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In this article we account for the way plants respond to salient features of their

environment under the free-energy principle for biological systems. Biological

self-organization amounts to the minimization of surprise over time. We posit

that any self-organizing system must embody a generative model whose

predictions ensure that (expected) free energy is minimized through action.

Plants respond in a fast, and yet coordinated manner, to environmental contin-

gencies. They pro-actively sample their local environment to elicit information

with an adaptive value. Our main thesis is that plant behaviour takes place by

way of a process (active inference) that predicts the environmental sources

of sensory stimulation. This principle, we argue, endows plants with a

form of perception that underwrites purposeful, anticipatory behaviour. The

aim of the article is to assess the prospects of a radical predictive processing

story that would follow naturally from the free-energy principle for biological

systems; an approach that may ultimately bear upon our understanding of life

and cognition more broadly.
1. Introduction
The emergent field of ‘plant neurobiology’ [1,2] studies the flexible and adap-

tive behaviour of plants beyond the domains of plant biochemistry/cellular

and molecular biology mechanistic approaches. The cognitive sciences have,

up until now, been neglectful of the plant world. But, as it turns out, plants

exhibit marks of intelligence [3], and are thus subject, in principle, to theoretical

and empirical scrutiny with tools that have been hitherto restricted to the

cognitive sciences [4].

The behaviour of plants is reversible, and soft-wired in a manner that responds

to metabolically salient features of the environment [5]. Plants can navigate many

vectors (not just light and gravity), where the implicit multimodal integration

partly accounts for the adaptive responses observed. The capacity for foresight

may be crucial to optimize fitness: some roots and shoots can anticipate the

future, competing for patchily distributed resources, and growing, branching and

flowering differentially depending upon the prospective acquisition of minerals,

water and light, among manyother vectors [6]. For instance, many plants can antici-

pate future shade, initiating phenotypic changes in response to far-red/red light

cues ahead of time [7]. Cuscuta (dodder) attaches to plants, coiling around them

and developing haustoria that can penetrate their hosts’ vascular systems and

thereby suck up nutrients. Cuscuta optimizes fitness by deciding how much

energy to invest in coiling around a host with respect to the overall nutrient

intake yet to be obtained [8]. Many more examples of decision-making—that antici-

pates reward—exist in the literature [7–11], but for present purposes we only need

to bear in mind that plants (appear to) exhibit anticipatory, goal-directed behaviour.

In this context, the philosophy of plant neurobiology [4] proposes to assess

plant intelligence by framing an integrated view of plant signalling and adaptive

behaviour, and to account for the way plants perceive and act purposefully under

different paradigms. It is in this setting that we consider the theoretical possibility
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that plants, like animals, are ‘predictive processors’ [12].

Although with an eye to the design of experimental protocols,

such prospects have already been explored elsewhere [13],1 in

a further twist, we elaborate on the possibility that plant

neurobiology may throw a distinctive light upon the more

or less radical form that such predictive machinery may

take. The overall aim of this paper, once zoo-centric and

neuro-centric biases have been set aside, is to assess the pro-

spects of a really radical (plant) predictive processing; an

approach that may ultimately bear upon our understanding

of life and cognition more broadly.
J.R.Soc.Interface
14:20170096
2. The predictive processing basics, thus far
The notion of a general (biotic) radical predictive processing

story follows naturally from the free-energy principle for

biological systems [14]. The free-energy principle is the math-

ematical back-story behind predictive processing and active

inference in the neurosciences [15]. In brief, the free-energy

principle starts with the premise that biological systems

resist the second law of thermodynamics by restricting them-

selves to a small number of attracting states. In other words,

the nature of living things can be expressed in terms of a

high probability of being in a small number of (characteristic)

states and a very low probability of occupying all other states.

This somewhat abstract notion has some important if subtle

implications. For example, if we define surprise (also known

as self information or surprisal) as the negative log probability

that a plant—or any biological system—will be found in a

particular state, then one can cast biological self-organization

as minimizing surprise over time. Formally, the time average

of surprise or surprisal is called an action. This means that

biological systems conform to Hamilton’s principle of least

(or more exactly, stationary) action.

The (time) average of surprise is also known as uncertainty
(or entropy in information theoretic terms). This means that the

defining hallmark of biological systems is a tendency to resolve

uncertainty or, from the point of view of stochastic thermo-

dynamics, minimize entropy (hence resisting the second

law). Free energy gets into the game by providing a proxy or

bound approximation for surprise that living systems can mini-

mize explicitly [16]. Under certain simplifying assumptions,

the prediction error—that is celebrated in predictive coding for-

mulations of predictive processing [17,18]—can be regarded as

the free energy or surprise. There is one final interpretation of

surprise that we will appeal to later. Mathematically, surprise

is the negative log marginal likelihood or Bayesian model evi-

dence. This means that by minimizing surprise, free energy

or prediction error, a plant—and indeed you—maximizes

Bayesian model evidence. In other words, plants behave like

little statisticians, making implicit inferences about their

world through changes in their internal states. In cognitive

neuroscience, this leads to the Bayesian brain hypothesis

[19–23]. So what does this (Bayesian plant hypothesis) mean

for self-organization in plants?

From a technical perspective, there is no distinction between

a brain, a plant, a cell ororganelle [23,24]. All are just examples of

systems that self-organize according to the free-energy

principle. In other words, they exchange with their environment

in a way that minimizes surprise and resolves uncertainty.

Generally, this reduction of surprise can be described from

two perspectives; reflecting the circular causality induced by
an embodied exchange of the organism with its environment.

These two processes correspond to perceptual and active infer-

ence. Perceptual inference corresponds to adjusting internal

states to provide better predictions, while active inference is

the complementary process of sampling the environment to

make (sensory) samples match predictions. Perceptual and

active inference entail each other—both in the service of mini-

mizing surprise. From the outset, one can see that active

inference has an enactive or embodied aspect that is a necessary

consequence of any sentient system in (thermodynamically

open) exchange with its environment [14].

Two key issues will figure centrally in our arguments. The

first pertains to the notion of a generative model. Irrespective of

the particular processes in play, the notion of a prediction calls

upon a model that generates predictions. This is usually associ-

ated with the internal states of a creature or plant that come

to recapitulate causal structure in external or environmental

states generating sensory samples. This recapitulation does

not necessarily have to be isomorphic and may, or may not,

be representational in nature. However, in accord with the

good regulator theorem [25], the one thing we know is that

the embodied structure of any biological system must in

some way be a good match for the eco-niche in which it

is immersed.

The second issue is the nature of free energy or prediction

error minimization. This can be cast at a number of levels

that speak to an inherent anticipatory exchange with the

environment. At its simplest, the minimization of surprise can

be regarded (in dynamical systems) as a gradient descent.

Crucially, this gradient descent progresses in generalized

coordinates of motion (for example, in terms of position and
momentum) [26,27]. This lends the suppression of prediction

errors a dynamical and anticipatory aspect; in the sense that a

sentient system is not simply reducing prediction error but

pursuing trajectories that have the least free energy. In other

words, it is not just a question of changing to reduce surprise

but choosing actions that will reduce expected surprise in the

future (notice that expected surprise is, mathematically,

the same as the average surprise which, we have established,

is entropy or uncertainty). We will see a nice example of

this below when we consider how plants respond to time-

dependent changes in salt concentrations. One can take this

argument to its extreme and posit that any self-organizing

system must embody a generative model whose predictions

ensure that expected free energy or uncertainty is minimized through
action [28]. Our basic argument is that this principle endows

plants with a purposeful behaviour that is quintessentially

anticipatory in nature. See figure 1 for a summary of the techni-

cal principles that underlie active inference and free-energy

minimization.
3. Plant predictive processing—or ways to avoid
salty surprises

Because the overt behaviour of plants is in general not

obvious to the naked eye, we tend to think of them as

bottom-up energy receptacles; information-processors that

just sit back and wait for the world to bring news hopefully

relevant to their doings. But to survive, plants rely on the ver-

idical perception of their surroundings. To do so, predicting

their own states of sensory stimulation, and not merely react-

ing to them, proves critical [12]. In this way, plants are subject
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F = energy – entropy = – ·ln p(s,h)Òq + ·ln q (h)Òq
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Figure 1. Upper panel: schematic of the quantities that define free energy. These include the internal states of a system m (e.g. a plant) and quantities describing
exchange with the world; namely, sensory input s ¼ gðh, aÞ þ v and action a that changes the way the environment is sampled. The environment is described
by equations of motion, _h ¼ f ðh, aÞ þ v, that specify the dynamics of (hidden) states of the world h. Here, v denotes random fluctuations. Internal states and
action both change to minimize free energy, which is a function of sensory input and a probabilistic representation (recognition density) qðh:mÞ encoded by
internal states. Lower panel: alternative expressions for the free energy illustrating what its minimization entails. For action, free energy can only be suppressed
by increasing the accuracy of sensory data (i.e. selectively sampling data that are predicted by the representation). Conversely, optimizing internal states make the
representation an approximate conditional density on the causes of sensory input (by minimizing divergence). This optimization makes the free-energy bound on
surprise tighter and enables action to avoid surprising sensations. (Online version in colour.)
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to scrutiny under the light of the general predictive proces-

sing principles just reviewed. Since active inference suggests

some form of agency, plants, like animals, appear to be engaged

in pro-active sampling of their local environment for the sake of

generating information with an adaptive value (i.e. reducing

uncertainty or avoiding surprises). In fact, plants are constantly,

and tirelessly, swaying their organs towards energy gradients,

doing their best to realize the most likely (least surprising)

implications of the surrounding sensory stimulation for

subsequent engagement with the world.

The main thesis of plant predictive processing (PPP) is that

plant behaviour takes place by way of a process that predicts the

environmental sources of sensory stimulation. According to this

picture, a plant’s predictions would propagate backwards to its

effector organs (substrate details are reviewed in the next

section). When a mismatch between the prediction generated

and the incoming signal takes place, that is, when there is a pre-

diction error, the mismatch is propagated upwards, into the

plant internal infrastructure. With this strategy, plants could,

in principle, minimize the divergence between the predictions

(empirical bets) about sensory signals and the actual signal

supplied by the environment. Plant perception could thus

boil down to a process whereby environmental input is

matched to top-down predictions. There are several (free

energy compliant) schemes one could invoke to explain this be-

haviour. Perhaps the simplest and subtlest is to simply ‘explore’

when prediction errors are high. In other words, when
predictions match signals from the plants, actively sampling

of the eco-niche is suspended (no more error needs to be mini-

mized). Conversely, if prediction errors are high, the plant

‘knows’ its current ‘behaviour’ is producing surprising out-

comes and that there is at least one surprise reducing,

prediction fulfilling response; namely, ‘get out of here’. This

simple form of optimization is ubiquitous in self-organization:

in theoretical evolution, it is formally related to second order

selection (also known as selection for selectability) [29,30]. In

cognitive neuroscience, it has been referred to in terms of auto-

vitiation (i.e. the destruction of self-induced but surprising fixed

points of attraction) [31]. Genetic algorithms that use this sort of

scheme include adaptive stochastic optimization procedures.

Remarkably, recent advances in these optimization schemes

have been inspired by plant (weed) behaviour [32]!

Note, we are not simply saying that plants indulge them-

selves using adaptive stochastic optimization, we are saying

that there are simple but powerful schemes that can resolve

the prediction errors afforded by the capacity to predict.

This or related forms of self-organization based upon predic-

tions are what we end up calling active ‘plant perception’. It

basically boils down to the selection of actions that best mini-

mizes surprise expected under those actions. This means that

behaviour is driven by the resolution of uncertainty—with an

eye to ensuring that a flexible, surprise avoiding, sampling

of sensory inputs fits their plastic phenotype (or, in free-

energy parlance, fits prior beliefs embodied in their physical
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structure). In this way, plant perception entails predictive

hypotheses as to what is out there: it could be a herbivore

representing bad news [33], it could be a stream of water

[34], or what may.

Anticipatory plant behaviour has been tested at the root

level with, for example, pea roots responding in a timely way

to environmental contingencies. In particular, pea plants

exposed to dynamic nutrient regimes are observed to develop

more roots in patches with an increasing level of nutrients,

despite those patches being less rich in absolute terms than

others that were nevertheless static (with no nutrient increase).

As [7] observes: ‘These findings demonstrate that rather than

responding to mere absolute resource availabilities, plants are

able to perceive and integrate information regarding dynamic

changes in resource levels and utilize it to anticipate growth

conditions in ways that maximize their long-term perform-

ance’ (p. 63). Roots don’t simply just grow. They constantly

assess the (future) acquisition of minerals and water.

Or consider, for the sake of illustration under PPP, halotropic

(salt-avoiding) root behaviour [35]. Ionic/osmotic stress

brought about by high concentrations of salt in the soil can

disrupt, rather badly, the biochemical machinery of plant

cells, affecting photosynthesis rates and protein synthesis,

among other key processes. Roots have also been observed to

exhibit random agravitropic responses under salt stress [35].

Generally speaking, salt means high ‘surprise’ to plants.

In this way, we may cash out roots’ exposure to salt in terms

of surprise states. How then are we to proceed?

First, we need to bear in mind that being in a state of

surprise, or not, is specific to each phenotype and individual.

We tend to think of plants as a monolithic category, but differ-

ent plants (not to mention different plant species) have their

own needs and their own means to get around. Put simply,

what is surprising for one plant species/individual may not

be for another. In fact, salt-avoidance may even mean a com-

forting familiar (low surprise) outcome to some species!

Think of land species based in seashore intertidal zones,

estuaries, and the like, which have adapted to tolerate salt.2

Plants have a number of tools at their disposal to cope with

salt stress. Some plants efflux salt from shoot meristems and

from the more active leaves, in terms of photosynthetic poten-

tial. Those unable to do so have developed tolerance strategies

that rely on the maintenance of ion homeostasis and the reten-

tion of water, among other mechanisms [37]. They can also

abscise leaves under osmotic stress. Mangroves make osmotic

adjustments accordingly. Or take saltbushes (Atriplex sp.).

They have glands that retain salt in the leaves, becoming harm-

less as it crystallizes [38]. Surprise and entropy, one can see, can

vary wildly. In short, plants will try to avoid states that are

surprising—but the specification of what is surprising ‘makes

the plant’. In our salt-avoidance example, the (implicit) belief

that salty outcomes are rare is constituted by the (explicit)

phenotype of the plant.

According to PPP, cascades of sensory input may be sur-

prising to plants, generating a prediction error. A surprising

state for a plant can be one in which it is too salty, or too dry,

to survive. The working hypothesis of PPP therefore is that

plants have an architecture conceived as an anticipatory
engine. If plants are pro-active, anticipatory engines they are

constantly looking ahead, monitoring gradients, guessing
ahead of time what the world is like—so as to adapt to local

conditions via phenotypic plasticity. The aim of the plant is

then to minimize discrepancies, to reduce error as much as
possible, and this can be accomplished through perceptual or

active inference. Under perceptual inference, prediction errors

can be minimized by updating predictions so that they are

brought into line with actual sensory states. As prediction

error is minimized, the plant root system may be said to have

perceived the (gradient of) salt concentrations of the cause of

stress. Once the plant updates its expectations, it expects to

be in salt-water, and if the levels are tolerable, adjust by trigger-

ing morphological changes (e.g. hardening responses to abiotic

stresses) in response to sensory states.

But ‘inferring the world is a hard place’, so to speak, is not

the only solution available. Probably, if you are the type of

plant that finds itself on the seashore, perceptual inference

is not the best adaptive strategy. Roots may keep track of

the salt gradient, and turn from the source of salt stress. In

this way, plant roots can resample via active inference.

Rather than updating expectations that underwrite predic-

tions, the plant may choose to sample more selectively the

sensory states through nutation movements of the roots—so

that they match the expectations that the plant had. Plants

can thus re-sample their vicinity with a halotropic response

that brings things back on track, into line with predictions

and prior expectations. If the reader finds plant examples

along these lines a hard pill to swallow, just think of

animal vision, where saccades bring about the sampling of

sensory states. In the same way that evidence can be gathered

by visual saccading to make predictions about visual input

[39], a full-fledged active-inferential theory of root nutation

states that nutations constitute the sampling of sensory

states, and that by taking in different parts of the soil struc-

ture roots may gather evidence for predictions [13].

Nothing other is called for.

With that being said, minimization of prediction error is

most likely accomplished through a combination of both per-

ceptual and active inference. Plants perceive and act, and to

alternate appropriately between these two modes calls for

both the assessment and contextual integration of a number

of parameters, and for the capacity to learn. Fortunately, we

now know that plants can do both [4,40]. In fact, we have

considered, for simplicity’s sake, the perception of a single

modality (the perception of salt), but salt-avoidance behav-

iour cannot be assimilated into a response to environmental

stimuli on a one-to-one basis. The halotropic behaviour

observed in plant roots is not a hard-wired salt-avoidance

response [41]. One should bear in mind that plants’ adaptive

behaviour constitutes an integrated response to many different

exogenous and endogenous signalling factors, both biotic and

abiotic [8]. For instance, root halotropism permits seedlings to

bypass patches of salt while weakening or inhibiting the

response to gravity and light [41–43]. As aforementioned,

plant behaviour is soft-wired and is reversible. It is the impli-

cit multimodal integration that accounts for the adaptive

responses observed. On the other hand, we must bear in

mind that plants cannot really afford metabolically costly

mismatches. Developmental modifications and phenotypic

plasticity take time; with changes taking place over time

scales that range from minutes or hours to days and seasons.

They cannot thus afford poor decision-making. Plants must

adjust with respect to future conditions if their behaviour is

to remain adaptive [7,11].

Finally, optimal anticipation requires some form of learn-

ing, however basic, that allows the plant to sculpt its internal

model. Although at first sight this may look like one of the
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most difficult aspects for plants to deal with, recent findings

suggest that plants may be capable of learning [44,45].

It is thus possible that forms of plant learning may play the

role needed, and that overall integrated signal assessment

(e.g. updating plants’ inner models in order to generate predic-

tions in contexts in which salinity interacts with photo- and

gravitropic responses) can be approached cognitively.

The basic toolkit of plant neurobiology and predictive

processing as herewith sketched may allow us to rethink

more carefully what predictive processing actually implies.

Note that once we consider plants—non-neuronal organ-

isms—a more radical picture begins to emerge. On the other

hand, according to a more conservative approach to PP [46],

action is not considered to make such a big difference with

respect to the basic inferential Helmholtzian framework

(sketched in §2). Were plants to make good predictions, and

the empirical evidence appears to suggest so, it must be due,

someone may wish to argue, to the fact that plants have evolved

an ‘internal mirror of nature’ [47] that serves their purposes.

In what follows, we discuss how radical PPP could be—by

taking issue with the idea of plants mirroring nature and there-

fore departing from more conservative PP scenarios. In

particular, we shall elaborate on the following two aspects to

pave the way for a really radical PPP approach: adaptive be-

haviour that while non-neuronal still provides the substrate

for bidirectionality and functional asymmetry (§4); and plant

frugality and embodiment (§5). General conclusions and dis-

cussion about the perception of affordances by plants—as

directions for future research—will follow (§6).
4. Non-neural message passing and belief
propagation

Plants, like animals, live surrounded by uncertainty. But how

can plants possibly accomplish prediction error minimization?

In brief, bidirectional, functionally asymmetric flows of proces-

sing are needed to generate predictions and encode prediction

errors [48]. In predictive coding architectures, this usually

entails a downward flow of predictions to sensory organs or

receptors that is reciprocated by an upward flow of prediction

errors that update or adjust physically encoding expectations

(that generate the descending predictions: see §6.3). In other

words, if a sensory mismatch occurs, an error signal propa-

gates upwards, to update internal states of the plant or

creature to account for the discrepancy detected. So, it seems

that all these processing flows are going to require some serious

machinery. In mammals, the neural substrate for this requisite

message passing is pretty handy, with fast neuronal message

passing among the levels of brain (i.e. cortical) hierarchies

by axonal processes. But whether this neuronal machinery

sufficient or not is not the question. Is it necessary?

Fortunately, many organisms may well have the type of

machinery required for predictive coding. Neocortices can cer-

tainly do a lot with their hierarchical structuring, bringing

abstraction beyond that dreamt of for other species. This how-

ever does not mean that something mammalian or neuronal is

needed. What is not negotiable is the functional (predictive)

processing itself, not the substrate details of implementation.

As it turns out, the internal system of plants is, in some impor-

tant respects, similar to the animal nervous system [49], and

although the evidence as to how the free-energy principle is

actually implemented in plants is still forthcoming [13], we
may wonder what sort of non-neural substrate could underlie

PPP.

Plants appear to have all the necessary machinery to

implement the free-energy principle. Plant neurobiology is

beginning to unveil the type of functionally equivalent

machinery in terms of analogues to layered interconnected

patterns of neural firing. Although plants are not equipped

with neurons, Darwin drew a felicitous analogy between

the root tip and the brain of lower animals that resists the

passing of time:
It is hardly an exaggeration to say that the tip of the radicle [root]
thus endowed, and having the power of directing the movements
of the adjoining parts, acts like the brain of one of the lower ani-
mals; the brain being seated within the anterior end of the body,
receiving impressions from the sense-organs, and directing the
several movements [50].
In fact, phytoneurological structures that play a role analogous

to the nervous system of animals have long been identified. As

J.C. Bose documented in The Nervous Mechanism of Plants [51],

some decades after Darwin’s major work in botany [50,52,53],

there is transmission of excitation between the petiole and the

pulvinus of Mimosa pudica that results in loss of turgor, and

subsequent leaf folding. But electric communication is spread

throughout the plant kingdom, beyond the rapid responses

of Mimosa pudica, Venus flytrap, and the like. Plants, like

animals, fire spikes of voltage. Plant firing may be triggered

by a variety of signals, such as herbivory, variations in illumi-

nation and temperature, mechanical stimulation or salt stress,

among many others. These can result, for example, in changes

in photosynthesis, respiration, or in gene expression. Such

firing—action potentials (APs) and variation potentials (VPs),

also known as slow wave potentials (SWPs) [1,54]—plays a

central role in integrating the plant internal states via the propa-

gation of electric signals. Both APs and VPs (SWPs) share with

animal APs their threefold electrophysiological profile of

depolarization–repolarization–hyperpolarization [55], with

electric signals propagating over short distances through

plasmodesmata (the plant equivalent to intercellular gap junc-

tions in animal tissues), and travelling over long distances—at

least, in the case of APs—along the vascular system (phloem)

in both directions.3

Cellular electrical excitability for the purpose of the trans-

mission of information relies upon the capacity of plant cells

to conduct such signals from receptor to effector sites, despite

the lack of a central nervous system proper [49]. Electrical

events can propagate in the membranes of neural and non-

neural cells alike. In the absence of axons or other projections

for the purpose of conduction, electrical events propagate in

the membranes of plant cells along the vascular system.

Neural-like signalling through the vascular system of plants—

a system that stretches throughout the plant body from root

to shoot in the form of vascular bundles of phloem, xylem

and cambium [59]—underlies in part their phenotypically

plastic responses. Signal integration is implemented, at

the electrical level, via long-distance electrical signalling.

Certain neurotransmitter-like chemicals, and the transport of

auxin as well as other phytohormones [2], underpin the

capacity to integrate signals at the chemical and molecular

levels.4 So, we can see that despite the fact that plants lack

neurons, they can respond in a fast and coordinated

manner to environmental contingencies.

With that being said, if the PPP hypothesis is correct, bidir-

ectional and functionally asymmetric message passing ought



rsif.royalsocietypublishing.org
J.R.Soc.Interface

14:20170096

6
to be observed (we take the reciprocal and asymmetric message

passing of bottom-up prediction errors and top-down predic-

tions, as exemplified by mammalian neocortical structures, to

be non-negotiable [12]). Importantly, electric communication

can take place over long distances through vascular bundles

located within the transport system of vascular plants, both

top-down and bottom-up. On the other hand, horizontal lateral

signalling over short distances takes places through plasmo-

desmata [56]. Signals passing through local plasmodesmata

networks can thus reach long-distance vascular pathways.

In this way, plants seem to have the type of informational

pathways required to implement PPP.

As in the animal neurobiology literature, plant neurobiol-

ogy entertains the idea of a hierarchical arrangement; in

terms of the distinction between bottom-up, forward and

top-down, backward connections. The requirement of func-

tional asymmetry, however, does not entail that the different

types of non-neural cells are needed. Vascular cells may

‘simply’ exhibit distinct dynamics depending on whether

they mediate predictions or encode error. But the way to propa-

gate top-down and bottom-up signals can vary a lot. Plants

may implement PPP principles either by means of other sub-

strates/cell subpopulations for the same prediction and error

flows, or even exploiting different types of flows of predictions

and errors altogether.

On the other hand, the distinction between forward

and backward connections may be based upon the specificity

of vascular tissues that connect the overall vascular network

of plants, and of intrinsic connections found within each

vascular tissue. One possibility worth exploring is provided

by phloem vascular and apical cells, respectively, exhibiting

different functionalities. Distinct vascular cell populations

may encode expected states of the world and prediction

error, respectively. It is possible that vascular cells in deep

phloem layers serve to encode the former (i.e. mediate

predictions), and apical cells encode the latter (i.e. convey

prediction errors). We elaborate further in §6.

It should also be pointed out, as noted in [24]: ‘even non-

neuronal cells possess many of the same ion channel- and

electrical synapse-based mechanisms as do neurons and use

them for pattern formation and repair’ [60–62]. As to the

way in which cellular dynamics encode particular states, it

is worth noting that although the role of acetylcholine, gluta-

mate, dopamine, serotonin, and other neurotransmitters

found in plants still needs to be clarified [49,57], the possi-

bility that in analogy to the animal neuron, acetylcholine or

dopamine, for example, underlie modulation in neural-like

tissue cannot be discarded. The functional analogues of sig-

nalling molecules, across the plant and animal kingdoms,

have been disclosed recently by the study of neurotrans-

mission in plants. g-Aminobutyric acid, for instance, has

been primarily studied in its metabolic role, although see

[63]. From that perspective, cellular signalling looks pretty

much the same in animal neural and plant networks. In

fact, the way cellular signalling is optimized predates the

evolution of central nervous systems in mammals and the

vascular system of plants. Early in evolution, cellular signal-

ling in somatic networks found a way to coordinate

physiological needs, so that their behaviour could remain

adaptive [64].

The simulations reported in [24] are particularly prescient

for the current argument. These simulations used an ensemble

of free energy minimizing ‘cells’ that employed chemotaxis to
self-organize and emulate morphogenesis. Crucially, the che-

motactic signals were generated by the cells themselves,

providing a form of self-assembly that was mediated by predic-

tive processing; namely, non-neuronal inference about where

each cell was located in relation to others. In this example, pre-

dictions and prediction errors were encoded by intracellular

macromolecules and extracellular electrochemical gradients.

One way or another, our working hypothesis is that error

correction is implemented by biophysical processes within vas-

cular structures [8] that (spatially) organize an exchange with

the world that complies with active inference.

Overall, different organisms may have evolved alternative

strategies to appropriately combine top-down, bottom-up,

and lateral flows. Non-neural patterns of connectivity may

thus allow plants to predict sensory states. The capacity to

anticipate may be implemented for instance in temporal pat-

terns of synchronous oscillatory firing of specific populations

of plant cells [13]. In short, if animal synaptic activity can

bring about active inference, the same in principle applies

to the electrosensitive cells of plants.
5. Embodiment and frugality
According to the foregoing, plant cognition can be grounded in

the absence of a neural-based generative model. But by the

same token, strictly speaking, plant cognition is not grounded

either (exclusively) in a non-neural-based functional analogue.

Cognition extends throughout the substrate of plants, their

body and the environment. In this way—focusing upon the

plant body—facts about morphology and the material compo-

sition of plants are crucial. Consider the ‘Yokoi hand’ [65]. This

prosthetic hand was designed with flexible and soft gripping

materials that, courtesy of a particular morphology, could

grip a variety of objects. Importantly, both morphology

and materials deliver the goods—reducing the amount of

predictive control that would be otherwise required. A mor-

phological design embodies the coming together of the finger

tips as the hand itself closes. On the other hand, the type of

material—that the finger tips are made of—fits hand in glove

with the type of objects to be gripped.

If a robotic hand can exhibit a degree of adaptation to

different shapes and contingencies through its material con-

stituency and morphology, the same can be said of plants.

Plants, we may say, compute with their bodies in the service

of adaptive flexible behaviour. Consider a vine climbing up a

host tree for photosynthetic purposes. Vines can attach to

supports in many different ways; insofar as attachment mech-

anisms and stem structure and function are concerned. Their

capacity to cling to host trees resembles pretty much the type

of extended solutions found by morphological roboticists. In

fact, depending on the type of attachment, vines are able to

climb some supports and not others. Thus, tendril and twin-

ing climbers have more efficient climbing mechanisms than

hook-climbers [66]. The stems of the former are more flexible;

those of hook-climbers, more rigid. As a result of their very

phenotypic composition, some climbers can cling to supports

of different diameters. Some redvines make use of jelly-like

fibres allowing the tendrils to squeeze supports. Importantly,

depending on the direction of coiling, the tendrils have their

gelatinous fibres distributed in different ways (e.g. those that

coil always in the same direction have all the fibres on the

concave side [66]). Other anchoring strategies rely on
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glandular secretions, widening the range of supports

potentially climbable [52].

The mechanoreceptor tactile bleps of tendrils of Bryonia
dioica Jacq [67] illustrate nicely one way in which sensory

and effector organs act synergistically in this sort of embo-

died (active) inference. The high density of plasmodesmatal

connections in tendril epidermal cells underwrite the electro-

chemical coordination required for appropriate coiling. But

tendrils do not just respond to pressure. As originally

observed by Pfeffer and Haberlandt [67], sliding movements

on a rough surface are needed. In short, materials and their

properties are put to service in the perception of gradients.

The Yokoi hand–vine plant metaphor takes us to the idea

of frugality. Plants are good at deploying the least complex
model, form or generative model that will serve their needs.

Recall from above that the overarching imperative prescribed

by the free-energy principle is a resolution of uncertainty. If

we unpack this in anthropomorphic terms, it simply means

that actions (at least good actions) will resolve uncertainty.

This is synonymous with selectively gathering evidence

for one’s own existence and choosing behaviours that have

the greatest epistemic value [28,46]. This brings with it the

important notion of epistemic affordance. In other words, senti-

ent plants and creatures behave in a way that resolves

uncertainty about the environment through some form of

epistemic foraging. This sort of affordance goes beyond mini-

mizing surprise (e.g. by avoiding high salt concentrations); in

the sense that the opportunity to resolve uncertainty now

becomes attractive (e.g. deliberately sampling some unex-

plored part of the environment to see whether it has a high

or low salt concentration). One can see immediately that this

is just a way of describing exploration and the intrinsic (episte-

mic) value of certain behaviours that affords the opportunity to

reduce uncertainty (i.e. exploit novelty).
6. General discussion and directions for future
research

6.1. The functional anatomy of plants
From the free-energy principle, it follows that plants represent

the causes of sensory stimulation in terms of their internal

states and morphology. Anatomical and physiological con-

straints underlie the capacity of plants to do so. By analogy

with Friston [68], an optimization scheme under a free-

energy formulation allows us to account for a number of

empirical aspects at the level of both plant anatomy and physi-

ology, as summarized in table 1. These aspects range from the

hierarchical arrangement of vascular tissues and the functional

asymmetries between forward and backward connections to

minimal cognition as discussed in plant neurobiology [69].

In table 1 we consider three levels of explanation and predic-

tions: (i) at the level of plant anatomy and connectivity, the

hierarchical deployment of plant vascular tissues and connec-

tions; (ii) at the level of plant electrophysiology, phenomena

like repetition suppression; and (iii) at the psychophysiological

level, the working hypothesis of plant neurobiology is that it

can explain cognitive level phenomena, such as plant priming

[7] and learning [70] (table 1 for details on domains and

predictions).

Consider first the hierarchical vascular organization of

plants. Plants are characteristically modular, with a highly
decentralized architecture. This reflects the evolutionary needs

of sessile organisms, for which a highly centralized system

would not be adaptive. Yet, a hierarchical organization is

needed if predictions and prediction errors are to flow up and

down the plant body. In fact, the modular decentralized archi-

tecture of plants is compatible with a considerable degree of

hierarchical organization. For example, vascular cells are

arranged in layers that converge at both ends, at the root and

shoot apices [71]. At a different level of description, individual

modules in shoots are connected by nodes, and the same goes

for every anatomical subunit of the entire plant body. This

enables modules to connect to each other for the purpose of sig-

nalling [72]. Overall, vertical xylem and phloem strands, which

are highly cross-linked by horizontal and tangential anastomo-

sis [59], form a ‘channel and net’ or reticulated structure that

runs throughout the plant [1,55,72,73].

With regard to the electrophysiological and psycho-

physiological domains (table 1), we may consider repetition

suppression and learning [13], respectively. Repetition sup-

pression, a phenomenon in which responses are attenuated

as a result of the repeated presentation of a particular stimulus,

may well take place in plants, with top-down expectations

underlying suppression. With respect to learning, habituation

[44] and associative learning [45], these may well play a func-

tionally equivalent role in plants, in the service of generating

predictions that are informed by a plant’s experience.
6.2. The theoretical biology of plants
The two principal themes of functional asymmetry (between

descending predictive and ascending prediction error signals)

and the frugal nature of a plant’s functional architecture speak

to the two fundaments of free-energy minimization outlined in

this article. In particular, the frugal, complexity minimizing

structure of plants—well suited to their world—follows natu-

rally from the minimization of free energy. This follows from

the mathematical equivalence between free energy and (Baye-

sian) evidence for a generative model [16]. In other words, if we

associate the structural and dynamical form of a plant with a

model of its eco-niche, then any process that minimizes free

energy will necessarily maximize model evidence. Because

the plant is the model—it is basically self-evidencing [46].

This can be seen at a practical level in everyday statistical

analysis where it is known as Bayesian model selection.

The same arguments have been applied in the context of evol-

ution—such that selective pressure is simply the process of

free-energy minimization playing out at an evolutionary

time scale [74–76]. In short, natural selection is nature’s

way of performing Bayesian model selection. A key insight

here is that evidence is the difference between accuracy and
model complexity. In other words, a good model with high evi-

dence will provide an accurate explanation for sensory

exchange with the environment, while minimizing its

complexity.

Complexity can be thought of as the degrees of freedom

used by the plant to anticipate and predict its sensory exchange.

This leads naturally to a principle of minimum redundancy

(well established in the neurosciences [77]), whereby a good

plant will retain just those sparse, frugal structures that are

necessary to anticipate the world. This can be evident in the

phenotypic form (as unpacked earlier by analogy with robotic

gloves) or in terms of conditional dependencies and ‘action at

a distance’ mediated in plants by channels and electrochemical



Table 1. Structural and functional aspects of the plant vascular system that may be explained under a free-energy ( predictive processing) formulation.

domain prediction

anatomy and connectivity:

explains the hierarchical deployment of plant vascular bundles,

architectures with forward and backward (bidirectional) connections

[1,54,55,57,58]

— hierarchical vascular organization

— distinct vascular cell populations, encoding expectations and prediction

error. Crucially, these distinct populations should be reciprocally

connected because, algorithmically, every biophysical encoding of an

expectation passes messages or signals to an associated prediction

error population and vice versa

— forward connections convey prediction errors from mechanoreceptors

and chemoreceptors (e.g. on apical cells) and backward connections

mediate predictions (e.g. from deep vascular cell bundles)

— functional asymmetries in forwards (linear) and backwards (nonlinear)

connections are mandated by nonlinearities in the generative model

encoded by top-down backward connections conveying predictions

— vascular cells elaborating predictions (e.g. deep vascular cell bundles)

could show distinct (low-pass) dynamics, relative to those encoding

error (e.g. cells in root and shoot apices). This follows from the fact

that expectations accumulate evidence from prediction errors; thereby

suppressing fast (high-frequency) fluctuations in prediction errors

— recurrent dynamics are intrinsically stable because they suppress prediction

error. In other words, if cells encoding errors excite cells encoding

expectations, expectations should inhibit errors—or vice versa

electrophysiology:

explains the prevalence of action potentials (APs) and variation

potentials (VPs), also known as slow wave potentials (SWPs), in plant

electrophysiology [54 – 58]

— sensory responses are greater for surprising, unpredictable or

incoherent stimuli (e.g. sudden changes in salt concentration or

mechanical stimulation)

— the attenuation of responses encoding prediction error, with

perceptual learning. In other words, we would predict that regular

fluctuating mechanical, photic or chemical stimulation will entrain

plant electrophysiology—and that these induced responses should

decay with repetition—and re-emerge with novel stimuli—or,

importantly, an omission

psychophysiology:

accounts for the behavioural correlates (e.g. growth and phenotypic

changes) of physiological phenomena [1]

— predictive processing furnishes a framework in which to model and

understand priming and learning phenomena in plants of the sort that

underlies omission related responses (see above) and experience

dependent plasticity in the way top-down predictions are formed
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waves (very much like axonal connections and electrochemi-

cal synaptic transmission in the brain). In short, under the

free-energy principle—and the active inference that this

entails—one would anticipate that plants would come to

distil the essential causal structure in their environment

in terms of their physical form and biophysical function.

It is this form and functional architecture that constitutes the

generative model and underwrites their existence.
6.3. Predictive coding in plants
The dynamics within this generative model (e.g. plant)

correspond to signalling of the sort associated with belief propa-

gation in the brain. This implicit (Bayesian) message passing is

simply a description of dynamics that maximize Bayesian

model evidence (or minimize free energy). This can manifest
in many forms. A popular example is predictive coding in the

brain [17,18]. The crucial aspect of these dynamics (variously

known as variational message passing, belief propagation, pre-

dictive coding etc.) is an asymmetry in the messages that are

passed on the internal states generating predictions. Interest-

ingly, one can always formulate a free energy minimizing

scheme in terms of prediction errors, if the generative model

calls upon probability distributions within the exponential

family [78]. This is just a technical way of saying that it is more

than likely that any plant or creature can be described (at

least mathematically) as passing predictions and predic-

tion errors around its body in the service of minimizing

prediction error.

Finally, it is worth noting that the very idea of plant percep-

tion seems to turn upside down our very intuitions as to what

perception and action entail. In this context, one can consider
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directions for future research in the context of plant action and

the perception of affordances. If plants are sentient and behav-

ing organisms, then plant perception and action are driven

primarily by anticipatory routines triggered in the plant’s

body. At this point we can see how radical PPP can actually

be. Plants are surprised by the unexpected, and their capacity

to navigate uncertain terrains may therefore depend on a cas-

cade of top-down predictions, constantly predicting

incoming signals. As in the case of pea roots that can predict

the future [7], anticipatory behaviour is crucial for adaptive,

surprise eluding, success.

Vines provide the sharpest contrast with conservative PP

scenarios. Grasping, say, a phone, according to Hohwy [46]

can only be explained via the exploitation of an internal rep-

resentation of the phone itself. But once PP is fully developed

with fast and frugal, morphological, and non-neurally decentra-

lized resources, we can see that detailed internal representations

may not be necessary: a climbing plant does not grasp a sup-

port because it has an internal representation of it, but rather

because of the soft-assembling of the plant body–environment

in the context of the approaching manoeuvres. In other

words, the tendrils of the plant do not call upon representations

of the affordance to climb: they are, in and of themselves, the

generative model which realizes that affordance.

The very exploitation of ecological information within a PP

framework permits us to envisage really radical predictive pro-

cessing solutions like those be leveraged by plants. That plants

can perceive ecological information is not the big news. Turvey

et al. [79] considered how Monstera gigantea, a climbing vine,

could perceive a form of climb-ability, as this plant would

grow skototropically towards darkness [5]. Thus, vines can

perceive possibilities for action, but to fully understand this

‘perception’, we need to bear in mind that the vine and its

support are functionally coupled by the predictions of ‘experi-

enced’ plants. Vines control their approaching manoeuvre to

the support by anticipating sensory states, and realizing the

states through embodied action.

Plants are a good example of radical predictive processing

because they are not in the business of enriching a neurocentric

model of their surroundings (this is effectively outsourced to

natural selection); rather, they are in the business of appropri-

ately coupling with it. A movement of circumnutation, for

instance, is triggered, maintained and modified endogenously,

or at least that is our working hypothesis. Taking into account

that many growth-related movements are irreversible, explora-

tion must be accomplished efficiently. Control is thus needed, if

the metabolic and computational cost of irreversible but idle

movements is to be minimized.
These considerations suggest an understanding of

plant cognition radically different—not only with respect to

mainstream cognitive science, but also to conservative

approaches to PP. When we say that plants are proactively

engaged with their surroundings we mean literally that

they foresee possibilities of interaction with their local

environment ahead of time. But it is important to emphasize

that this needs to be so. A plant that only represents sensory

inputs as they flow past would be dead meat. This is so pre-

cisely because they move slowly and cannot afford to react

reflexively in response to the present. Plants, despite the

slowness of their responses, can exploit distal nutrient-related

or reproduction-related causes in their eco-niche. In short,

they need to deal with contingencies ahead of time—because

they cannot afford to behave otherwise.
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Endnotes
1In [13] the ‘predictive processing’ hypothesis (see §2) was contrasted
against ‘feature detection’ in the canonical domain of mammalian
visual cognition, transferring the rationale involved to the plant
literature.
2This is not only in the case of plants, but applies more generally. Just
think for a moment of halophilic archaebacteria (‘salt bacteria’). They
thrive in salt lakes or evaporation ponds under extremely harsh con-
ditions of salinity. Less dramatic scenarios are those of organisms
such as marine macroalgae and phytoplankton species [36].
3VPs are generated at the plasma membrane of parenchyma cells, and
it is possible that they also can pass through the plasmodesmal net-
work and reach the phloem pathway [56]. For reviews of plant
electrophysiology see [54,55,57,58].
4We focus on electric signalling for the sake of drawing the neural/
non-neural parallel more vividly. Having noted that plants have no
neurons, the reader may wish to use the terms ‘phytoneurology’,
and ‘phytoneurones’ to refer to excitable phloem cells and electric
conduction through them [59]. For a scientific justification of the
‘plant neurobiology’ terminology see [4].
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