resistance signaling pathways.

As all of these pathways were associated with a poor HCC

patient prognosis, they may offer insight into the molecular

basis for the predictive value of this risk score model.

Mutation analyses were also conducted as a means of

exploring the molecular basis for this prognostic risk signature.

However, no differences in tumor mutation status were

observed between HCC patients with low and high immune-

related risk scores. TMB has previously been reported to

impact tumor immune cell infiltration and to predict immu-

notherapeutic responses. In the present patient cohort, no sig-

nificant differences in TMB values were observed when

comparing the low-risk and high-risk patient groups. Further-

more, no significant differences were observed when compar-

ing the OS of patients with low TMB scores to those with high

TMB scores. As such, our data do not support the existence of

any relationship between our immune-related risk score model

and HCC patient TMB.

Individual genes can regulate the interplay between tumors

and immune cells, leading to microenvironmental changes that

enable tumors to evade immune detection.39,40 As such, we

employed a ssGSEA analytical approach to evaluate the rela-

tionship between our immune-related risk score model and 29

key immunity-related terms. Of these terms, 19 were found to

differ significantly between low- and high-risk patients. Of

these terms, those related to immune checkpoints, HLA expres-

sion, and NK cells were of particular interest.

Many research efforts have sought to leverage the intrinsic

anti-tumor activity of NK cells in order to treat cancer. Indeed,

preclinical studies have found that NK cells and T cells are able

to kill HCC tumor cells in vitro, and there are many factors in

HCC microenvironments contribute to reduced intratumoral

NK cell function.41-43 We found that high-risk HCC patients

exhibited significantly reduced NK cell infiltration relative to

low-risk patients (P¼ 0.002). This reduced NK cell infiltration

likely contributes to the immune evasion and progression of

this cancer type, potentially explaining the differences in sur-

vival outcomes between these 2 risk groups.

HLA-I and HLA-II molecules are used by the immune sys-

tem to present endogenous and exogenous antigens, respec-

tively. HLA-I expression is observed on all nucleated cells,

but these expression levels or presentation profiles can be dis-

rupted in pathological settings. When the peptides presented by

these HLA proteins are altered as a consequence of disease or

mutation, they can serve as autoantigens that target cells for

immune rejection.44-47 We found that the enrichment frection

of HLA was significantly increased in high-risk HCC patients

relative to low-risk patients (P ¼ 0.014). In addition, it shown

that expression of most HLA family genes was notably

increased in high-risk HCC patients than low-risk patients in

Figure 7A. As such, the increased expression of these HLA

molecules on tumor cell surfaces may impair their recognition

by the immune system, thus preventing their rejection and

thereby explaining the differences in survival outcomes

between these patient groups.

Immune checkpoint inhibitors are among the most promis-

ing immunotherapies developed to date,48 as they have been

leveraged to effectively treat many cancers including mela-

noma as well as lung, liver, renal, and head and neck can-

cers.49-51 Immune checkpoint molecules normally serve to

restrain immune responses in normal physiological and patho-

logical contexts.52,53 However, abnormal immune checkpoint

marker expression can drive the onset or progression of many

diseases.54 When these checkpoint molecules are overexpres-

sion, immune functionality may be suppressed. In contrast,

insufficient expression of these checkpoint inhibitors can lead

to unrestrained and deleterious immune reactivity.55-58 We

observed significant increases in the expression of CD80 and

CD86 in high-risk HCC patients in the present TCGA cohort

relative to low-risk patients (P < 0.001). Both CD80 and CD86

proteins on HCC cells can interact with CTLA-4 on the surface

of tumor-infiltrating T cells, suppressing T cell responses and

allowing tumors to evade immune-mediated elimination.

Given these findings, future studies assessing the relationship

between our immune-related risk score model and patient

responses to checkpoint inhibitor therapy may be of significant

clinical value.

There are many limitations to the present analysis. For one

all data used in this study were obtained from TCGA. While

patients were randomized into training and testing cohorts, this

internal validation approach is of only limited value. Future

external validation will be essential in order to confirm and

expand upon these findings as a means of developing clinically

valuable prognostic risk score models. Furthermore, the HCC

cohort used in the present study did not include any compar-

isons of patients that underwent immunotherapy and patients

that underwent traditional therapies. We were thus unable to

assess the relationship between our immune-related gene sig-

nature and patient immunotherapy responses. In addition, our

evaluations of the correlations between immune-related gene

expression and HCC patient clinical characteristics were not

exhaustive. As such, future studies of the association between

this IRG risk signature and criteria such as Barcelona Clinic

Liver Cancer staging and Child-Pugh grading will be essential.

In light of these limitations, the DE IRG signature developed in

the present study is of only limited clinical utility at present and

requires extensive validation.

Conclusions

In summary, in the present study we developed a novel prog-

nostic immune-related risk score that can reliably be used to

gauge HCC patient prognosis and to guide the immunothera-

peutic treatment of these patients. Our data suggest that the

5 DE IRGs identified in this study may serve as valuable bio-

markers of HCC patient outcomes.
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