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A B S T R A C T   

The quality and safety of wheat flour are of public concern since they are related to the quality of flour products 
and human health. Therefore, efficient and convenient analytical techniques are needed for the quality and 
safety controls of wheat flour. Near-infrared (NIR) spectroscopy has become an ideal technique for assessing the 
quality and safety of wheat flour, as it is a rapid, efficient and nondestructive method. The application of NIR 
spectroscopy in the quality and safety analysis of wheat flour is addressed in this review. First, we briefly 
summarize the basic knowledge of NIR spectroscopy and chemometrics. Then, recent advances in the application 
of NIR spectroscopy for chemical composition, technological parameters, and safety analysis are presented. 
Finally, the potential of NIR spectroscopy is discussed. Combined with chemometric methods, NIR spectroscopy 
has been used to detect chemical composition, technological parameters, deoxynivalenol, adulterants and ad-
ditives of wheat flour. Furthermore, NIR spectroscopy has shown great potential for the rapid and online analysis 
of the quality and safety of wheat flour. It is anticipated that the current review will serve as a reference for the 
future analysis of wheat flour by NIR spectroscopy to ensure the quality and safety of flour products.   

1. Introduction 

Wheat flour is a powdered product made from wheat kernel and 
mainly used for manufacturing various bakery and pasta products, such 
as breads, cakes, biscuits and noodles (Zareef et al., 2021). As one of 
important consumable raw materials in our daily lives, wheat flour 
provides numerous nutrients, such as carbohydrates, protein, and min-
erals. However, the quality and safety of wheat flour products are 
sometimes challenged by the inferior quality parameters and adultera-
tion, which cannot be easily detected and pose risks to human health. 
Consequently, there is an urgent need to develop a rapid, labor-saving 
and efficient analytical method for the quality and safety monitoring 
of wheat flour. 

The main quality parameters of wheat flour include its chemical 
composition, which is related to the moisture, protein, ash, and wet 
gluten contents of the flour, and technological parameters, such as the 
sedimentation value, falling number and rheological properties of wheat 
flour dough. Conventional methods available for the quality and safety 
assessment of wheat flour are listed in Table 1. Although these methods 
have good precision, most of them are laborious and time-consuming. 
Therefore, the quality and safety of wheat flour cannot be monitored 

quickly and efficiently. 
Recently, near-infrared (NIR) spectroscopy, as a reliable tool in 

agricultural and food industry analysis, has been widely used in the daily 
inspection of wheat flour (Delwiche, 1998; Porep et al., 2015). NIR 
spectroscopy, which has the advantages of fast, easy operation, high 
efficiency and nondestructive measurement, can be used for qualitative 
and quantitative analysis of basic components in samples and the 
detection of adulterated samples. The applications of NIR spectroscopy 
in the quality and safety evaluation of tea products (Lin and Sun, 2020), 
grain (Caporaso et al., 2018), fruits and vegetables (Nicolai et al., 2007), 
oilseeds and edible oils (Li et al., 2020) have been reviewed. Although 
reviews on wheat-based products (Badaró et al., 2022) and wheat flour 
(Du et al., 2022) were recently reported, respectively, the safety analysis 
of wheat flour was not fully illustrated. Therefore, this review first 
summarizes the basic knowledge of NIR spectroscopy. Then, recent 
advances in the quality and safety evaluation of wheat flour by NIR 
spectroscopy, including the analysis of basic nutritional components, 
technological parameters and safety, are reviewed. In addition, future 
trends and challenges of NIR spectroscopy are presented. 
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2. Principle of NIR spectroscopy and chemometrics 

As defined by the American Society for Testing and Materials 
(ASTM), near-infrared light is part of the electromagnetic spectrum in 
the range of 780–2500 nm, which is between the visible light and mid- 
infrared light spectrum (Pasquini, 2018). NIR spectroscopy is a tech-
nique that applies the NIR portion of the electromagnetic spectrum and 
can provide complex structural information related to the vibration 
behavior of chemical bonds (Kamal and Karoui, 2015). NIR spectra 
present the overtones and combination of hydrogen-containing C–H, 
O–H and N–H groups, which are the primary structural components of 
organic compounds, such as water, lipids and proteins (Futami et al., 
2016; Wang et al., 2019). In other words, NIR spectroscopy is a tech-
nique in which the instrument emits wavelengths across the entire 
near-infrared spectrum that penetrate the sample. Some wavelengths 
are absorbed through the activation of specific chemical bonds within 
the sample, while the remaining wavelengths are transmitted or re-
flected back to the instrument, forming the resulting spectrum (Johnson, 
2020). Combined with chemometrics, the spectral data collected by the 
NIR spectrometer are further utilized for qualitative and/or quantitative 
analysis of products. The whole measurement process of NIR spectros-
copy generally includes the following steps: (i) spectral data acquisition; 
(ii) data preprocessing; (iii) use of a set of samples with known analytical 
concentrations to establish a calibration model; (iv) validation of the 
model; and (v) prediction or characterization of the unknown samples 
(Cen and He, 2007). 

The NIR spectrometer is the hardware for near-infrared analysis and 
is mainly composed of a light source, a beam splitting system, a sample 
detector, an optical detector, and a data processing and analysis system 
(Cen and He, 2007). Based on the spectroscopic system, NIR spectrom-
eters can be divided into four types: filter type, dispersion type, inter-
ference type and acousto-optical tunable filter type (Pasquini, 2018). In 
terms of applications, NIR spectrometers can be divided into laboratory 
spectrometers, portable spectrometers and online spectrometers. In the 
past ten years, different types of NIR spectrometers have developed 
rapidly, such as visible/shortwave near-infrared spectrometers 
(Vis/SW-NIR) (Barragan et al., 2021), miniaturized and handheld 
near-infrared spectrometers (Mcgrath et al., 2020), near-infrared 
hyperspectral imaging (NIR-HSI), which integrates sample spectra and 
images (Khamsopha et al., 2021). 

Compared with traditional methods for quality and safety analysis of 

wheat flour, the main technical features of NIR spectroscopy include fast 
analysis speed, convenient operation, simultaneous determination and 
nondestructive sampling. In analytical processes, the combination of 
NIR and chemometrics is essential (Qu et al., 2015). Chemometrics is the 
multivariate data analysis application that uses mathematical and sta-
tistical methods to systematically study the connotation of chemical 
measurement values (Yin et al., 2021). The application of chemometrics 
in NIR spectral analysis includes three aspects: (i) spectral data pre-
treatment; (ii) establishment of a calibration model for quantitative and 
qualitative analysis; and (iii) model transfer (Cortés et al., 2019). The 
pretreatment of the original spectral data can be used to remove inter-
ference information and improve the modeling effect. The main pre-
treatment techniques are smoothing, normalization, wavelet transform, 
multiplicative scatter correction, orthogonal signal correction, standard 
normal variable (SNV), first derivative or second derivative, direct 
quadrature signal correction and straight line subtraction (Arslan et al., 
2021). The chemometric algorithms used for modeling include principal 
component analysis (PCA), artificial neural networks (ANNs), partial 
least squares (PLS), partial least squares discriminant analysis, linear 
discriminant analysis (LDA), multiple linear regression, support vector 
machines (SVMs), radial basis functions (RBFs), back propagation (BP), 
random forests (RFs), extreme learning machine (ELM), soft indepen-
dent modeling of class analogy, and cluster analysis (CA) (Dankowska 
and Kowalewski, 2019; Granato et al., 2018; Shahbazi and Esfahanian, 
2019; Zhang et al., 2020). To obtain a stable and robust model, evalu-
ation of the final model is critical. The correlation coefficient (R), co-
efficient of determination (R2) and correlation coefficient for prediction 
(Rp) are often used to evaluate the performance of built models. The best 
models typically have the highest R and R2 or sometimes Rp while 
having a lower root mean square error of prediction (RMSEP) and root 
mean square error of cross-validation (RMSECV) (Minas et al., 2021). 
Additionally, residual predicted deviation (RPD) is used to evaluate the 
stability of the model, and a higher RPD indicates a better predictive 
performance (Kutsanedzie et al., 2018). 

3. Chemical composition analysis of wheat flour 

The main components of wheat flour analyzed include moisture, 
protein, ash, and some functional substances, which are closely related 
to its nutritional quality and processing properties. The hydrogen- 
containing groups (O–H, N–H, C–H, and S–H bonds) in each compo-
nent of wheat flour have characteristic absorption peaks in the near- 
infrared spectral region, which is the foundation for the detection of 
chemical constituents of wheat flour by NIR spectroscopy (Wadood 
et al., 2019). NIR spectroscopy combined with chemometrics has been 
successfully applied to analyze chemical composition of wheat flour 
(Wadood et al., 2019). 

3.1. Moisture 

Moisture is an important quality parameter for wheat flour storage 
and processing, and moisture content is typically less than 14.5% 
(Khalid et al., 2017). PLS regression (PLSR) is the most commonly used 
regression algorithm for predicting moisture content. A moisture con-
tent PLSR model was established based on 120 wheat flour samples 
using NIR spectroscopy, and the R, R2, RMSEP, RMSECV and RPD were 
0.92, 0.85, 0.27, 0.47, and 2.43, respectively (Kahrıman and Egesel, 
2011). The developed calibration models were successfully used to es-
timate the moisture content of wheat flour. Dong and Sun (2013) 
selected characteristic bands of 4000–4896 cm− 1 and 5504-6704 cm− 1 

that related to moisture by interval partial least squares (iPLS), and 
applied PLSR to establish the model, which showed Rp and RMSEP of 
0.99 and 0.088, respectively. 

The handheld NIR spectrometer is also suitable for fast and quanti-
tative determination of moisture in wheat flour. The moisture content in 
wheat flour samples was evaluated quickly and quantitatively using a 

Table 1 
Conventional methods for quality and safety parameters of wheat flour.  

Parameter Methods Reference 

Protein Kjeldahl method AACC 46-12, ICC 
105-2, Dumas combustion AACC 46- 
30, ICC 167 

AACC (2002); ICC 
(1994); Sezer et al. 
(2016) 

Moisture Gravimetric method, AACC 44-15A, 
ICC 110-1 

AACC (2002); ICC 
(1994); Takeuti et al. 
(2016) 

Ash Burning method, AACC 8-01, ICC 
104-1 

AACC (2002); Czaja 
et al. (2020); ICC 
(1994) 

Rheological 
properties 

Mixolab, Farinograph and 
Extensograph AACC54-21, AACC 
56–61A, ICC 116-1 

AACC (2002); ICC 
(1994); Parenti et al. 
(2021) 

Wet gluten 
content 

Automatic glutomatic machine 
method AACC 38-12A, ICC 137-1 

AACC (2002);  
Barakat et al. (2020);  
ICC (1994) 

Falling number Hagberg-Perten method, AACC 
56–81B, ICC 107-1 

AACC (2002); Guan 
et al. (2020); ICC 
(1994) 

Additives High-performance liquid 
chromatography; X-ray diffraction 

F. Chen et al. (2021);  
Kim et al. (2022) 

Deoxynivalenol Liquid chromatography-mass 
spectrometry; enzyme-linked 
immunosorbent assay; thin-layer 
chromatography method AACC 45-41 

AACC (2002); Li et al. 
(2021); Okuma et al. 
(2018)  
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linear variable filter-based Viavi MicroNIR 1700 spectrometer by X. 
Chen et al. (2021). The established PLS calibration model yielded an R2 

of 0.8367, and the RMSEP and RMSECV were 0.32 and 0.35, respec-
tively. In a study by Sun et al. (2018), the NIR spectral data of wheat 
flour were collected and analyzed using a MicroNIR-2200 NIR spec-
trometer, and then the PLS model was utilized to detect the moisture 
content in wheat flour. The model performed well and the R2, RMSEP 
and RMSECV were 0.929, 0.154, and 0.125, respectively. In addition, 
Mutlu et al. (2011) analyzed the moisture content of wheat flour using 
the ANN, and the resulting R2 of the moisture content was 0.920. 

3.2. Protein 

The quality and quantity (normal variation ranges 8–16%) of wheat 
flour protein affect wheat flour dough properties and the quality of the 
final products (Gabriel et al., 2017; Korkmaz et al., 2021). Kahrıman and 
Egesel (2011) utilized the first derivative and SNV to preprocess the NIR 
spectrum and then established a PLS model to determine the protein 
content in wheat flour with an R2 of 0.81 and an RMSEP of 0.58. Jin 
et al. (2011) improved the prediction effect of protein content model by 
applying the second derivative to preprocess the spectrum, and an R2 of 
0.937 and an SEP of 0.492 were obtained. A PLS model of the protein 
content was established byX. Chen et al., 2021 using a handheld NIR 
spectrometer based on the Fourier transform technique, and the results 
showed excellent performance with an R2 of 0.9624 and an RMSEP of 
0.22. Generally, support vector regression (SVR) is superior to the PLS 
and ANN methods in modeling NIR data and the synergy interval has a 
strong ability to select appropriate variables during model building (Lin 
et al., 2014). In the study by Chen et al. (2017a,b), the effects of spectral 
pretreatment and synergy interval on the model performance were 
researched, and the optimal protein model was established. The results 
showed that the R2 and RMSEP were 0.906 and 0.425, respectively. 
Meanwhile, the results revealed that the models based on the original 
spectra are generally unacceptable, but they can be substantially 
improved by applying a proper spectral pretreatment approach. 

3.3. Ash 

Ash contains mineral elements such as calcium, magnesium, phos-
phorus, and potassium. The ash content indicates the milling degree of 
wheat flour and serves as an important indicator of the wheat flour’s 
quality and usage (Czaja et al., 2020). In recent years, many studies have 
confirmed the feasibility of the quantitative determination of wheat 
flour ash content by NIR spectroscopy (Gao et al., 2021). Dong and Sun 
(2013) built an ash model for NIR spectroscopy and used interval PLS as 
the characteristic band selection method ranging from 4000 to 5500 
cm− 1 and 6708-7304 cm− 1. The predictive ability of ash content models 
was improved with an Rp of 0.911 and an RMSEP of 0.019 using the 
characteristic bands. A PLS calibration model of ash content was 
established after pretreatment by the first derivative and SNV within the 
wavelength range of 908–1676 nm; R2 and RMSEP values of 0.9431 and 
0.06, respectively, were achieved (X. Chen et al., 2021). 

3.4. Wet gluten 

Wet gluten is a viscoelastic soft gelatinous substance that remains 
after the starch, water-soluble carbohydrates, fats and other ingredients 
in the dough formed by mixing wheat flour with water are washed with 
water. It is mainly composed of gliadin and glutenin, and its content 
affects the quality and technological properties of wheat flour baked 
products (Chandi and Seetharaman, 2012). A PLS model was built by 
applying the spectral information in the 1200–2400 nm range, and the 
prediction effect of the gluten content of wheat flour was good, with an 
R2 of 0.88 (Kahrıman and Egesel, 2011). Baslar and Ertugay (2011) used 
NIR spectroscopy to establish wet gluten content correction models for 
120 kinds of bread wheat flour from different regions and obtained good 

results, with R and SEP values of 0.976 and 1.36, respectively. Albanell 
et al. (2012) established a wet gluten content prediction model using 
modified PLSR correction, and the best model for wheat flour was ob-
tained, with an R2 of 0.985. In the study conducted by Chen et al. 
(2017a,b), three spectral intervals of 10719.02–9839.59 cm− 1, 
5396.15–4516.72 cm− 1 and 4509.01–3629.58 cm− 1 were selected. 
Standard normal variate, first derivative and support vector regression 
were subsequently used to establish the wet gluten content siSVR model. 
As a result, the R2, RMSEP and standard deviation ratio values of the 
optimal model for wet gluten content were 0.850, 1.024 and 2.482, 
respectively. Furthermore, the feasibility of rapid quantitative analysis 
of wet gluten of wheat flour samples with handheld NIR spectrometers 
based on a linear variable filter was investigated by X. Chen et al. 
(2021), and the model achieved an R2

p and an RMSEP of 0.8585 and 
0.66, respectively. 

3.5. Other chemical components 

In addition to the main chemical composition attributes, the deter-
mination of total phenolic, mineral element, and fiber contents as well as 
free fatty acids of wheat flour were also studied by NIR spectroscopy. 
Free fatty acids is one of the important indices used to evaluate wheat 
flour quality during storage. A portable NIR spectroscopy system was 
developed for the quantitative detection of free fatty acids content in 
wheat flour during storage by Jiang et al. (2020). Standard normal 
variate (SNV) and variable combination population analysis (VCPA) 
methods were used to pretreat the spectral data, and extreme learning 
machine (ELM) was employed to construct quantitative detection 
models based on different characteristic wavelength variables to achieve 
quantitative detection of free fatty acids. The ELM models showed good 
prediction accuracy and stability when predicting independent samples 
in the validation set, and the mean R2

p when using the ELM models was 
above 0.96. Moreover, a PLS model of oleic acid content in wheat flour 
during long-term storage was established by Lancelot et al. (2021). 

Phenolic compounds contribute greatly to the health benefits of 
whole wheat products. Tian et al. (2021) presented a novel application 
of NIR spectroscopy for total phenolic content prediction in whole wheat 
flour. The optimal regression model demonstrated R2 values of 0.92 and 
0.90 for the calibration and validation sets, respectively, and an RPD 
value of 3.4. 

Fiber in wheat flour can increase its nutritional value, but also affect 
its functional properties. Therefore, it is important to detect the fiber 
content and distribution in wheat flour. The amount of fiber added to 
semolina and its distribution were investigated via NIR spectroscopy and 
hyperspectral imaging (NIR-HSI) by Badaro et al. (2019), and the results 
of PLSR models showed that the R2

p was between 0.85 and 0.98, and the 
RMSEP was between 0.5 and 1%. 

In addition, NIR spectroscopy coupled with PLS was successfully 
applied to establish a model for the rapid prediction of mineral elements 
(calcium, phosphorus and potassium) contents in wheat flour samples. 
The R2 values of the best models for calcium, phosphorus and potassium 
were 0.7907, 0.9777, and 0.9777, respectively; the RMSEP values were 
5.35, 15.3, and 18.9, respectively; and the RPD were 2.19, 6.71, and 
6.84, respectively (Gao et al., 2021). Although the R2 of the calcium 
model is low, NIR can still predict the calcium content of wheat flour, 
and NIR also has excellent predictive performance for the phosphorus 
and potassium content in wheat flour. 

4. Technological parameters analysis of wheat flour 

It is known that NIR spectroscopy can be used to predict wheat flour 
technological parameters since abundant changes in the technological 
parameters of wheat flour are related to the chemical variation of its 
components (Kaddour and Cuq, 2011; Lancelot et al., 2021). Zeleny 
sedimentation value can reflect the quality and quantity of gluten pro-
tein in wheat flour and predict the rheological properties of dough. NIR 
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spectroscopy was used to develop the calibration models for the Zeleny 
sedimentation test of bread wheat flours collected from different regions 
of Turkey by Baslar and Ertugay (2011). Reasonable model results were 
obtained for the Zeleny sedimentation test with an R of 0.924 and a SEP 
of 3.74. Mutlu et al. (2011) predicted the Zeleny sedimentation value 
and the water absorption of wheat flour by using NIR spectroscopy 
combined with an ANN. The prediction accuracy was good, with R2 

values of 0.917 and 0.832, respectively. 
In the study conducted by Chen et al. (2017a,b), the PLS models of 

near-infrared based on different spectral pretreatment methods were 
adopted to predict water absorption, dough development time, and 
dough stability, but the performance was unsatisfactory, with a R and an 
RMSEP for each parameter of 0.7 and 1.560, 0.73 and 1.065, 0.79 and 
1.090, respectively. X. Chen et al. (2021) used a handheld NIR spec-
trometer to investigate the sedimentation value of wheat flour, and the R 
and RMSEP of the calibration model were 0.8185 and 2.12, respectively. 
In the study conducted by Lancelot et al. (2021), a good prediction was 
observed for the Hagberg falling number, swelling index and solvent 
retention capacity (SRC), which reflected α-amylase, 
amylose-amylopectin ratio, and gluten viscoelasticity, respectively, but 
unsatisfactory results were obtained for the farinograph parameters. 
Additional applications of NIR in detecting the technological parameters 
of wheat flour are summarized in Table 2. 

5. Safety analysis of wheat flour 

Wheat flour safety issues typically involve chemical additives and 
undesired contaminants, as well as the adulteration of wheat flour. 
Generally, the addition of inexpensive substitutes, such as rice, corn or 
potatoes, can reduce the processing performance and commercial value 
of wheat flour (Che et al., 2017). And unapproved chemical additives or 
undesirable compounds in wheat flour may mask its quality, and even 
affect consumer health (Annalisa et al., 2020). Wheat flour may also be 
contaminated by other flours and mycotoxins during storage and pro-
cessing. Currently, the analysis of the safety of wheat flour is a primary 
concern in the food and agricultural product markets. General chemical 
methods cannot effectively identify the adulteration of wheat flour due 
to the similar taste, appearance, and physicochemical properties of other 
flours. As an excellent measurement tool, NIR spectroscopy has been 
widely used for the detection of safety in a variety of complex foods 
(Pereira et al., 2020; Yuan et al., 2020). In terms of wheat flour, NIR 
spectroscopy has been widely applied to the detection of chemical ad-
ditives, biological contaminants and the adulterant use of other flours in 
wheat flour. Besides, the contamination of allergens in wheat flour is 
also an important safety issue. For example, Zhao et al. (2018a,b) have 
used the NIR-HSI technique to predict the contamination concentrations 
of peanut and walnut flour in whole wheat flour. The optimal general 
multispectral model had promising results, with R2

p and RMSEP values of 
0.987 and 0.373%, respectively. However, there are few studies in this 
area at present, and this research direction is worthy of attention. 

5.1. Chemical additives 

Chemical additives are used to standardize the quality and process 
performance of wheat flour and chemical additives used in wheat flour 
include benzoyl peroxide (BPO), talcum powder, azodicarbonamide, 
ascorbic acid, emulsifiers, enzymes, etc (Luis et al., 2017; Hu et al., 
2018; C. Zhao et al., 2020). Some of these additives should be used 
within the established limits, while some are prohibited in wheat flour 
because of the potential for serious adverse effects (Fu et al., 2020; 
Matina et al., 2011). Meanwhile, some additives or undesirable chem-
icals may be excessively added to the flour for profit. Therefore, the 
safety and quality of wheat flour are challenged by chemical additives. 

The BPO content in pure wheat flour was determined based on NIR 
diffuse reflectance spectroscopy by Zhang et al. (2011), and the R2

cal, 
RMSEC, R2

pred, and RMSEP of the PLS model were 0.8901, 40.85 mg/kg, 
0.8865, and 44.69 mg/kg, respectively. Another study on detecting the 
concentration of benzoyl peroxide in wheat flour was conducted by Sun 
et al. (2016), who designed prediction models based on NIR reflectance 
spectroscopy integrated with PLS, BP neural networks, and RBF neural 
networks separately. The results showed that the RBF neural network 
model had optimal predictive accuracy and feasibility, with R, RMSEP, 
and RPD values of 0.9937, 15.5095, and 8.8216, respectively. At the 
same time, Deng et al. (2019) extracted the optimal wavelengths and 
then established a competitive adaptive reweighted sampling (CARS) 
model for talc content in wheat flour by NIR. The verification set R2

p was 
0.998 and the RMSEP was 0.282%, and the detection limit of the model 
reached 0.5%. Furthermore, the results of the study by Fu et al. (2020) 
demonstrated that talcum powder and BPO could be effectively 
discriminated in wheat flour. 

In addition, a feasibility study was conducted by Wang et al. (2013) 
to rapidly test lime and calcium carbonate concentrations in wheat flour 
samples using NIR with the PLS algorithm. The results indicated that the 
R2 values of lime and calcium carbonate using the PLS algorithm were 
99.80% and 96.98%, the RMSEC were 0.19 and 0.34, the RMSECV were 
0.26 and 0.75, the RMSEP were 0.63 and 0.44, and the RPD were 8.57 
and 5.24, respectively. In terms of azodicarbonamide (ADA) detection, 
Gao et al. (2016) utilized NIR spectroscopy in combination with RBF to 
quantitatively detect the content of ADA in wheat flour. The established 
model presented good prediction indicators, with R, RMSEP, and RPD 
values of 0.97828, 18.2887 mg/kg, and 4.7621, respectively. The limits 
of quantitation and detection of the model were 72 and 15 mg/kg, 
respectively. Recently, the ADA content in wheat flour was determined 
using NIR hyperspectral imaging technology by Wang et al. (2018). 
From this study, it was found that the two wavelength bands with the 
largest differences between wheat flour and ADA were 1892 nm and 
2039 nm, respectively, and the result showed that the minimum 
detected concentration of the optimal model was 0.2 g/kg. Additional 
applications of NIR spectroscopy in the detection of chemical additives 
in wheat flour are listed in Table 3. 

5.2. Biological contamination 

Biological contamination of wheat flour mainly includes deoxy-
nivalenol (DON) and insects. DON also known as vomitoxin, is a major 
mycotoxin detected in wheat (Shen et al., 2022). DON contamination 
not only reduces wheat yield, but also causes vomiting, anorexia, tera-
togenicity, mutagenicity and carcinogenicity (Lippolis et al., 2014; 
Pestka, 2010). DON does not degrade easily, which threats wheat flour 
and the entire product chain (Wang et al., 2016). Although the 
contamination level of DON in wheat flour is relatively low, DON has 
distinct absorption in the near-infrared region (Peiris et al., 2009), and a 
number of studies have shown that it is feasible to measure DON in 
wheat samples with NIR spectroscopy (De Girolamo et al., 2009, 2014). 
In the study by Liang et al. (2020), the DON content of wheat flour 
samples was determined by SW-NIR reflectance spectroscopy, and the 
sparse autoencoder model yielded the highest prediction accuracy, with 

Table 2 
Applications of NIR spectroscopy in the detecting of technological parameters of 
wheat flour.  

Parameters Spectral range Data 
analysis 

Accuracy/ 
Performance 

Reference 

Sedimentation 400–2500 nm MPLS R2 = 0.6, SEP =
6.5 

Jirsa et al. 
(2007) 

Hagberg Falling 
number 

4000–10000 
cm− 1 

PLSR R2 = 0.982, 
RMSEV = 7.550 

Lancelot 
et al. (2021) 

Swelling index 4000–10000 
cm− 1 

PLSR R2 = 0.874, 
RMSEV = 0.981 

Lancelot 
et al. (2021) 

solvent retention 
capacity 

4000–10000 
cm-1 

PLSR R2 = 0.862, 
RMSEV = 0.846 

Lancelot 
et al. (2021)  
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100% for the training set and 96% for the test set. The dispersive NIR 
and Fourier transform NIR were applied to analyze 267 Brazilian wheat 
flour samples contaminated with DON by Tyska et al. (2021). The 
classification models of both partial least squares discriminant analysis 
and principal component analysis-linear discriminant analysis achieved 
accuracy rates of over 80%. Generally, whole wheat flour is made from 
intact wheat kernels, including the epidermis, which may be more sus-
ceptible to DON contamination (Zhang et al., 2019). T. Zhao et al. 
(2020) developed a scheme for the detection of DON contamination in 
whole wheat flour by Vis-NIR hyperspectral imaging, which can quickly 
analyze and ascertain whole wheat flour samples contaminated by DON. 
Wheat flour may also be contaminated by insects. Although NIR spec-
troscopy can quantitatively predict insect fragments in wheat flour to a 
certain extent, it cannot achieve high accuracy, and the sensitivity of 
NIR analysis needs to be further improved (Perez-Mendoza et al., 2003; 
Toews et al., 2007). 

5.3. Flour adulteration in wheat flours 

Wheat flours are divided into different varieties, and they have 
different uses and qualities. NIR spectroscopy combined with chemo-
metric methods has been utilized to distinguish between common wheat 
flour and durum wheat flour (Unuvar et al., 2021). For example, einkorn 
is an old variety of wheat and is sold at higher prices than common 
wheat. Either to compensate for its weaker gluten structure or unfair 
economic profit, einkorn flour tends to be adulterated with bread wheat 
flour (Hidalgo et al., 2016). Ayvaz et al. (2021) assessed NIR spectros-
copy to monitor bread wheat flour adulteration in einkorn flour and 
developed a PLSR calibration model for both flour mixtures. Highly 
accurate models yielded high Rp and RPD values of 0.99 and 19.3, 
respectively, and low SECV and SEP values of 1.12 and 1.39%, respec-
tively. Furthermore, NIR spectroscopy was adopted to detect the adul-
teration of spelt flour with inexpensive bread wheat flour, and the 
resulting PLSR model achieved an R2 of 0.966 and an RMSEC of 5.2% 
(Ziegler et al., 2016). 

Wheat flour is also susceptible to being adulterated or contaminated 
with inferior grains. For example, wheat flour may be mixed with some 
inexpensive grain flours, such as sorghum, corn and rice, which is very 
challenging to authenticate for consumers, especially when flours have a 
similar color. Verdú et al. (2016) developed a method for the detection 
of adulteration in wheat flour based on SW-NIR assisted by hyper-
spectral imaging technology. Taro flour in wheat flour was identified by 
the combination of near-infrared spectroscopy and multivariate anal-
ysis. Then, PCA was performed on the data, and the correct classification 
rate of the cross-validation model was 90.48% (Rachmawati et al., 
2017). In another study by Su and Sun (2017), a predictive model using 
a spectral range of 900–1700 nm was established. The optimal model 
had the potential to authenticate the admixtures (common wheat flour, 

cassava flour and corn flour) in organic avatar wheat flour in the range 
of 3–75% (w/w). Additional applications of NIR spectroscopy for the 
detection of adulterated wheat flour are summarized in Table 4. 

Table 3 
Applications of NIR spectroscopy in chemical additive detection of wheat flour.  

Additives Spectral range Data analysis Accuracy/Performance Reference 

talc content 400–2500 nm RBF Rp = 0.9999, RMSEP = 0.0765, RPD = 65.0909 Liu et al. 
(2019) 

sodium hydroxymethanesulfonate 12500–4000 
cm− 1 

LS-SVM classification accuracy:92.0%–94.7%, detection limit = 1.5 mg/kg Yuan et al. 
(2011) 

azodicarbonamide 400–2498 nm RBF R = 0.99996, RMSEP = 0.5467, RPD = 116.5858 Che et al. 
(2017) 

azodicarbonamide 400–2500 nm RF R2 = 0.99814, RMSEP = 2.91345, RPD = 23.54332 Du et al. (2021) 
talcum powder or benzoyl peroxide 

(BPO) 
900–1700 nm two-band spectral 

analysis method 
talcum powder and BPO powder under different depths of wheat flour 
were successfully detected 

Fu et al. (2021) 

benzoyl peroxide 1000–2500 nm PLSR R2
p = 1.000, SEP = 0.006% Kim et al. 

(2022) 
Talcum powder 12500–4000 

cm− 1 
BP neural network R2 = 0.9904, RMSEC = 0.8209, RMSEP = 1.8143 Liu et al. 

(2013) 
Kojic acid 1000–2400 nm PLS R2 = 0.949–0.972, RMSE = 0.581%–0.830%, RPD = 4.171–4.830 Zhao et al. 

(2018)  

Table 4 
Applications of NIR spectroscopy in adulterant detection of wheat flour.  

Species Spectral range Data 
analysis 

Accuracy/ 
Performance 

Reference 

durum 
wheat 
flour, 
common 
bread 
wheat 
flour 

400–2498 nm PLS sensibility of 
0.5% 

Marina et al. 
(2006) 

cassava 
starch 

1100–2500 nm PLSR certified 
additive-free 
wheat flour: 
rpred = 0.977, 
RMSEP =
1.826 mg/kg, 
commercial 
wheat flour: 
rpred = 0.995, 
RMSEP =
1.004 mg/kg, 

De Almeida 
Duarte et al. 
(2022) 

sorghum, 
oat and 
corn 
flours 

400–1000 nm MSPC detection 
sensibility 
until 2.5% 

Verdú et al. 
(2016) 

potato 
flour 

4000–10000 
cm− 1 

PLS R2
cv = 0.8865, 

RPD = 3.07 
Wang et al. 
(2019) 

peanut 
powder 

935.61–1720.23 
nm 

PLSR R2
p =

0.993–0.991, 
RMSEP =
0.251%– 
0.285% 

Zhao et al. (2019) 

unripe 
banana 
flour 

447–1005 nm PLSR R2
c = 0.991; R2

p 

= 0.993; RPD 
= 12.021, 
RMSEC =
2.226 g/kg, 
RMSEP =
1.993 g/kg 

Faith et al. (2019) 

Chilean 
flour 
samples 

1100–2000 nm DPLS correctly 
classified 
between 90% 
and 96% 

González-Martín 
et al. (2014) 

different 
origins 
and 
years 
wheat 
flour 

950–1650 nm LDA correct 
percentages of 
100% and 73% 

Wadood et al. 
(2019)  
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6. Conclusions and future perspectives 

Wheat flour is an important ingredient in food products, and 
ensuring its quality and safety is of great significance. Due to the ad-
vantages of being rapid, efficient and nondestructive, NIR spectroscopy 
has been shown to be an excellent technique for the quality and safety 
analysis of wheat flour. This review mainly reported recent advances in 
NIR nondestructive quality and safety analysis of wheat flour, including 
chemical composition, technological parameters, chemical additives, 
undesired contaminants and adulteration detection. 

In general, NIR spectroscopy is a powerful tool for process analytical 
technology to assure the quality and safety of raw materials and final 
products. Therefore, online analysis of wheat flour is a future direction 
worth investigating. However, the application of NIR spectroscopy still 
faces some challenges due to the diversity of wheat flour samples and the 
complexity of NIR spectra data. Firstly, near-infrared models need to be 
updated according to the variability and differences of samples, and 
more suitable chemometric methods should be developed to maintain 
their predictive performance and improve the generalizability of the 
models. Secondly, low-cost and convenient NIR spectrometers are 
needed to promote the popularity of NIR spectroscopy technique in 
nondestructive analysis of wheat flour. Thirdly, the combination of NIR 
spectroscopy and other spectroscopic techniques (e.g. Raman and UV 
light) will broaden its application in wheat flour. 
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Korkmaz, F., Barış Tuncel, N., Kocabıyık, H., 2021. The effect of infrared radiation on 
gluten aggregation and pasting properties of wheat flours with different protein 
content. J. Cereal. Sci. 102, 103365 https://doi.org/10.1016/j.jcs.2021.103365. 

Kutsanedzie, F.Y.H., Chen, Q., Hassan, M.M., Yang, M., Sun, H., Rahman, M.H., 2018. 
Near infrared system coupled chemometric algorithms for enumeration of total fungi 
count in cocoa beans neat solution. Food Chem. 240, 231–238. https://doi.org/ 
10.1016/j.foodchem.2017.07.117. 

Lancelot, E., Fontaine, J., Grua-Priol, J., Le-Bail, A., 2021. Effect of long-term storage 
conditions on wheat flour and bread baking properties. Food Chem. 346, 128902 
https://doi.org/10.1016/j.foodchem.2020.128902. 

Li, X., Zhang, L., Zhang, Y., Wang, D., Wang, X., Yu, L., Zhang, W., 2020. Review of NIR 
spectroscopy methods for nondestructive quality analysis of oilseeds and edible oils. 

Trends Food Sci. Technol. 101, 172–181. https://doi.org/10.1016/j. 
tifs.2020.05.002. 

Li, Y., Chen, A., Mao, X., Sun, M., Yang, S., Li, J., You, Y., 2021. Multiple antibodied 
based immunoaffinity columns preparation for the simultaneous analysis of 
deoxynivalenol and T-2 toxin in cereals by liquid chromatography tandem mass 
spectrometry. Food Chem. 337, 127802 https://doi.org/10.1016/j. 
foodchem.2020.127802. 

Liang, K., Huang, J., He, R., Wang, Q., Chai, Y., Shen, M., 2020. Comparison of Vis-NIR 
and SWIR hyperspectral imaging for the non-destructive detection of DON levels in 
fusarium head blight wheat kernels and wheat flour. Infrared Phys. Technol. 106, 
103281 https://doi.org/10.1016/j.infrared.2020.103281. 

Lin, C., Chen, X., Jian, L., Shi, C., Jin, X., Zhang, G., 2014. Determination of grain protein 
content by near-infrared spectrometry and multivariate calibration in barley. Food 
Chem. 162, 10–15. https://doi.org/10.1016/j.foodchem.2014.04.056. 

Lin, X., Sun, D.W., 2020. Recent developments in vibrational spectroscopic techniques 
for tea quality and safety analyses. Trends Food Sci. Technol. 104, 163–176. https:// 
doi.org/10.1016/j.tifs.2020.06.009. 

Lippolis, V., Pascale, M., Cervellieri, S., Damascelli, A., Visconti, A., 2014. Screening of 
deoxynivalenol contamination in durum wheat by MOS-based electronic nose and 
identification of the relevant pattern of volatile compounds. Food Control 37, 
263–271. https://doi.org/10.1016/j.foodcont.2013.09.048. 

Liu, C.L., Dong, X.L., Sun, X.R., Wu, J.Z., Wu, S.N., 2013. Experimentation of detecting 
the talc-containing wheat flour in solution by near infrared spectroscopy. Appl. 
Mech. Mater. 330, 426–429. https://doi.org/10.4028/www.scientific.net/AMM 
.330.426. 

Liu, Y., Sun, L., Ran, Z., Pan, X., Zhou, S., Liu, S., 2019. Prediction of talc content in 
wheat flour based on a near-infrared spectroscopy technique. J. Food Protect. 82, 
1655–1662. https://doi.org/10.4315/0362-028x.Jfp-18-582. 
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