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Abstract: The susceptibility and the severity of coronavirus disease 2019 (COVID-19) caused by se-
vere acute respiratory syndrome coronavirus 2 (SARS-CoV-2) are associated with hyperandrogenism,
obesity, and preexisting pulmonary, metabolic, renal, and cardiac conditions. Polycystic ovary syn-
drome (PCOS), the most common endocrine disorder in premenopausal women, is associated with
obesity, hyperandrogenism, and cardiometabolic dysregulations. We analyzed cardiac, renal, circula-
tory, and urinary SARS-CoV-2 viral entry proteins (ACE2, TMPRSS2, TMPRSS4, furin, cathepsin L,
and ADAM17) and androgen receptor (AR) expression, in a peripubertal androgen exposure model
of PCOS. Peripubertal female mice were treated with dihydrotestosterone (DHT) and low (LFD) or
high (HFD) fat diet for 90 days. HFD exacerbated DHT-induced increase in body weight, fat mass,
and cardiac and renal hypertrophy. In the heart, DHT upregulated AR protein in both LFD and
HFD, ACE2 in HFD, and ADAM17 in LFD. In the kidney, AR protein expression was upregulated
by both DHT and HFD. Moreover, ACE2 and ADAM17 were upregulated by DHT in both diets.
Renal TMPRSS2, furin, and cathepsin L were upregulated by DHT and differentially modulated
by the diet. DHT upregulated urinary ACE2 in both diets, while neither treatment modified serum
ACE2. Renal AR mRNA expression positively correlated with Ace2, Tmprss2, furin, cathepsin L, and
ADAM17. Our findings suggest that women with PCOS could be a population with a high risk of
COVID-19-associated cardiac and renal complications. Furthermore, our study suggests that weight
loss by lifestyle modifications (i.e., diet) could potentially mitigate COVID-19-associated deleterious
cardiorenal outcomes in women with PCOS.

Keywords: polycystic ovary syndrome; COVID-19; SARS-CoV-2; angiotensin converting enzyme 2;
androgens; obesity

1. Introduction

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), a member of
the coronavirus (CoV) family, causes Coronavirus Disease 2019 (COVID-19). The high
transmissibility, morbidity, and mortality, as well as the unpredictability in outcomes dif-
ferentiate COVID-19 from viruses of the same family [1,2]. The symptoms associated with
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COVID-19 range from fever to cough and shortness of breath which can rapidly progress to
respiratory and cardiac failure and death [3]. Despite the high unpredictability of the final
outcomes of the disease, some populations are at higher risk of severe COVID-19 outcomes,
including the elderly, the immunocompromised, and those with preexisting pulmonary
conditions or chronic obstructive pulmonary disease (COPD) [4]. Interestingly, the virus
also targets a number of extrapulmonary organs; therefore, preexisting cardiometabolic
comorbidities such as obesity, diabetes, hypertension, and renal disease are considered key
risk factors for COVID-19 severity [5–10].

New clinical evidence suggests that men are both more susceptible than women
and are at greater risk of experiencing a more severe form of COVID-19 independent of
age [11,12]. This increased vulnerability could be explained by increased androgen lev-
els [13,14], as well as sex differences in immune responses [15]. Polycystic ovary syndrome
(PCOS) represents the most common endocrine disorder in reproductive age women, with
a prevalence that ranges from 4–21% depending on the diagnostic criteria used [16]. The
features that characterize PCOS are hyperandrogenism, oligo- or anovulation, and polycys-
tic ovary morphology. Clinical or biochemical hyperandrogenism is present in more than
80% of women with PCOS [17]. In addition, women with PCOS have higher incidence of
cardiovascular diseases, such as increased blood pressure [18], left ventricular hypertro-
phy [19], and renal injury [20]. Moreover, the majority of women with PCOS are obese
or overweight [21] and display insulin resistance [22]. The high prevalence of multiple
risk factors in PCOS that overlap with those of COVID-19 severity underscores women
with PCOS as a critical patient population at potentially higher risk for adverse disease
outcomes. Moreover, a recent epidemiological study suggests that women with PCOS
have a remarkably increased risk for COVID-19 infection compared to control subjects [23].
Although the main concern in COVID-19 is the extensive alveolar damage and acute respi-
ratory failure, there is a need to investigate the other organs involved [24]. COVID-19 has
been shown to adversely affect the cardiovascular system in a large proportion of patients
and to exacerbate preexisting cardiac injury, an effect that is evident even after COVID-19
acute phase recovery [25–29]. Additionally, patients with elevated cardiac injury markers
are at a significantly increased risk of COVID-19 death [30]. Notably, approximately 5–7%
of COVID-19 patients develop acute renal injury, and this rate was reported to be higher
(11.9%) in patients with elevated baseline serum creatinine [5,31–33].

SARS-CoV-2 viral entry into the host cells requires the coordinated action of multiple
host cell proteins. Angiotensin converting enzyme 2 (ACE2) is a host cell surface protein
that binds to SARS-CoV-2 S-protein and acts as the SARS-CoV-2 receptor [34,35]. The
SARS-CoV-2 S-protein requires priming by host cell proteases to facilitate viral fusion and
entry. The transmembrane serine protease 2 (TMPRSS2) is the main protease that cleaves
SARS-CoV-2 S-protein. However, there are other host proteases (furin, cathepsin L, and
TMPRSS4) that have been suggested to prime SARS-CoV-2 S-protein in a tissue-specific
manner. Moreover, the ACE2 sheddase ADAM17 can cleave ACE2 ectodomain from its
membrane-bound state to its soluble form, effectively regulating SARS-CoV-2 receptor
levels [36].

We previously reported that excess androgens in a rodent model of PCOS upregulate
ACE2 protein expression in the heart, kidney, and small intestine [37]. Whether obesity, a
comorbidity of both PCOS and COVID-19, modulates SARS-CoV-2 viral entry factors in
cardiovascular and renal systems in PCOS is unknown. In the current report, we analyzed
cardiac and renal SARS-CoV-2 viral entry proteins regulation by an obesogenic diet in a
well-established mouse experimental model of PCOS that exhibits a breadth of endocrine,
reproductive, and metabolic features that closely resemble the human pathology [38].
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2. Results
2.1. HFD Exacerbates DHT-Mediated Obesity, and Cardiac and Renal Hypertrophy

To analyze the effect of diet-induced obesity in the mouse model of PCOS by peripu-
bertal androgen exposure, we studied body weight and composition, and cardiac and renal
hypertrophy. After 90 days of DHT treatment, LFD-fed DHT-treated (LFD-DHT) mice had
significantly increased body weight, fat mass, and left ventricle (LV), and kidney hyper-
trophy compared with LFD-fed vehicle-treated (LFD-Veh) mice (Figure 1A–D). Moreover,
HFD-fed vehicle-treated (HFD-Veh) mice showed an increase in all the aforementioned pa-
rameters compared with LFD-Veh mice. Notably, HFD-fed DHT-treated (HFD-DHT) mice
showed an exacerbation in body weight, fat mass, LV, and kidney hypertrophy compared
with HFD-Veh and LFD-DHT.
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Figure 1. Effect of DHT and diet on body weight and composition, and cardiac and renal hypertrophy.
Animals were treated with dihydrotestosterone (DHT) or vehicle (Veh) and maintained in low (LFD)
or high (HFD) fat diet for 90 days. (A) Body weight was determined by gravimetry. (B) Fat mass
was determined by EchoMRI. Left ventricle (LV) (C) and kidney (D) weights were determined by
gravimetry and corrected by tibia length (TL). Data are expressed as mean ± SEM. N = 8/group.
Data were analyzed by two-way ANOVA followed by Fisher’s LSD test. a p < 0.05 vs. LFD-Veh;
b p < 0.05 vs. HFD-Veh; c p < 0.05 vs. LFD-DHT.

2.2. Cardiac and Renal Androgen Receptor Expression Is Upregulated by DHT

We then analyzed if the LV and kidneys express the androgen receptor (AR) protein
and if the AR is subjected to regulation by androgens and/or an obesogenic diet. DHT
treatment caused a minimal decrease in LV androgen receptor (AR) mRNA levels in
both LFD and HFD (Figure 2A). However, DHT treatment caused a notable increase
in LV AR protein expression in both LFD and HFD (Figure 2C). In the kidney, DHT
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treatment increased renal AR mRNA expression in HFD with no effect in LFD (Figure 2B).
At the protein level, DHT increased renal AR protein expression in LFD (Figure 2D).
Surprisingly, HFD by itself increased renal AR protein expression, an upregulation that
was not additionally affected by DHT co-treatment (Figure 2D).
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Figure 2. Effect of DHT and diet on androgen receptor mRNA and protein expression. Animals were treated with
dihydrotestosterone (DHT) or vehicle (Veh) and maintained in low (LFD) or high (HFD) fat diet for 90 days. Left ventricle
(LV) (A) and kidney (B) Androgen receptor (AR) mRNA was quantified by RT-qPCR (N = 6–8/group). LV (C) and kidney
(D) AR protein was quantified by Western-blot (N = 4/group). Data are expressed as mean ± SEM. Data were analyzed by
two-way ANOVA followed by Fisher’s LSD test. a p < 0.05 vs. LFD-Veh; b p < 0.05 vs. HFD-Veh; c p < 0.05 vs. LFD-DHT.

2.3. Cardiac and Renal Expression of ACE2 and Cellular Proteases Is Modulated by Both DHT
and HFD

We then analyzed cardiac and renal SARS-CoV-2 viral entry protein regulation by
androgens and an obesogenic diet at the mRNA and protein levels. In the LV, SARS-
CoV-2 viral entry protein mRNA levels were not affected by DHT treatment in LFD
with the exception of furin which was elevated (Figure 3A–E). However, DHT treatment
significantly upregulated LV Ace2, furin, and ADAM17 mRNA expression in HFD-fed mice
(Figure 3A–E). In alignment with the mRNA expression data, LV SARS-CoV-2 viral entry
protein levels were not affected by DHT treatment in LFD-fed mice with the exception
of ADAM17 which was upregulated compared with LFD-Veh mice (Figure 3F–J). At
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the protein level, LV ACE2 expression was decreased by HFD in control animals, but
this decrease was abolished by DHT treatment (Figure 3F). Moreover, LV cathepsin L
protein levels were decreased in HFD-DHT mice compared with LFD-DHT and HFD-
Veh counterparts (Figure 3I). LV ADAM17 protein expression was upregulated by DHT
exclusively in LFD-fed mice (Figure 3J). Tmprss4 mRNA and protein were undetectable in
LV samples.
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Figure 3. Effect of DHT and diet on cardiac SARS-CoV-2 viral entry proteins expression. Animals were treated with
dihydrotestosterone (DHT) or vehicle (Veh) and maintained in low (LFD) or high (HFD) fat diet for 90 days. Ace2 (A),
Tmprss2 (B), furin (C), cathepsin L (D), and ADAM17 (E) mRNA was quantified by RT-qPCR and standardized to the
geometric mean of four housekeeping genes (HGMK) (N = 6/group). ACE2 (F), TMPRSS2 (G), furin (H), cathepsin L
(I), and ADAM17 (J) protein was quantified by Western-blot and normalized to GAPDH (N = 4/group). Total furin
(H) was quantified as the sum of profurin (dashed arrow) and cleaved soluble furin (solid arrow). Data are expressed as
mean ± SEM. Data were analyzed by two-way ANOVA followed by Fisher’s LSD test. a p < 0.05 vs. LFD-Veh; b p < 0.05 vs.
HFD-Veh; c p < 0.05 vs. LFD-DHT.

In the kidney, SARS-CoV-2 viral entry proteins were significantly regulated at both
the mRNA and protein levels (Figure 4A–L). At the mRNA level, Ace2 and the cellular
proteases Tmprss2, furin, cathepsin L, and ADAM17 were upregulated by DHT in kidney
of LFD- and HFD-fed mice (Figure 4A–F). On the other hand, renal Tmprss4 mRNA
expression was downregulated in DHT-treated mice on both diets (Figure 4C). Notably,
HFD by itself upregulated renal ADAM17 mRNA expression compared with LFD-Veh mice
(Figure 4F). At the protein level, DHT treatment upregulated renal ACE2 and ADAM17
levels in mice maintained in both LFD and HFD (Figure 4G,L). On the other hand, TMPRSS2
and cathepsin L protein levels were only significantly upregulated by DHT in HFD-fed
mice compared to their LFD-fed counterparts (Figure 4H,K). In parallel with mRNA
determinations, renal TMPRSS4 expression was significantly downregulated in LFD-DHT
mice and showed a tendency to decrease in HFD-DHT mice (Figure 4I). Renal total furin
protein levels were increased by DHT exclusively in LFD-fed mice (Figure 4J). Moreover,
soluble (active) renal furin protein was increased by DHT (Supplementary Figure S1).
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Figure 4. Effect of DHT and diet on renal SARS-CoV-2 viral entry proteins expression. Animals were treated with
dihydrotestosterone (DHT) or vehicle (Veh) and maintained in low (LFD) or high (HFD) fat diet for 90 days. Ace2 (A),
Tmprss2 (B), Tmprss4 (C), furin (D), cathepsin L (E), and ADAM17 (F) mRNA was quantified by RT-qPCR and standardized
to the geometric mean of four housekeeping genes (HGMK) (N = 6–8/group). ACE2 (G), TMPRSS2 (H), TMPRSS4 (I), furin
(J), cathepsin L (K), and ADAM17 (L) protein was quantified by Western-blot and normalized to GAPDH (N = 4/group).
Total furin (J) was quantified as the sum of profurin (dashed arrow) and cleaved soluble furin (solid arrow). Data are
expressed as mean ± SEM. Data were analyzed by two-way ANOVA followed by Fisher’s LSD test. a p < 0.05 vs. LFD-Veh;
b p < 0.05 vs. LFD-Veh; c p < 0.05 vs. LFD-DHT.

2.4. DHT Increases Urinary ACE2 Levels

Since renal ADAM17 protein was significantly upregulated by DHT, we analyzed
if that regulation translated into a modulation of circulating and urinary soluble ACE2
levels. Serum ACE2 protein levels were similar among all groups (Figure 5A). However,
DHT-treated mice showed a remarkable ~18- and ~10-fold increase in urinary ACE2 protein
levels in LFD and HFD, respectively (Figure 5B).
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Figure 5. Effect of DHT and diet on serum and urinary ACE2. Animals were treated with dihydrotestosterone (DHT) or
vehicle (Veh) and maintained in low (LFD) or high (HFD) fat diet for 90 days. Serum (A, N = 4–7/group) and urinary
(B, N = 4–6/group) ACE2 were quantified by ELISA. Urinary ACE2 was corrected by urinary creatinine. Data are expressed
as mean ± SEM. Data were analyzed by two-way ANOVA followed by Fisher’s LSD test. a p < 0.05 vs. LFD-Veh; b p < 0.05
vs. HFD-Veh.
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2.5. Renal AR Expression Positively Correlates with Ace2, Tmprss2, Furin, Ctsl, and
ADAM17 Expression

Finally, we performed a correlation analysis between AR and SARS-CoV-2 viral entry
proteins expression. AR mRNA expression showed a significant positive correlation with
SARS-CoV2 receptor Ace2 and all the cellular proteases studied (Tmprss2, furin, cathepsin
L, and ADAM17) with the exception of Tmprss4, which was negatively correlated with
AR expression (Figure 6A–F). On the other hand, LV AR mRNA expression was not
significantly correlated with Ace2 or any of the cellular proteases with the exception of
furin, which showed a negative correlation with AR (r = −0.44, p = 0.03).
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3. Discussion

Women with PCOS have increased prevalence of multiple cardiovascular risk factors
including obesity [39]. Body mass index (BMI) is positively associated with a worsened
cardiometabolic phenotype in women with PCOS [40]. Moreover, weight loss by lifestyle
modifications or bariatric surgery improves the deleterious cardiometabolic profile asso-
ciated with PCOS [41]. Women with PCOS are at increased risk for COVID-19 infection
and higher incidence of COVID-19-associated symptoms [23,42]. In the current study, our
findings suggest that women with PCOS could be a population at high potential risk of
increased cardiac and renal SARS-CoV-2 infection and consequently the possibility of expe-
riencing severe COVID-19-associated cardiac and renal deleterious outcomes. Moreover,
our results highlight that an obesogenic diet differentially modulate SARS-CoV-2 viral
entry proteins in cardiac and renal tissues.



Int. J. Mol. Sci. 2021, 22, 9746 8 of 19

The main findings of our study are: (1) HFD exacerbates DHT-induced increase in
body weight, fat mass, and cardiac and renal hypertrophy; (2) DHT increases cardiac and
renal AR expression; (3) Cardiac ACE2 and several cellular proteases (furin, cathepisn L,
and ADAM17) are upregulated by DHT at the mRNA or protein levels; (4) Renal ACE2 and
several cellular proteases (TMPRSS2, furin, cathepisn L, and ADAM17) are upregulated by
DHT, both at the mRNA and protein levels; (5) An obesogenic diet differentially modulates
multiple SARS-CoV-2 viral entry proteins in cardiac and renal tissues.

Obesity is a common metabolic disease, affecting 42.4% of US adults in the most recent
estimates from the 2017–2018 period [43]. Obesity prevalence is similar between adult men
and women overall or by age group [43]. Similar figures are observed worldwide with the
World Health Organization reporting that 39% of adults aged 18 years and over (39% of men
and 40% of women) were overweight in 2016, and 13% (11% of men and 15% of women)
were obese. The main causes of obesity are an increased intake of energy-dense foods
that are high in fat and sugars and a decrease in physical activity due to the increasingly
sedentary nature of many forms of work, changing modes of transportation, and increasing
urbanization. In the US, data from the National Health and Nutrition Examination Survey
(NHANES) from the 1999–2016 cycles showed that despite some minimal improvements
in total and low-quality carbohydrate intake, saturated fat intake still exceeded dietary
guidelines [44]. Total fat intake increased over time, and saturated fat made up about
12% of daily calories, 2% higher than the recommended daily amount. Assessment of diet
quality by the Healthy Eating Index 2015 (HEI-2015), which measures adherence to key
recommendations in the 2015–2020 Dietary Guidelines for Americans in a 0–100 range
(higher scores indicating better diet quality), showed a modest 2 points increase in the
abovementioned period, from 55.7 to 57.7, still far from a satisfactory score. Based on these
human data, obesity is highly prevalent worldwide, and inadequate fat intake could be one
of the causes leading to this epidemic. Our studies modulating obesity in a model of PCOS
using a HFD are aimed to address the effect of the obesity pandemic in women with PCOS.

Multiple studies have shown that COVID-19 disease progression severity and mortal-
ity are associated with underlying comorbidities including obesity, diabetes, and cardio-
vascular and renal disease, among others [5–10]. In particular, BMI is strongly positively
associated with hospitalization, intensive care unit admission, invasive mechanical ventila-
tion, and death in COVID-19 patients [9,45–48]. Obesity is highly prevalent in PCOS, as
evidenced by a meta-analysis that included more than 35 studies and 15,000 women with
PCOS; the study found that women with PCOS had increased prevalence of overweight,
obesity, and abdominal obesity [21]. Central or abdominal obesity, assessed by waist
circumference, is strongly positively associated with Homeostatic Model Assessment for
Insulin Resistance (HOMA-IR), an index of insulin resistance, in women with PCOS [49].
In our study, HFD-DHT mice showed a ~1.5- and ~3.0-fold increase in body weight and fat
mass compared with LFD-DHT mice (Figure 1), with the body weight having a synergistic
interaction between DHT and HFD. These findings suggest a critical role of the diet in
PCOS in body weight and composition in the presence of hyperandrogenism. The afore-
mentioned findings by us and others strongly suggest a link between obesity, COVID-19,
and PCOS that is worth further exploring at the molecular level and was the crux of the
current study.

PCOS is diagnosed by the presence of at least two of the following three criteria:
hyperandrogenism (biochemical or clinical), ovulatory dysfunction (oligo- or anovulation),
and polycystic ovary morphology, following the Rotterdam criteria [50]. Recent reports
suggest that women with PCOS are at increased risk of COVID-19 infection and worse out-
comes. For example, a cross-sectional case-control study showed that COVID-19 positive
outpatient women with PCOS had a higher incidence of COVID-19-associated symptoms
such as low-grade fever, anosmia, ageusia, and dry cough, among others, when compared
with COVID-19-positive non-hyperandrogenemic control women [42]. Moreover, a large
epidemiological study of more than 20,000 women with PCOS, matched 1:4 with control
women, found a 33% increase risk for COVID-19 infection compared to control women
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after adjusting for BMI, age, and impaired glucose regulation [23]. Those recent findings
stress the need to expand our knowledge on the interaction between PCOS and COVID-19.

Death from COVID-19-associated cardiac injury occurs in ~20–30% of hospitalized
patients and represents 40% of total deaths [27,28,51]. In a retrospective analysis of
5449 COVID-19 patients, 37% of them had acute kidney injury, which was more pro-
nounced in patients with respiratory failure [52]. Importantly, the adverse effects of
COVID-19 infection on the cardiovascular and renal systems are exacerbated in patients
with preexisting cardiac or renal injury or dysfunction [5,28]. In our study, both DHT and
HFD caused cardiac and renal hypertrophy (Figure 1). Surprisingly, the combination treat-
ment of DHT and HFD produced a synergistic effect on both cardiac and renal hypertrophy
that was larger than the effect of each individual intervention. Both cardiac hypertrophy
and renal tubular injury were found to be clinical features of SARS-CoV-1 and -2 patients
in post-mortem examination, despite presenting with normal kidney weights [53–55]. The
cardiac and renal hypertrophy triggered by DHT or HFD treatment and their synergistic
effect suggests a potential to aggravate COVID-19 associated pathology in those tissues in
PCOS. Together, our findings and those from others suggest the likelihood of cardiorenal
injury in clinical and experimental models of PCOS [19,56–58]. Those results highlight this
patient population as being in a high-risk category of more severe cardiac and/or renal
outcomes following COVID-19 infection, especially in those who are overweight or obese.

The increased case incidence and disease progression severity from COVID-19 ob-
served in men [11,12] can be, at least partially, explained by increased androgen levels
and/or AR activation [13,14]. This hypothesis is indirectly supported by the clinical evi-
dence that shows that men with androgenetic alopecia experience more severe COVID-19
symptoms [13] and that pre-pubertal males are more resistant to infection compared to
adults [14]. Biochemical elevation in circulating androgens, or hyperandrogenemia, is
present in ~80% of women with PCOS [17]. Furthermore, the Androgen Excess and
PCOS (AE-PCOS) Society considers PCOS a disorder of androgen excess or hyperandro-
genism [59]. Moreover, the PCOS diagnostic criteria from the AE-PCOS Society, one of
the three criteria used worldwide for PCOS diagnosis, considers hyperandrogenism (clin-
ical and/or biochemical) a sine qua non condition for the syndrome diagnosis [60]. The
main sources of androgens in PCOS are the ovary and the adrenal glands [61]. How-
ever, the adipose tissue, particularly the subcutaneous adipocytes, has been shown to
generate testosterone from the precursor androstenedione by the enzymatic action of 17β-
hydroxysteroid dehydrogenase type 5 (17β-HSD5) or AKR1C3 enzyme [62,63]. Notably,
AKR1C3 expression is upregulated in the subcutaneous adipose tissue from women with
PCOS [63]. Moreover, AKR1C3 expression is decreased in non-PCOS obese women follow-
ing weight loss [62]. Those findings suggest that the adipose tissue is not only a target of
androgens but also a source for those sex hormones in both PCOS and obesity. Additionally,
those findings may explain the higher circulating androgens in normally menstruating
obese women [64] and in women with atypical PCOS who have no evidence of adrenal
and/or ovarian hyperandrogenism [65]. Furthermore, this is supported by studies that
reported a positive correlation between androgens and BMI in PCOS [66] and between
subcutaneous fat 17β-HSD5 expression and BMI in non-PCOS obese women [62]. Our
findings showed that DHT-treated mice had increased renal and cardiac AR protein levels
(Figure 2), suggesting that they exhibit increased androgen signaling due to the increase
in both AR activation (due to increased ligand levels) and AR expression. Notably, HFD
treatment alone increased renal AR protein expression, which may be attributed to an
increase in adipose tissue-derived androgens due to an increase in fat mass that could lead
to increased circulating androgens in HFD-fed mice. Interestingly, circulating androgens in
women with PCOS are positively associated with the severity of metabolic dysfunction and
obesity [25–28], both being well-recognized comorbidities in the severity of COVID-19 [29].
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Coronaviruses’ viral entry into target cells depends on the binding of the S1 subunit
of the spike (S) protein to a cellular receptor followed by S protein proteolytic cleavage and
activation at the S1/S2 subunits interphase. The fusion of viral and cellular membranes is
then driven by the S2 transmembrane subunit. ACE2 is the cellular receptor for SARS-CoV
and SARS-CoV-2 [67]. A number of cellular proteases can proteolytically cleave, or prime,
CoV S proteins. The main cellular protease identified is the transmembrane protease serine
2 (TMPRSS2). Other proteases such as TMPRSS4, cathepsin L, furin, and ADAM17 can
also prime SARS-CoV S proteins [34,35,68,69]. Availability of these proteases on target cells
largely determines whether CoVs enter cells through plasma membrane or endocytosis
and which cells or tissues are susceptible to CoV infection.

Clinical studies have shown that high ACE2 protein expression in specific organs,
including the heart and the kidney, positively correlates with the degree of organ damage
in SARS patients [12]. ACE2 cleaves Ang II to form the vasodilatory and antiproliferative
peptide Ang (1–7) [70]. ACE2 is highly expressed in the kidney and heart [71]. Our
study showed that DHT upregulates renal ACE2 levels (mRNA and protein) in both diets
(Figure 4A,G). However, DHT-mediated cardiac ACE2 upregulation was only observed in
the presence of an obesogenic diet (Figure 3A,F). Notably, renal ACE2 expression is higher
in male mice compared with female counterparts [72], a finding that may explain the DHT-
mediated expression upregulation we observed in DHT-treated mice [73]. Alternatively,
this increase in ACE2 could be a compensatory mechanism to counterbalance Ang II-
mediated deleterious actions [74]. This notion is supported by a study showing that ACE2
is tissue-specifically upregulated in the kidney, but not the heart, of diabetic mice to exert
renoprotection [75]. The interaction between androgens, ACE2, and cardiorenal injury is
complex, and further studies are needed to fully understand those interactions.

In the present study, while renal TMPRSS2 mRNA levels were upregulated by DHT
treatment independently of the diet, the protein expression was significantly upregulated
only in HFD-DHT mice compared to their LFD-fed counterparts. This increase could be due
to increased renal expression of the AR (Figure 2), which was reported to regulate TMPRSS2
transcription and translation [76,77]. This suggestion is supported by the observation that
HFD-DHT mice, which showed the highest AR mRNA and protein level, also had the
highest increase in TMPRSS2 (Figure 4). Moreover, correlation analysis of AR and Tmprss2
mRNAs showed a significant positive correlation (Figure 6). The regulation of TMPRSS2
by androgens has been proposed as a likely potential mechanism to explain the male
predominance in the COVID-19 pandemic [78] and possibly another risk factor for severe
COVID-19 in women with PCOS especially those who are overweight or obese.

Another transmembrane serine protease that we assessed in the current study was
TMPRSS4, also known as channel-activating serine protease (CAP2). TMPRSS4 has been
postulated as an alternative protease involved in SARS-CoV-2 viral entry into human
enterocytes in the gastrointestinal tract [69] and possibly other tissues [79]. One of the main
functions of TMPRSS4 is to activate the epithelial sodium channel (ENaC), which promotes
sodium reabsorption in distal tubules [80]. Androgens can upregulate the α-subunit of
ENaC in the kidneys and hence increase sodium reabsorption and blood pressure [81].
Interestingly, in our study, DHT-treated mice showed downregulation in renal TMPRSS4
levels (Figure 4). Additionally, TMPRSS4 mRNA expression was negatively correlated
with AR mRNA (Figure 6). TMPRSS4 downregulation could be a defense mechanism
to counterbalance the increased expression of ENaC channel in the kidneys. Notably,
TMPRSS4 expression levels were below the detection limit in LV samples in our study, a
finding consistent with human expression data [82].

There is strong clinical evidence that COVID-19 affects the heart [83]; however, cardiac
Tmprss2 expression is relatively low, raising the question of the mechanism of SARS-CoV-
2 mechanism of entry in such tissue. Recent studies have shown that other S-protein
proteases, such as cathepsin L and furin, are highly expressed in multiple types of cardiac
cells, and those could be the main proteases involved in SARS-CoV-2 entry in cardiac
tissue [84]. Surprisingly, SARS-CoV-2 S protein has a furin-like cleavage site which is not
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present in other CoV S proteins [85]. Notably, furin is not only important for membrane-
mediated viral fusion and entry, but also for the cleavage of the newly synthesized S
proteins in the Golgi apparatus that proceeds the assembly and release of new virions
by exocytosis [86]. In our study, cardiac and renal furin mRNA were upregulated by
DHT, but furin protein was only upregulated by DHT in the kidney of LFD-fed animals
(Figures 3 and 4). Moreover, in the kidneys, both total and active (soluble) furin protein
expression was increased by DHT (Figure 4 and Supplementary Figure S1). The increased
renal furin levels in DHT-treated mice may suggest that more viral propagation is likely to
occur following SARS-CoV-2 infection in PCOS probably leading to more severe COVID-19
outcomes.

Cathepsin L is an endosomal cysteine protease that mediates the cleavage of the
S1 subunit of the S glycoprotein and facilitates virus and host cell endosome membrane
fusion. Cathepsin L also mediates viral replication by inducing viral RNA release [87]. Ou
et al. showed that SARS-CoV-2 enter cells mainly via endocytosis and that cathepsin L
inhibitors blocked the viral entry in cells expressing human ACE2 [88]. While no changes
in renal cathepsin L levels were observed in DHT-treated mice in LFD, it was significantly
upregulated by DHT in HFD-fed mice (Figure 4K), suggesting a pathway for increased renal
SARS-CoV-2 viral entry by endocytosis following infection in obese women with PCOS.
Notably, despite higher cardiac cathepsin L mRNA levels in HFD-DHT mice compared to
LFD-DHT mice, its protein levels were reduced (Figure 3D,I). Cathepsin L overexpression
was reported to improve cardiac function, inflammation, and fibrosis in models of cardiac
hypertrophy, and its deficiency in mice results in progressive dilated cardiomyopathy [89].
Thus, based on our findings, although lower viral cardiac entry via endocytosis may be
expected in obese women with PCOS, they are at a higher risk of COVID-19-associated
cardiomyopathy.

The main enzyme responsible for ACE2 shedding is ADAM17, a metalloproteinase
enzyme that can also shed a diverse variety of membrane-anchored cell adhesion molecules,
receptors, and cytokines, including TNF-α and IL-6 receptor [90]. Our findings show that
ADAM17 protein expression was increased in response to DHT similarly in both diets.
ADAM17 may not only facilitate the virus entry but also may enhance direct tissue damage
through local TNF-α release [91]. The increased cardiac and renal ADAM17 expression
in our hyperandrogenemic PCOS model suggests the possibility of local cardiac and
renal injury following COVID-19 infection in the PCOS patient population. Moreover,
the increased shedding of TNF-α and other cytokines could contribute to a more severe
cytokine storm following SARS-CoV-2 viral infection by increasing the levels of circulating
cytokines.

Circulating ACE2 levels are higher in men than in women and subjects with diabetes
or cardiovascular diseases [92]. Despite similar circulating ACE2 protein levels in both
vehicle and DHT-treated mice, a marked elevation in urinary ACE2 protein was observed
in DHT-treated mice on both diets (Figure 5). Urinary shedding of kidney ACE2 is the
main source of urinary ACE2 and is mediated by ADAM17 [93]. The increase in urinary
ACE2 protein is likely due to both the DHT-mediated increase in renal ACE2 and ADAM17
protein expression (Figure 4G,L). Urinary ACE2 is increased in patients with chronic kidney
disease compared with healthy controls, and a further rise in urinary ACE2 is observed in
patients with diabetic nephropathy compared with patients with other renal disorders [94].
Furthermore, in adolescents with uncomplicated type 1 diabetes mellitus, urinary ACE2
protein excretion and activity levels were elevated compared with healthy controls and
correlated with higher HbA1c but were not associated with eGFR, blood pressure, or
albuminuria [95]. Additionally, studies in a mouse model of type 2 diabetes mellitus
showed ACE2 protein is upregulated in renal tubules from diabetic mice, and the change in
tubular ACE2 was translated into urinary, but not circulating, ACE2 protein increases [96].
Our findings of a remarkable increase in urinary ACE2 in DHT-treated mice irrespective of
the diet may suggest that urinary ACE2 could be an early marker of renal injury in PCOS.
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Correlation analysis between AR and Ace2, Tmprss2, furin, cathepsin L, and Adam17
mRNA expression showed a significant positive correlation, suggesting expression regu-
lation by androgens through the androgen receptor (Figure 6). Those findings align with
previous ones that have shown TMPRSS2 and ACE2 upregulation by androgens in other
tissues. For example, TMPRSS2 protein expression is upregulated by androgens in prostate
cancer cells and prostate tumors [76,77]. Moreover, ACE2 shows sexual dimorphic expres-
sion; male mice have increased renal Ace2 protein expression compared with females [72].
Furthermore, more recently, androgen signaling has been shown as a key modulator of
ACE2 expression in human embryonic stem cell-derived cardiac cells [97]. Overall, our
findings showed AR mRNA expression positive correlation with multiple SARS-CoV-2
viral entry proteins in the kidney, suggesting that this organ is a major target of excess
androgen action in PCOS.

COVID-19 is an ongoing pandemic, and little is still known about its acute and
long-term effects on particular populations. Most women with PCOS present clinical or
biochemical hyperandrogenism. In our study, a preclinical animal experimental model of
PCOS generated by peripubertal androgen exposure showed an upregulation of cardiac and
renal SARS-CoV-2 viral entry proteins, an effect differentially modulated by an obesogenic
diet. In particular, the kidney showed the most striking upregulation by excess androgens
of the SARS-CoV-2 receptor ACE2 as well as multiple cellular proteases (TMPRSS2, furin,
cathepsin L, and ADAM17) involved in viral entry. HFD had a modulatory effect on several
SARS-CoV-2 viral entry proteins; in particular, in the heart DHT upregulated SARS-CoV-2
receptor ACE2 mRNA and protein only in the animals maintained in an obesogenic diet.
An exciting finding was that androgens not only upregulated their own receptor, the AR,
but also that HFD by itself upregulated renal AR protein expression. In summary, our
study suggests that women with PCOS with hyperandrogenism may be at a higher risk
of worsened cardiac and renal outcomes when suffering from COVID-19. Moreover, our
findings on cardiac and renal AR and SARS-CoV-2 viral entry proteins regulation indicate
possible molecular mechanisms by which excess androgens and HFD interact and may
lead to increased cardiorenal COVID-19 severity in PCOS (Figure 7). Collectively, our study
highlights the strong need for effective, selective, and safe androgen receptor blockers to
mitigate not only metabolic and cardiovascular symptoms in women with PCOS but also
possible COVID-19-associated outcomes. Our study also shows that weight loss in PCOS
not only has reproductive and cardiometabolic benefits but could also have a protective
effect on COVID-19-associated outcomes. Finally, our findings on AR and SARS-CoV-
2 viral entry proteins may apply to other populations with endogenous or exogenous
elevated androgens.
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4. Materials and Methods
4.1. Animals

Three-week old female C57BL/6NCrl mice were obtained from Charles Rivers
(Wilmington, MA, USA). Animals were maintained under standard housing conditions
under controlled temperature and humidity environment with a 12:12 h light-dark cycle.
The mice were maintained in either high-fat diet (HFD, 60% kcal fat) (D12492, Research
Diets, Inc., New Brunswick, NJ, USA) or control low-fat diet (LFD, 10% kcal fat, matched
for sucrose content, Research Diets, Inc., D12450J). Food and water were provided ad
libitum throughout the study. All experimental protocols were performed in accordance
with the National Institutes of Health’s Guide for the Care and Use of Laboratory Animal
8th edition (2011) and reviewed and approved by the Institutional Animal Care and Use
Committee of the University of Mississippi Medical Center.

4.2. Experimental Design

Following a four-day acclimatization period, the peripubertal androgen exposure
model of PCOS was induced in mice following the method of Caldwell, et al., [98] with
minor modification, Briefly, mice were randomly assigned to be implanted s.c. with
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dihydrotestosterone (DHT, A2570–000, 8 mg/tube, Steraloids Inc., Newport, RI, USA) in
Silastic tubes (length: 1.5 cm; id: 1.47 mm; od: 1.95 mm, catalog 508–006, Dow Corning
Corp, Midland, MI, USA) or empty (vehicle) Silastic tubes (n = 16/group). Both, DHT-
treated and vehicle animals, were randomly assigned to be maintained in HFD or LFD
(n = 8/group) for 90 days. At the end of the experimental period, the blood was collected
via cardiac puncture, followed by perfusion with saline under isoflurane gas anesthesia.
The kidneys and LV were harvested, weighted, and flash frozen in liquid nitrogen. Tissues
were stored at −80 ◦C for further processing. Tissue weights were corrected by tibia length
(TL) measured with an analytical caliper. At the end of the experiment, all DHT-filled
Silastic tubes were removed and checked for the presence of remnant DHT confirming the
continuous delivery of DHT through the experimental period.

4.3. Body Composition

Weekly body weights were recorded throughout the experimental period. Addition-
ally, weekly body composition (lean and fat mass) measurements were performed by
EchoMRI (4in1-EF-016 model Body Composition Analyzer; EchoMRI, Houston, TX, USA).

4.4. mRNA Expression Quantification

Total kidney and LV RNA were extracted, DNAse treated, quantified, and reverse
transcribed (5 µg), as previously described [37,99]. Quantitative RT-PCR was performed
using TaqMan gene expression assays (Applied Biosystems, Foster City, CA, USA) for
Ace2 (Mm01159006_m1), Tmprss2 (Mm00443687_m1), Tmprss4 (Mm00520486_m1), Furin
(Mm00440646_m1), Ctsl (Mm00515597_m1), Adam17 (Mm00456428_m1), Gapdh (Mm99999
915_g1), B2m (Mm00437762_m1), Actb (Mm02619580_g1), and 18S rRNA (Hs99999901_s1).
Reactions were performed with Luna universal probe qPCR master mix (New England
Biolabs, Ipswich, MA, USA). Reactions were cycled (50 ◦C for 2 min, 95 ◦C for 20 s, followed
by 40 cycles of 95 ◦C for 1 s and 60 ◦C for 20 s) in a QuantStudio 3 (Applied Biosystems)
cycler. PCR product quantification was performed by the ∆∆Ct quantification method
and expressed as arbitrary units (AU) standardized against the geometric mean of four
reference genes (Actb, B2m, Gapdh, and 18S rRNA).

4.5. Western-Blot Analysis

Kidney and LV tissues were homogenized in radioimmunoprecipitation assay (RIPA)
buffer containing Halt protease and phosphatase inhibitor cocktail (ThermoFisher Scientific,
Waltham, MA, USA). The total protein concentration was quantified with the bicinchoninic
acid protein assay kit (ThermoFisher Scientific, Waltham, MA, USA). Fifty micrograms
of total protein were resolved by SDS-PAGE and transferred to PVDF membranes. The
membranes were blocked with 5% nonfat dry milk in Tris-buffered saline containing 0.1%
Tween 20 for 1 h at room temperature, and then incubated overnight at 4 ◦C with the
following primary antibodies: Androgen receptor (1:2000 for the LV, 1:1000 for the kidney;
Abcam ab133273, Cambridge, MA, USA), ACE2 (1:10,000; Abcam ab108252, Cambridge,
MA, USA), TMPRSS2 (1:1000 for the LV, 1:10,000 for the kidney; Abcam ab92323, Cam-
bridge, MA, USA), TMPRSS4 (1:5000; Proteintech 11283–1-AP, Rosemont, IL, USA), furin
(1:5000; Abcam ab183495, Cambridge, MA, USA), cathepsin L (1:500; ThermoFisher Scien-
tific MA5–23891, Waltham, MA, USA), ADAM17 (1:500; ThermoFisher Scientific PA5-27395,
Waltham, MA, USA) or GAPDH (1:3,000,000; Cell Signaling Technology 5174, Danvers,
MA, USA). The membranes were then incubated with horseradish peroxidase-conjugated
goat anti-rabbit or anti-rat IgG secondary antibodies (1:10,000; Jackson ImmunoResearch
Laboratories 111-035-003 and 112-035-003, West Grove, PA, USA) for 1 h at room tempera-
ture. Detection by chemiluminescence was performed with SuperSignal West Pico PLUS
kit (ThermoFisher Scientific, Waltham, MA, USA). The ChemiDoc MP imaging system
(Bio-Rad, Hercules, CA, USA) and ImageJ (National Institutes of Health, Bethesda, MD,
USA) were used to capture and quantify the images, respectively.
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4.6. Serum and Urinary ACE2

Serum was obtained from blood after one-hour incubation at room temperature and
centrifugation at 1300× g for 10 min at 4 ◦C. Urine was collected from animals placed in 24-h
metabolic cages after 12 weeks of treatment. ACE2 protein levels were quantified in serum
and urine samples using a commercial ACE2 ELISA kit (Abcam ab213843, Cambridge,
MA, USA) according to the manufacturer’s instructions. Urinary ACE2 was corrected
for urinary creatinine, which was measured using the Mouse Creatinine Colorimetric Kit
(Crystal Chem 80350, Elk Grove Village, IL, USA).

4.7. Statistical Analysis

The results are presented as mean ± SEM. Statistical analysis were performed using
two-way ANOVA followed by Fisher’s LSD post hoc tests. Statistical calculations were
performed with Prism software (GraphPad, Inc., San Diego, CA, USA, version 8.4.3).
Differences between groups were considered significant if p ≤ 0.05. The number of animals
required per group was calculated by performing a power analysis using Statmate software
(version 2.0, GraphPad, Inc.). A sample size of 4–8 animals/group has 80–99% power
to detect a difference equivalent to 0.7-fold of control mean values between groups at a
significance level (alpha) of 0.05 (two-tailed).

Supplementary Materials: Supplementary materials can be found at https://www.mdpi.com/
article/10.3390/ijms22189746/s1.
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