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Abstract

Consistent individual differences in animal performance drive individual fithess under vari-
able environmental conditions and provide the framework through which natural selection
can operate. Underlying this concept is the assumption that individuals will display consis-
tent levels of performance in fithess-related traits and interest has focused on individual var-
iation and broad sense repeatability in a range of behavioural and physiological traits.
Despite playing a central role in maintenance and growth, and with considerable inter-indi-
vidual variation documented, broad sense repeatability in rates of protein synthesis has not
been assessed. In this study we show for the first time that juvenile flounder Platichthys fle-
sus reared under controlled environmental conditions on the same plane of nutrition for 46
days maintain consistent whole-animal absolute rates of protein synthesis (Ag). By feeding
meals containing '°N-labelled protein and using a stochastic end-point model, two non-ter-
minal measures of protein synthesis were made 32 days apart (d;4 and dgg). As values
(mass-corrected to a standard mass of 12 g) showed 2- to 3-fold variation between individu-
als on dy4 and due but individuals showed similar Ag values on both days with a broad sense
repeatability estimate of 0.684 indicating significant consistency in physiological perfor-
mance under controlled experimental conditions. The use of non-terminal methodologies in
studies of animal ecophysiology to make repeat measures of physiological performance
enables known individuals to be tracked across changing conditions. Adopting this
approach, repeat measures of protein synthesis under controlled conditions will allow indi-
vidual ontogenetic changes in protein metabolism to be assessed to better understand the
ageing process and to determine individual physiological adaptive capacity, and associated
energetic costs of adaptation, to global environmental change.
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Introduction

Consistent individual differences (CID) [1] in physiology and behaviour drive individual fit-
ness (i.e. survival and reproductive output) under variable environmental conditions and
hence provide the framework through which natural selection can operate [2, 3, 4]. Underlying
this concept is the assumption that in order for selection to be able to operate, individuals will
display consistent levels of performance in fitness-related traits, i.e. they will maintain the same
levels of performance and/or the same relative performance ranking over time compared to
other individuals.

Although greater attention has focused on individual variation and broad sense repeatability
(defined in [5] as ‘the extent to which individual differences in scores are maintained over time
(in a given context)’) in behavioural performance such as personality/boldness, courtship/mate
choice and parental behaviour (reviewed in [6]), some physiological traits have also been exam-
ined and there is growing interest in describing CIDs in physiological performance and under-
standing how individual physiological and behavioural performance traits interact to
determine specific life-histories within the fast-slow pace of life continuum [1, 7]. Most studies
that have examined CIDs in physiology have focused on locomotor performance (reviewed in
[8]) and metabolic rate (reviewed in [9, 10]) given the obvious fitness-related effects of individ-
ual variation in these parameters with regards to predator evasion and food capture and in
maximisation of energy allocation for growth and reproduction respectively. However, individ-
ual performance consistency has been assessed for a number of other physiological parameters
such as metabolic enzyme activities [11], evaporative water loss [12-15], thermal conductance
[15] and blood chemistry parameters [16, 17, 18], although these parameters have been less
well-studied.

Proteins play a central role in maintenance (i.e. tissue replacement) and growth in animals
through the processes of protein synthesis and breakdown [19] with previous studies highlight-
ing how inter-individual differences in rates of protein synthesis and breakdown affect growth
performance in molluscs [20, 21, 22] and fishes [23, 24, 25]. This work has shown that faster
growing and/or more efficient individuals do so through having lower rates of protein turnover
(equivalent to protein breakdown in growing animals) [26]. However, most studies of protein
synthesis in non-mammalian animals have made single terminal measures using radiolabelled
(’H- or "*C-labelled, but usually *H-phenylalanine) amino acids using the flooding dose tech-
nique of Garlick et al. [27] (see reviews by Houlihan et al. [28] and Fraser and Rodgers [29] for
application in fishes). Although the wide application of the flooding dose technique using *H-
phenylalanine across a range of non-human taxa enables direct comparison of data between
studies within and across taxa [26, 28, 29], the drawback of this technique is that it provides a
single terminal measure of protein synthesis precluding any studies of broad sense repeatability
and so conclusions drawn on inter-individual differences in physiological performance are
based on a single measure. In contrast, the use of stable isotopes, i.e. '>C- or "’N-labelled
amino acids, is required in human studies, and is more widely used in mammalian studies of
protein synthesis [30, 31]. In studies of human protein metabolism, repeat measures of protein
synthesis using stable isotopes are common and, for example, longitudinal studies have tracked
rates of protein synthesis for known individuals under different exercise regimens [32, 33] or
dietary regimens [34], or before and after surgery [35] or the application of medical treatments
[36]. However, despite the use of repeated measures of protein synthesis using stable isotopes
in mammalian studies (op. cit.) and in some ectotherm studies (e.g. Mytilus edulis [37]; Pla-
tichthys flesus, [38]), broad sense repeatability, per se, has not been quantified.

Alternative stable isotope techniques for measuring rates of protein synthesis in fish have
been developed using N-labelled protein [39, 40], deuterium oxide (*H,O) [41] or *H-
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labelled amino acids [42, 43]. The advantage of these stable isotope methodologies is that they
are either non-terminal as they determine protein synthesis through the measurement of
whole-animal nitrogen-flux rates [39, 40] or offer the potential for non-terminal biopsy sam-
pling [41, 42, 43] and therefore offer the possibility that repeat measures of protein synthesis
can be made on known individuals. However, repeat measures in fish have only been used
once, by Carter et al. [38], to examine seasonal changes in protein synthesis and growth in juve-
nile (18-60 g) flounder Platichthys flesus over 212 days. Although Carter et al. [38] made three
repeat measurements on known individuals, the protein flux data at different times of the year
were reported as group mean values to examine seasonal changes in protein metabolism and
growth and quantifying individual variation and consistency was not the focus of the study.
Thus, although inter-individual differences in protein metabolism in fishes are well docu-
mented [23, 24, 25], performance consistency and broad sense repeatability have not been
assessed. However, since inter-individual differences in protein synthesis in fish can be due to
differences in body size, plane of nutrition and abiotic factors such as temperature [28, 29, 44],
these factors will need to be controlled for when seeking to determine individual consistency
for this labile physiological trait. Therefore, the aim of this study was to assess individual con-
sistency in rates of protein synthesis (mass-corrected to a standard size) using '*N-labelled pro-
tein in individual juvenile flounder Platichthys flesus reared under constant environmental
conditions and maintained on the same plane of nutrition for 46 days.

Materials and Methods
Fish Husbandry

Eighteen juvenile flounder (Platichthys flesus L.) were caught using a hand-towed 1 m beam
trawl from the intertidal stretches of the Tarty Burn within the River Ythan estuary (Aberdeen-
shire, UK; 57.3358°N, 2.0115°W) [45]. Each beam trawl tow lasted approximately 60 seconds
and was towed for a distance of 30 to 50 metres in a water depth of approximately 30 cm in the
Tarty Burn at low tide. At the end of each tow, juvenile flounder were quickly transferred to a
bucket containing 25 litres of seawater aerated by a battery-powered air pump and all other
animals in the net were quickly released back to the Tarty Burn. After 5 tows, 18 flounder of a
suitable size were collected. Flounder were transferred to the seawater aquarium at Aberdeen
University School of Biological Sciences (a journey time of approximately 30 minutes) where
they were anaesthetized (MS222,0.2 g 1Y) [38] to determine initial mass (day 1, d;) and held
individually in 10 L tanks (14°C, 33 psu; 12 h light: 12h dark photoperiod). The flounder
(mean+SD initial mass 10.02+1.91 g, range = 6.34-12.91 g) were fed daily a single meal of rag-
worm Nereis virens (supplied by Seabait Ltd., Northumberland, UK) approximating to 4% of
their wet body mass each day to maintain the fish on the same plane of nutrition during the
experiment: this daily ration was offered to the fish at the same time of day (between 9 a.m.
and 10 a.m.) and was always consumed by each fish on each day. Rates of protein synthesis
were determined using a non-terminal >N technique (after Carter et al. [38]; Carter et al. [39];
with additional modifications described below) on days 14 (d;4) and 46 (d,s). No mortality or
disease symptoms were observed during the course of the study.

['°N] methodology

Two non-terminal measures of protein synthesis were made 32 days apart (d;4 and dys) using
the stochastic end-point model [38, 39, 46]. Uniformly labeled '°N-algal protein (0.041g 90%
Atom Percent Excess; Martek BioSciences Corporation, MD, USA) was first mixed thoroughly
with porcine gelatine (0.107 g; Sigma) and then mixed with 500 pL distilled water. Pellets (2
mm diameter x 5.0 mm long) were made by setting the gelatine in silicon tube and cut to length
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under a dissection microscope. Each labeled gelatine pellet was inserted into the washed gut of
a section of Nereis of known mass to provide a labeled meal (ca. 4% body mass d™*) for each
flounder. Reference gelatine and Nereis were prepared without the addition of '°N in the same
manner. Five unlabeled and five labeled preparations were selected at random, frozen (-20°C),
freeze dried (-60°C; 48 hours), ground and each preparation sampled in triplicate by combus-
tion mass spectrometry (see below). The Nereis meals were labelled at 0.879+0.008 (n = 5)
Atom Percent Excess. The mean coefficient of variation (CV) of the five triplicates of the
enriched food delta was 0.5% (range 0.4-2.0%) and the CV of the unlabelled food delta was 4%
(range 0.7-10.8%). The protein content of the labelled meals was 7.29+0.03% (n = 15) of the
wet mass as determined from the total N content of the sample from mass spectrometry data
using a conversion factor of 5.85 as the ratio of N:protein [47]. Protein consumption on d;4
and d,e were expressed on an absolute basis (A,) as mg protein dt

On d;4 and de, the same experimental protocol was followed (except for the timings of
water sampling on de, see below). Labeled Nereis meals were fed to individual flounder
(between 9 a.m. and 10 a.m.); care was taken to ensure that the food was consumed whole.
Individual flounder were then transferred to 1.5 L of aerated water where they remained for 72
h (d;4) or 48 h (d,6) (see below) with regular water changes. During water changes (see below
for timings), 30 mL samples were taken in order to measure the excretion rate of ammonia-
Nitrogen (Ay) using an ion-selective electrode (Unicam, UK). At the same sampling times, 1 L
samples were collected and acidified (5 ml of 2M HCI) for isotope analysis. The ammonia was
trapped in boric acid [26, 39], frozen (-20°C), freeze dried (-60°C, 7 d) and duplicate borate
samples analysed for '’N-ammonia enrichment by combustion in a Carlo Erba NA 1500NC
sample converter linked to a Micromass Optima Isotope Ratio Mass Spectrometer. The rate of
whole-body protein synthesis was calculated from the rate of protein flux through the body less
the total nitrogen excretion as described in Carter et al. [38] and Carter et al. [39]. On d4,
excretion and isotope abundance samples were collected at 6, 12, 24, 36, 48, 60 and 72 h follow-
ing the meal. On d, a second determination of whole-body protein synthesis was made using
the same methodology as on d,, except isotopic samples were only collected and total ammo-
nia-N excretion was only measured collected 24 and 48 h after the meal (see results). Whole-
body rates of protein synthesis were calculated on an absolute basis (A,) as mg protein synthe-
sised d".

Ethics statement

No specific permits were required to collect the animals and the sampling procedures were not
subject to review or approval prior to collection. Animals were collected using a standard field
sampling technique. The species collected in this study is not endangered or protected. The
work was conducted in 1995 before the introduction of University Ethical Review Committees
at UK universities and therefore was not subject to approval or review by a University Commit-
tee. The experimental work was conducted under licence from the UK government Home
Office under Animals (Scientific Procedures) Act 1986.

Statistical analysis

All data in this study can be found in S1 File. Statistical comparisons and curve fitting were per-
formed using SPSS v20.0 (SPSS Inc, USA). Data are presented as mean values + one standard
deviation (SD). The cumulative rate of isotope excretion (e*) was expressed as a percentage of
>N in the meal (dose) and described using the equation e* = a(1-e™) where t is time after feed-
ing and a and k are constants [39]. The rate of ammonia excretion (Ay, ug N g'1 h') was
described using the equation Ay = ae™ where t is time after feeding and a and b are constants
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[48]. Differences in the cumulative rate of isotope excretion and rate of ammonia-N excretion
over time were examined using repeated-measures ANOVA to identify the period of constant
isotope excretion rate and constant ammonia excretion, and hence allow flux and synthesis cal-
culations to be made with least overestimate [39, 46]. Since individual fish increased signifi-
cantly in body mass during the 46 day experiment (see results), absolute rates of protein
synthesis on d;4 and d,s were scaled to a standard 12 g fish A (sq) using the equation Agq) =
As(obs)*(12/M0b5)0'74 [20] where Ag(,bs) and M, are the absolute rate of protein synthesis (mg
d™") and body mass (g) for an individual fish and 0.74 is the mass-exponent for protein synthe-
sis [49]. Absolute rates of protein consumption on d;, and d,s were similarly mass-corrected
for a 12 g flounder using a mass-exponent of 0.75 [50, 51]. Anabolic stimulation of protein syn-
thesis on d,4 and d4¢ was calculated from the mass-corrected data as A/A, (mg protein synthe-
sized mg ' protein consumed). Mass-corrected absolute rates of protein synthesis and protein
consumption and Ay/A, values for each fish on d;, and d, were compared using paired ¢ tests.
In addition, individual temporal consistency of rates of protein synthesis on the same plane of
nutrition was assessed using interclass correlation. Although broad sense repeatability is tradi-
tionally assessed using the intraclass correlation coefficient [52, 53], in studies where only two
measures of performance are being compared the interclass correlation coefficient (Pearson’s
product-moment correlation, ) is used as an estimate of broad sense repeatability over time
[54, 55, 56]. Interclass correlation assesses the consistency of a trait relative to the mean, i.e.
examines whether individuals are consistently placed within the population distribution [55].

Results

On d, 4, cumulative "°N excretion (Fig 1A) was described bye* = 27.36(1-¢ %Y (2 = 0.93,

n =7, P < 0.001) with a constant rate of isotope excretion attained 24h after feeding the
labelled meal. Comparison of the cumulative rate of isotope excretion revealed significant dif-
ferences 6-72 h post-feeding (repeated-measures ANOVA, Fg 1,5 = 118.1, P < 0.001) however,
rates were similar between 24-48 h post-feeding (Tukey HSD test, all P > 0.05). Therefore, the
rate of isotope appearance was constant 24-48 h post-feeding indicating a steady state had
been achieved and on d,s isotopic samples were only collected at 24 and 48h after feeding. On
d,4, ammonia excretion rates were determined for each individual and the total ammonia
excretion calculated for the 72 h period following feeding the labeled meal (Fig 1B). Ammonia
excretion rates were described by Ay = 8.01e ***”* (* = 0.87,n = 7, P < 0.001). Comparison of
ammonia excretion rates 6-72 h post feeding revealed significant differences (repeated-mea-
sures ANOVA, Fg 1,5 = 76.4, P < 0.001) however, rates were similar between 24-48 h post-
feeding (Tukey HSD test, all P > 0.05). Therefore, constant rates of ammonia excretion and
cumulative isotopic excretion 24-48 h after feeding the labeled meal allowed the stochastic
end-point model to be used to calculate individual rates of protein synthesis between 24 and 48
h after feeding the labeled meal.

The 18 juvenile flounder increased in size over the 46 day experiment and individual body
masses on d;4 and dye were significantly different from each other (Table 1). As a result the
protein consumption and synthesis data were mass-corrected to a standard mass of 12 g.
Although individual flounder were feeding at the same plane of nutrition (ca. 4% body mass d°
! ration) over the 46 day experiment, whole animal growth rates varied between 14.5 and 91.9
mg wet mass d”' (mean growth rate 44.9 + 21.4 mg wet mass d™*). For both protein consump-
tion and protein synthesis, mass-corrected absolute rates on d;4 and dys were similar (P > 0.05;
Table 1). Therefore, the anabolic stimulation of protein synthesis on d,, and d s were not sig-
nificantly different (Table 1; P > 0.05) with on average 1.13 mg protein synthesized per mg
protein consumed. A significant positive correlation was found between the mass-corrected
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Fig 1. Validation of stochastic end-point model to measure rates of protein synthesis in P. flesus on d44. (a) The mean (+ SD) cumulative excretion of
5N (expressed as a percentage of the dose) and (b) the mean (+ SD) ammonia-nitrogen excretion (ug N g™ body mass h™') over 72 hours after feeding a 4%
body mass meal of Nereis virens labeled with *°N to juvenile flounder Platichthys flesus (11.74 +1.98 g, n = 18).

doi:10.1371/journal.pone.0152239.g001

absolute rates of protein synthesis on the two measurement days (Fig 2; r = 0.684, P = 0.002)
indicating significant consistency in individual rates of protein synthesis measured on d;, and
dye for fish maintained on the same plane of nutrition for 46 days under controlled environ-
mental conditions.

Discussion

This study has utilized the stochastic end-point method of Waterlow et al. [46] (as modified by
Carter et al. [39]) to measure in vivo whole-animal rates of protein synthesis. Our validation
data show that between 24 and 48 hours post-feeding both ammonia excretion and cumulative
isotope excretion rates were constant, as reported in other studies using the same methodology
[38, 39, 57, 58, 59]. Fish appear well suited to the application of the stochastic end-point model
as labelled nitrogen appears in a single major excretory product, ammonia, which on average
accounts for approximately 80-90% of total N excreted with the remaining excreted primarily
in the form of urea [60, 61]. Although urea was not measured in the present study, previous
studies on a range of teleost species that have used this method to measure rates of protein syn-
thesis have concurrently measured rates of ammonia (Ay) and urea (Uy) excretion and isotope
labelling of these excretory products. These studies [38, 39, 57, 58, 59] have shown that rates of
urea excretion are low (Uy equal to 15.7 £ 9.1% of total nitrogen excretion (Ty) assuming that
Tn = Ax + Uy) and fall within the values expected for teleost fishes [60, 61]. In addition, stud-
ies using the same methodology have shown that urea remains unlabelled up to 72 h after feed-
ing the uniformly-labelled protein [57, 59] indicating that the nitrogenous waste derived from
the labelled food is excreted solely in the form of Ax. Ammonia-N is the primary end-product
for nitrogenous excretion derived from amino acid oxidation whereas urea-N is primarily
derived from pyrimidine and purine base excretion [59, 62].

The absolute rates of protein synthesis for juvenile flounder measured in this study are at
the magnitude expected at this temperature given the plane of nutrition of the fish (Fig 3; Data
presented in S1 Table), providing confidence in the methodology and the resulting protein syn-
thesis data. Fig 3 summarises the available data on absolute rates of protein consumption and
protein synthesis (both mass-corrected to a 12 g fish) in fishes reared between 14 and 16°C. As

Table 1. Absolute rates (mg d™') of protein consumption (A,) and protein synthesis (A) and anabolic
stimulation (Ag/A;, mg protein synthesised per mg protein consumed) for juvenile flounder Pla-
tichthys flesus (n =18). A, and A, data have been corrected to a standard mass of 12 g.

dqa dse Paired t test (17 df)
Mass (g) 11.74 (+ 1.98) 13.63 (+ 2.43) t=8.92
[8.54—15.36] [9.63-18.92] P < 0.001
A, (mgd’) 23.5(x5.5) 23.9 (£ 5.0) t=0.31
[13.3-30.9] [16.5-33.0] P=0.76
A (mg d™) 26.0 (6.4) 26.3 (5.8) t=0.25
[13.8-37.3] [17.8-34.4] P=0.81
AJA* 1.12 (0.18) 1.13 (0.31) t=0.16
[0.82—1.48] [0.77—-1.92] P=0.87

* = calculated from mass-corrected values

doi:10.1371/journal.pone.0152239.1001
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expected, both diet quality and quantity affect the rate of protein synthesis with most studies
teeding formulated feeds with a high protein content and having higher rates of protein synthe-
sis compared to the present study where natural food (ragworm) with a lower protein content
was fed to juvenile P. flesus (S1 Table). Given the lower rate of protein consumption, rates of
protein synthesis measured in the present study are low but are at the magnitude expected
given the plane of nutrition of the fish and the relation between absolute rates of protein con-
sumption and protein synthesis for fish at 14-16°C (Fig 3). Since Houlihan et al. [63] reported
that the relation between absolute rates of protein consumption and protein synthesis in Atlan-
tic cod Gadus morhua was 1:1, the anabolic stimulation of protein synthesis (synthesis/con-
sumption; [28]) in fishes has been the focus of some research interest and a range of anabolic
stimulation values have been reported ranging from 0.89 to 1.29 milligrammes of protein syn-
thesized per milligramme of protein consumed (see S1 Table, plus data presented in Carter and
Houlihan [64]) with the juvenile flounder in the present study presenting anabolic stimulation
values of 1.12 and 1.13 mg mg' respectively (Table 1). This range of anabolic stimulation val-
ues observed may be related to differences in diet composition between studies, as the level of
anabolic stimulation (and subsequent retention efficiency) in salmonids has been shown to be
related to the protein:energy ratio in the diet [64]. Overall, the relation between A, and A, for
fish at 14-16°C (Fig 3) indicates that on average 0.99 milligrammes of protein are synthesized
per milligramme of protein consumed, the same level of anabolic stimulation as proposed by
Houlihan et al. [63]. This level of anabolic stimulation is lower compared to endotherms where
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the data presented by Houlihan et al. [26] for 6 endotherm species suggests that stimulation
ratios are much higher (1.58 mg protein synthesized mg ™' protein consumed, range 1.01-2.72
mg mg'; data from Fig 2 in Houlihan et al. [26]) with a large proportion (77%, range 64.4—
84.4%) of synthesized protein used for protein turnover, i.e. to replace existing body protein).
This high level of protein turnover, and subsequent recycling of amino acids into the free
amino acid pool in endotherms may account for the higher anabolic stimulation ratio per unit
protein consumption.

In the present study, individual variation in mass-corrected whole-animal rates of protein
synthesis showed a 2.7-fold variation between the lowest and highest rates observed on d,, and
a 1.9-fold variation on dye respectively (Table 1). This observed individual variability in rates of
protein synthesis in fishes is not uncommon with previous studies reporting 2.1 to 5.0 fold var-
iation in whole-animal synthesis [23-25, 63]. However, it is interesting to note that although
the variability observed in previous studies may, in part, be due to differences in body mass or
consumption rate (but see McCarthy et al. [25] for individual variability in fish of a similar size
on the same plane of nutrition), the present study shows that even controlling for body mass
and plane of nutrition, individuals can still show considerable variation in rates of protein syn-
thesis. This has been attributed to genotype-dependent differences in maintenance require-
ments that drive individual differences in protein turnover and growth efficiency [65, 66].
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The results of this study show that individual juvenile flounder reared under controlled
environmental conditions and maintained on the same plane of nutrition maintain similar
mass-corrected absolute rates of protein synthesis with an estimated broad sense repeatability
of 0.68. Repeat measures are routine in studies of human protein metabolism (e.g. [32, 33, 34,
36]) but there are only two published studies in ectotherms [37, 38]. Where repeat measures
have been made, data are usually presented as measures of central tendency with an associated
measure of dispersion (usually mean * standard deviation) and analysed using a repeated-mea-
sures ANOVA to compare differences in group average responses across treatments or over
time having controlled for repeat measures made on the same individuals [32, 34, 38]. How-
ever, there are two studies, on M. edulis [37] and on humans [67], where individual protein
synthesis data are presented (Table 1 in [37]; Table 3 in [67]) allowing broad sense repeatability
to be calculated (see S2 Table). Hawkins et al. [37] present repeat measures of absolute rates of
protein synthesis (mass-corrected for animals of 1 g dry tissue weight) made on twelve M. edu-
lis acclimated to 10°C followed by an acute temperature transfer to 20°C with a second mea-
surement made 48 hours later. Analysing their data no performance consistency in rates of
protein synthesis can be observed (P > 0.05, S2 Table), however, the data may not be directly
comparable as a result of the effects of abrupt temperature transfer on mussel physiology, indi-
vidual differences in thermal sensitivity and the observed differences in feeding rates at 10 and
20°C [37]. Heys et al. [67] measured fractional rates of protein synthesis in replicate biopsy
samples taken from malignant breast tumours in nine human subjects (see S2 Table). These
concurrent measures of protein synthesis were significantly repeatable (P < 0.001, S2 Table)
with an intra-class correlation coefficient [53] of 0.88 (with 1 indicating perfect repeatability;
S2 Table). Thus, the available data, although limited, indicate significant repeatability in rates
of protein synthesis measured concurrently [67] and significant temporal repeatability in ani-
mals maintained on the same plane of nutrition (the present study).

Most studies that assess consistency of physiological performance have focused on meta-
bolic rate and locomotor performance although some other physiological measures such as
blood chemistry parameters, evaporative water loss and metabolic enzyme activities have also
been assessed for CIDs and performance consistency (see Introduction for references). Broad
sense performance repeatability is reported to decline over time for metabolic rate (reviewed
by White et al. [10]) and for burst locomotor performance (reviewed by Laming et al. [8]). Fig
4 provides a summary of the decline in average broad sense repeatability over time for routine
and maximum metabolic rate and for burst locomotor performance in ectotherms and endo-
therms: average values for defined time intervals (see Figure legend for details) were calculated
from data collated in S1 Table of [10] and S2 Table of [8]. Short-term (i.e. < 2 weeks) repeat-
abilities for these physiological parameters average values of ca. 0.5 to 0.7 (although individual
studies range from -0.1 to 0.98) with medium term (i.e. months) and long term (i.e. > 1 year)
repeatability declining to average values of ca. 0.3 to 0.5 (range = -0.10 to 0.90) and 0.3 to 0.4
(range = 0.02 to 0.47) respectively (see [8, 10] for data) (Fig 4). The repeatability value calcu-
lated from the present study for absolute rates of protein synthesis in juvenile flounder falls
within the range of broad sense repeatability values reported for physiological performance
over the time scale of 28 to 42 days (0.12 to 0.79; see [8, 10] for data), although it is at the higher
end of the data range. Biro and Stamps [5] have recently highlighted how ignoring time-related
changes on both between- and within-individual performance in labile behavioural and physi-
ological traits can result in either invalid or biased (i.e. underestimated) estimates of broad
sense repeatability. These time-related changes may include the effects of changing environ-
mental conditions (e.g. temperature, photoperiod), time of day, feeding history, size, age, sex
and maturity [5]. Biro and Stamps [5] comment that estimates of broad sense repeatability
tend to be low with meta-analyses of labile behavioural and physiological traits providing
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Fig 4. Temporal changes in repeatability of physiological performance. The effect of increasing time interval between repeat measures on the broad
sense repeatability of routine metabolic rate (RMR), maximum metabolic rate (MMR) and burst locomotor performance (Burst) plus an estimate of broad
sense repeatability for absolute rates of protein synthesis over 32 days calculated from the results of the present study. Metabolic rate data are derived from
S1 Table of White et al. [10] and locomotor performance data are derived from S2 Table of Laming et al. [8] respectively and are presented as average values
for the following time intervals: < 1 day, 1-2 days, 1-2 weeks, 2—4 weeks, 1-3 months, 3 months— 1 year and > 1 year. These data are plotted on the
abscissa as values of 1, 2, 10, 21, 60, 138 and 365 respectively. Raw data used in the plot can be found in S1 File.

doi:10.1371/journal.pone.0152239.9004

mean estimates of 0.4 as result of these temporal effects. Interestingly, the average values for
the datasets presented in Fig 4 are 0.43, 0.46 and 0.50 for routine metabolic rate, maximum
metabolic rate and burst locomotor performance respectively. The higher level of broad sense
repeatability observed in the present study may be a reflection of controlling for potential con-
founding factors such as environmental conditions (temperature, photoperiod, salinity), size,
plane of nutrition and time of day (when fed and when the experimental measurements were
taken) in assessing broad sense repeatability. However, repeatability in the present study did
not approach unity (i.e. r = 1) indicating that not all time-related lability may have been
accounted for, e.g. effects of sex, age, differential temporal changes between individuals in
endogenous rhythms of physiological performance or responses to the stress of handling/con-
finement during measurement. Alternatively, as recently highlighted by Biro and Stamps [5], it
is likely that the small sample size (n = 18) and low level of replication (n = 2) in the present
study are insufficient to determine the global broad sense repeatability for this physiological
trait, although the results do indicate a high level of consistency within this group of experi-
mental animals, and future studies will need to increase both of these factors. In addition, it is
interesting to note that performance consistency is not always maintained across different
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environmental conditions [68] or following significant life-stage transitions such as metamor-
phosis [69] which may help explain why CIDs and phenotypic variation persist within species
as this will always allow some individuals to perform well within a fluctuating environment.

In conclusion, this study has used a non-terminal end-point method using '*N-labelled pro-
tein [39] to determine the consistency of mass-standardized rates of protein synthesis in juve-
nile flounder and has shown, for the first time in fish, that individuals maintained under
controlled environmental conditions (temperature, photoperiod, salinity) on the same plane of
nutrition for 46 days maintain similar rates of protein synthesis with a broad sense repeatability
estimate of 0.68. To the authors’ knowledge, this is the first attempt to estimate broad sense
repeatability for this fundamental metabolic process. The use of the non-terminal methodolo-
gies in studies of animal ecophysiology should be encouraged where possible as this will allow
the individual to be the unit of replication in studies rather than relying on discrete groups of
experimental animals. For example, the use of repeat measures of protein synthesis in fishes
will allow the performance of known individuals to be tracked across changing experimental
conditions (e.g. temperature, salinity, diet quality and quantity), to assess ontogenetic changes
in protein metabolism in order to better understand the ageing process, and to better under-
stand the adaptive capacity and energetic costs of adaptation to global climate change and
ocean acidification. However, as highlighted recently by Biro and Stamps [5] care should be
applied that sample sizes and levels of replication are sufficient to determine robust measures
of performance consistency.
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