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Abstract

The kidney is vulnerable to injury, both acute and chronic from a
variety of immune and metabolic insults, all of which at least to
some degree involve inflammation. Regulatory T cells modulate
systemic autoimmune and allogenic responses in glomerulonephritis
and transplantation. Intrarenal regulatory T cells (Tregs), including
those recruited to the kidney, have suppressive effects on both
adaptive and innate immune cells, and probably also intrinsic
kidney cells. Evidence from autoimmune glomerulonephritis
implicates antigen-specific Tregs in HLA-mediated dominant
protection, while in several human renal diseases Tregs are
abnormal in number or phenotype. Experimentally, Tregs can
protect the kidney from injury in a variety of renal diseases.
Mechanisms of Treg recruitment to the kidney include via the
chemokine receptors CCR6 and CXCR3 and potentially, at least in
innate injury TLR9. The effects of Tregs may be context dependent,
with evidence for roles for immunoregulatory roles both for
endogenous Tbet-expressing Tregs and STAT-3-expressing Tregs in
experimental glomerulonephritis. Most experimental work and
some of the ongoing human trials in renal transplantation have
focussed on unfractionated thymically derived Tregs (tTregs).
However, induced Tregs (iTregs), type 1 regulatory T (Tr1) cells and
in particular antigen-specific Tregs also have therapeutic potential
not only in renal transplantation, but also in other kidney diseases.

Keywords: acute kidney injury, autoimmune renal disease, chronic
kidney disease, glomerulonephritis, intrarenal regulatory T cells,
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INTRODUCTION

The kidney is a highly vascular organ important
for maintaining internal homeostasis, including
the removal of toxins from the blood. Its
anatomical structure and function render it
vulnerable to both immune- and nonimmune-
mediated injury. Although lymphocytes are
uncommon in healthy kidneys, their numbers

increase considerably in disease. This review will
cover research into the role of Tregs in renal
injury. The relevance of Tregs has been shown in
several instances (see Figure 1). Firstly, as in other
autoimmune diseases, Tregs are important in the
maintenance of tolerance to autoantigens that
are responsible for autoimmune renal disease
(‘nephritogenic’ autoantigens). Secondly, Tregs
play local roles within the kidney in dampening
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renal inflammation, both in responses that are
clearly mediated by immune responses to
nephritogenic antigens, and in inflammatory
responses that are largely or solely ‘innate’, with
little evidence for antigen-specific responses.
Thirdly, regulatory T cells are critical in preventing
allogeneic responses, and in renal transplantation
may be a key to transplant tolerance. The overall
phenotype of intrarenal regulatory T cells remains
poorly characterised, although evidence suggests
a role for CCR6 and CXCR3,1,2 and of the adhesion
molecules CD11a and CD44 in their recruitment to
the kidney in inflammatory diseases.3

REGULATORY T CELLS IN
AUTOIMMUNE GLOMERULONEPHRITIS

An increasing number of forms of glomerulone-
phritis are now known to be autoimmune in origin,
including anti-glomerular basement membrane
(anti-GBM) glomerulonephritis, anti-neutrophil
cytoplasmic antibody-associated vasculitis, lupus
nephritis, ‘primary’ membranous nephropathy
and IgA nephropathy.4 While autoantibodies
mediate injury in many forms of autoimmune

glomerulonephritis, effector CD4+ and CD8+ T cells
also play a role, meaning that Tregs have multiple
potential sites of action, from the maintenance or
re-establishment of tolerance systemically to the
relevant nephritogenic autoantigens, to the
suppression of adaptive and innate effectors of
injury within the kidney. See Table 1 for a summary
of the role of Tregs in renal injury.

Autoimmune anti-glomerular basement
membrane disease (Goodpasture’s disease)

Anti-GBM disease results from autoimmunity
against the noncollagenous domain of the a3-chain
of type IV collagen (a3[IV]NC1), a structural
component of specialised basement membranes in
the kidney and the lung. Rapidly progressive
glomerulonephritis is a key characteristic of
this disease but life-threatening pulmonary
haemorrhage also occurs.5 As in many autoimmune
diseases, there are strong HLA associations, with
further steps involved before T- and B-cell
tolerance is lost. Local systemic inflammatory
events may unmask hidden or ‘cryptic’ B-cell
epitopes of the autoantigen, promoting loss of B
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Figure 1. Important mechanisms used by Tregs to suppress inflammation in renal disease. A schematic diagram depicting some of the surface

molecules that Tregs express and the cytokines they release to suppress inflammation that have been implicated in selected in vivo experimental

models of different renal diseases. Renal Tregs constitutively express the transcription factor Foxp3 and surface molecules CD4 and CD25. AAV,

ANCA-associated vasculitides; AKI, acute kidney injury; Anti-GBM, antiglomerular basement membrane disease; CKD, chronic kidney disease; LN,

lupus nephritis; NTN, nephrotoxic serum nephritis; Tx, transplantation.
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cell tolerance, and allow access to pathogenic
autoantibodies, that, together with cell-mediated
effectors, promote intense local inflammatory
responses leading to severe glomerular injury.6

Tregs are major mediators of tolerance and the
mechanism behind the HLA-mediated dominant
protection from the risk of anti-GBM disease. The
relative risk of developing this disease is markedly
higher in those that bear the HLA-DRB1*1501
(DR15) allele.7 This susceptibility has been
modelled in HLA transgenic mice, in which anti-
GBM glomerulonephritis can be induced in
humanised DR15 transgenic (Tg) mice by
immunisation with the immunodominant CD4+

T-cell epitope.8 Dominant protection is afforded
by HLA-DRB1*01 (DR1) and HLA-DRB1*07 (DR7), in
that epidemiologically, susceptibility is abrogated
when either of these allomorphs are co-expressed
with DR15.7 Mechanistically, the DR1-mediated
protection in vitro in human and mouse systems,
and in vivo in the HLA transgenic mouse system, is
associated with and mediated by the presence of
thymically derived Tregs (tTregs) specific for the
immunodominant epitope.9 Further investigation
into how HLA-DR1 confers protection revealed,
through crystal structures and single-cell TCR
sequencing of tetramer-specific T cells, that DR1
presented the immunodominant Goodpasture’s
T-cell autoepitope in a conformation that
preferentially interacts with Tregs.9

Unusually, anti-GBM disease does not follow
the relapsing-remitting disease course that
characterises many autoimmune diseases. Despite
the loss of tolerance to a3(IV)NC1 with often
catastrophic consequences, relapse is rare, with
Tregs potentially mediating restoration of
tolerance to a3(IV)NC1, and preventing disease
recurrence. Analysis of T cells from patients during
acute and convalescent disease revealed a Treg

population present during the later disease stage,
suggesting Treg involvement in suppressing
autoimmunity and the re-establishment of
tolerance to a3(IV)NC1,10 findings corroborated by
additional patient data demonstrating reduced
proliferative responses and increased IL-10
production in late disease, independent of
immunosuppressive treatment.11

Anti-neutrophil cytoplasmic antibody-
associated vasculitis

Anti-neutrophil cytoplasmic antibody-associated
vasculitis (AAV) can be classified into different
syndromic presentations, namely microscopic
polyangiitis (MPA), granulomatosis with
polyangiitis (GPA) and eosinophilic granulomatosis
with polyangiitis, with MPA and GPA together
being the most common cause of rapidly
progressive glomerulonephritis.12 AAV is caused by
the loss of tolerance to the neutrophil cytoplasmic
antigens: myeloperoxidase (MPO), proteinase-3
(PR3), and there is also evidence for loss of
tolerance to lysosomal-associated membrane
protein 2 (LAMP-2).13–15 Autoantibodies specific for
PR3 or MPO bind to primed neutrophils leading to
neutrophil activation.16 This results in neutrophils
adhering to and migrating within the glomerular
microvasculature where they induce glomerular
endothelial injury damage by the release of
reactive oxygen species and proteases. In this
context, they also deposit the target autoantigens
MPO and PR3, which then results in recruitment of
effector CD4+ T cells and CD8+ cells that exacerbate
and perpetuate disease.17–19

Human studies implicate abnormal Treg number
and function in AAV. In GPA patients with active
disease, those who achieved remission by
14 weeks presented with higher proportions of

Table 1. Models of renal disease where Tregs have been shown to be protective

Underlying immune response Disease being modelled Endogenous or transferred Tregs References

Autoimmune nephritis Goodpasture’s disease Endogenous 9

MPO-ANCA-associated glomerulonephritis Endogenous 25

Lupus nephritis Endogenous 37

IgA nephropathy Transferred 60

Foreign antigen Masugi nephritis Both 49, 55

Innate immunity/chronic kidney disease Renal IRI Both 68–72

Cisplatin nephrotoxicity Both 3, 84

Adriamycin nephropathy Both 94, 95

Diabetic nephropathy Both 106

Renal transplantation Both 2, 118
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CD4+ Foxp3+ Tregs compared with patients who
were slower to remit.20 Tregs from GPA patients
in remission, although increased in proportion
compared to healthy controls, had a decreased
ability to suppress responder T cells,20,21 while
Tregs from AAV patients with active disease have
an even poorer suppressive capacity than those
from patients in remission.22 This decrease in
suppressive function of Tregs from AAV patients
could be explained by the finding that Tregs from
AAV patients preferentially express a splice
variant of Foxp3 lacking exon 2.23 Lastly, in kidney
biopsies from AAV patients, CD4+ Foxp3+ Tregs
expressing the chemokine receptor CXCR3 were
recruited to the kidney and found in direct cell–
cell contact with CXCR3+ Foxp3� Th1 cells.24

Myeloperoxidase, a key autoantigen in AAV, is
highly AIRE-regulated, and AIRE-deficient mice
immunised with MPO develop enhanced
autoimmunity to MPO. However, MPO-AAV is not a
feature of autoimmune polyendocrinopathy–
candidiasis–ectodermal dystrophy/dysplasia (APECED).
In experimental anti-MPO glomerulonephritis, anti-
CD25 mAb Treg depletion enhanced anti-MPO-
specific autoimmunity and exacerbated disease.25

Mechanisms that enhance Treg number and
function, including IL-10-secreting mast cells,26 and
nasal insufflation of an immunodominant CD4+ T-
cell MPO epitope, MPO409-428, protect mice from
experimental anti-MPO autoimmunity and
glomerulonephritis.27 Therefore, observational and
experimental data in AAV suggest that strategies
that enhance Treg function may lead to more
targeted therapies.

Lupus nephritis

Lupus nephritis frequently occurs in patients with
systemic lupus erythematosus (SLE) and is a key
determinant of outcome. Autoantibodies of
multiple specificities can be deposited in the
kidney, either as circulating or as in situ immune
complexes. Effector T cells also play a role in
inducing glomerular injury.28 Target autoantigens
include nuclear antigens, which can be deposited
in the kidney by neutrophils that undergo
NETosis.29 The variable autoantigens and effector
responses result in a range of patterns of
glomerular injury. Studies of peripheral blood
Tregs in patients with SLE have shown decreases
in Treg numbers and defective Treg phenotypes.30

In patients with active lupus nephritis, urinary
FOXP3 mRNA is increased compared with patients

with inactive lupus and healthy controls.31 This
could be explained by a transient activation of
Foxp3 in activated effector T cells in humans32,33

or may conceptually be consistent with a
regulatory cell:effector cell ratio (rather than an
absolute number) being more relevant in tissue
injury. In lupus nephritis, pilot data from paraffin
embedded kidneys stained for Foxp3+ and CD3+

cells have shown that kidney sections from
patients with lupus nephritis class IV (the most
active and severe form) have lower proportions of
Foxp3+/CD3+ cells compared to patients with class
V (membranous) lupus nephritis.34

In murine lupus nephritis, the BWF1 and SNF1
strains have fewer CD4+ CD25+ Tregs compared to
normal BALB/c and DBA/1 mice.35 Although
CD4+ CD25+ Tregs in BWF1 mice could suppress
CD4+ CD25� T-cell proliferation, they did not
suppress T cell-mediated IgG production.36 Depletion
studies in pristane-induced models of lupus nephritis
have demonstrated that endogenous Stat3-
expressing Foxp3+ Tregs (‘Treg17’) afford protection
from injury, as Foxp3-Cre deletion of Stat3 led to
heightened Th17 responses and less Treg17 cell
recruitment to the kidney, likely due to impaired
CCR6 expression.37 The same group showed that in
the same model, Foxp3+ RORct+ Tregs (‘biTregs’)
were pathogenic, at least in part, because RORct
induce the secretion of IL-17 in biTreg cells.38

A number of treatments in several murine models
of lupus have been associated with increased Treg
number or function, including, in MRL/lpr strain,
IL-33 inhibition, piperlongumine and the 4-
hydroxyquinoline-3-formamide derivative (known
as Y27)39–41; in NZBxW/F1 mice, IL-2/IL-2 mAb
immune complexes, G-CSF and tuftsin-phosphoryl-
choline42–44; and in the bm12?B6 chronic graft-
versus-host model of lupus nephritis, microRNA-21
deficiency.45 Progesterone may also be important
for optimal Treg number and function, as
progesterone-deficient Nba2 mice have increased
antichromatin IgG and proteinuria associated with
a decrease in Tregs.31

Experimental rapidly progressive
glomerulonephritis induced by foreign
globulins

Masugi nephritis, also known as nephrotoxic
serum nephritis or ‘anti-GBM’ glomerulonephritis,
is an experimental model of glomerulonephritis
that is not autoimmune, but is induced by the
deposition of heterologous antibodies on the
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GBM.46–48 Renal injury is mediated both by innate
and adaptive immune responses against the
deposited foreign antibody (as an antibody and as
an antigen). While not a model of autoimmune
disease, it has been used widely to understand
immune-mediated forms of glomerulonephritis
and is particularly useful in studying effector
responses. In this disease model, endogenous Tregs
infiltrate the kidney over time, and depletion of
these endogenous Tregs, in Foxp3DTR (DEREG) mice,
exacerbates glomerulonephritis, even during
established disease.49,50 Intrarenal flow cytometry
revealed that some endogenous renal Tregs in
nephritic mice produced IL-10, with targeted
deletion of Treg IL-10 resulting in a modest
exacerbation of renal injury.51 There is also
evidence that intrarenal CD103+ dendritic cells
(<5% of renal DCs) support the development and
retention of Tregs.52 Th1-driven autoimmunity is a
key feature of this disease model, and CXCR3+ and
Tbet+ Tregs have been shown to infiltrate the
kidney and dampen specifically Th1-driven
glomerulonephritis.24,53 These data are consistent
with more recent studies that demonstrate an
essential role for Tbet+ Tregs to suppress Th1-
driven autoimmunity.54 In this model of
glomerulonephritis, transferring CD4+ CD25+ Tregs
prior to the injection of heterologous anti-GBM
antibodies attenuated glomerulonephritis,55 in
part via secretion of IL-9, which attracts
immunosuppressive mast cells into lymph nodes.56

While the transfer of these CD4+ CD25+ thymically
derived Tregs protect, the transfer of ex vivo
induced Tregs (iTregs), produced via several
different protocols do not protect mice from renal
disease. Significant proportions of these iTregs lose
their expression of Foxp3 in vivo, likely acquiring
effector function.57

IgA Nephropathy

IgA nephropathy is the most common form of
primary glomerulonephritis worldwide and is
characterised by IgA deposition in the glomerular
mesangium. Glomerular IgA immune complex
deposition triggers innate immune responses and
subsequent T-cell activation and inflammation. In
patients with IgA nephropathy, there may be an
imbalance of Tregs and Th17 cells in the periphery
and in renal tissues, with a lower frequency of
CD45RA� Foxp3hi-activated Tregs and an increase
in Th17 cells.58,59 These differences are associated
with reduced levels of serum IL-10 and increased

levels of serum and urine IL-17A in IgA
patients.58,59 Furthermore, the altered distribution
of Tregs and Th17 cells correlates with prognostic
indicators such as impaired GFR, proteinuria,
tubulointerstitial injury and hypertension.58

Functionally, a small study in rats with IgA
nephropathy suggests that the adoptive transfer
of CD4+ CD25+ Tregs, expanded in vitro, reduces
proteinuria and possibly IgA deposition,
hyperplasia of glomerular mesangial cells and
tubular epithelial damage.60

Other forms of glomerulonephritis

Membranous glomerulopathy is the commonest
cause of nephrotic syndrome in adults. The
majority of cases of what was previously described
as ‘idiopathic’ membranous nephropathy is now
known to be due to autoimmunity to the
phospholipase A2 receptor.61 Although there is a
paucity of data in humans with this disease,
numbers of Tregs in the peripheral blood have
been reported to be decreased,62,63 and early
responsiveness to rituximab has been linked to an
increase in the proportion of Tregs.63 In children,
minimal change disease is the commonest cause
of nephrotic syndrome. Although the
pathogenesis of this disease is unclear, some lines
of evidence imply a role for T lymphocytes, with
some evidence for a role for Tregs from human
descriptive studies and in animal models,
reviewed by Bertelli et al.64

ACUTE KIDNEY INJURY

Acute kidney injury (AKI) is defined as an abrupt
decline in renal function. It frequently occurs in
hospitalised patients and the critically ill, and
often in those with pre-existing renal disease.65

While recovery from AKI is common, AKI greatly
enhances the risk of developing chronic kidney
disease and end-stage renal disease.66 AKI has
multiple aetiologies, with hypovolaemia,
ischaemia–reperfusion injury (IRI), exposure to
nephrotoxic agents and sepsis amongst the major
causes. AKI includes a complex series of events
leading to tubular injury, altered intrarenal
haemodynamics and the activation of the immune
system contributing to renal inflammation and
dysfunction.67 While there are as yet little clinical
data about Treg numbers and function in patients
with AKI, there is compelling evidence for a
potent protective role of Tregs in experimental
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AKI, suggesting that regulatory T cells may have
therapeutic potential in the prevention or
treatment of human AKI.

Ischaemia–reperfusion injury

Renal IRI is a common complication of major
surgery, for example cardiopulmonary bypass
surgery. It is also an obligatory component of
kidney transplantation that if severe, it leads both
to delayed allograft function and an increase risk
of acute transplant rejection. In na€ıve mice and
24 h after renal IRI, fewer than 1% of the
resident leucocyte (CD45+) population in the
kidney are CD4+ Foxp3+ Tregs.68 However, during
the repair phase of IRI, beginning 72 h after
reperfusion, Tregs infiltrate the kidney and
remain as long as 10 days after reperfusion.69 A
large proportion of these Tregs (40%) express
CXCR3, which is possibly involved in the
trafficking of Tregs to the kidney following renal
ischaemia.68 Treg depletion using anti-CD25
monoclonal antibodies prior or within 24 h of IRI
enhances renal inflammation, acute tubular
necrosis and renal dysfunction, suggesting that
intrinsic Tregs traffic to the kidney to promote
repair after ischaemic injury.68–72 Furthermore,
after IRI, kidneys from Rag1�/� mice reconstituted
with Foxp3-deficient lymph node cells exhibited
more injury and more intrarenal leucocytes
compared to mice reconstituted with wild-type
cells.70 Freshly isolated Tregs transferred 24 h
after reperfusion traffic to the postischaemic
kidney with accelerated recovery of tubular injury
and renal function, as well as reduced CD4+ T-cell
TNF and IFN-c production.69 Treg depletion
studies suggest that Tregs appear to modulate the
inflammatory milieu via different actions
depending on the stage of IRI, with Tregs limiting
innate immune responses during the early phase
of IRI and modulating CD4+ T-cell responses
(albeit with any antigen-specific component being
unclear) during the repair phase.69,70

Tregs appear to suppress renal IRI through
multiple mechanisms. Wild-type, but not IL-10-
deficient Treg transfer into Rag1�/� mice could
limit renal IRI implicating IL-10 production, in
part, as a mechanism for Treg-mediated
protection from renal IRI.70 Tregs suppress innate
immune responses through CD73-mediated
dephosphorylation of ATP into adenosine, a
molecule that induces anti-inflammatory effects

through binding to A2a receptors (A2aR).
Compared to the adoptive transfer of wild-type
Tregs, transfer of Tregs from CD73 and A2a

receptor (A2aR)-deficient mice into wild-type mice
prior to IRI resulted in reduced Treg function and
increased renal injury.73 Microarray analysis
revealed that activation of Treg A2aR significantly
enhanced PD-1 expression, which was required for
Treg’s effects in IRI, implying that autocrine
adenosine signalling assists Tregs in suppressing
innate immune responses in IRI via PD-1.73 Both
PD-1 ligands (PD-L1 and PD-L2) are instrumental in
protecting the kidney from IRI.74

Given the protective role of Tregs in renal IRI, a
number of pharmacological, biological or non-Treg
cellular therapies that target and/or recruit intrinsic
Tregs to the kidney have been employed in vivo.
Pretreatment of mice with the sphingosine kinase
inhibitor, N,N-dimethylsphingosine (DMS), rapidly
and transiently recruits CD4+ Foxp3+ Tregs and
CD4+ Foxp3� cells to the kidney and prevents IRI.75

These protective effects were Treg and CTLA4
dependent.75 Bone marrow-derived mesenchymal
stem cells (MSCs) also ameliorate renal IRI by
increasing Treg proportions in the spleen and
ischaemic kidney, effects dependent on both an
intact spleen and on Tregs.76 Transfer of human-
umbilical cord blood-derived MSCs has similar
effects.77 Other interventions potentially mediated
by modulating Tregs include a protective role for
microRNA 26a (Mir-26a), which plays functional
roles in cell differentiation, growth, apoptosis and
metastasis, and modulates Th17/Treg balance,78

and a P2X7 receptor antagonist, periodate-oxidised
ATP (oATP).79 As in other experimental models, in
IRI IL-2/anti-IL-2 mAb complexes administered prior
to IRI increased Tregs (in the spleen and kidney),
resulting in less renal dysfunction and tubular
injury, and when given after IRI, they promoted
functional recovery and inhibited renal fibrosis.80

As IL-2 and IL-33 promote the expansion of murine
Tregs in vivo, Stremska et al. generated an IL-2 and
IL-33 fusion cytokine that they termed IL-233, and
which they found increased the recruitment of
Tregs into the kidney and protected mice from IRI
more efficiently than either cytokine alone.81 Thus,
these studies collectively suggest that strategies
aimed at enhancing numbers, recruitment and
function of endogenous Tregs demonstrates
therapeutic potential in AKI, especially as therapies
prior to injury in situations where AKI is likely or
probable.
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Cisplatin nephrotoxicity

Cisplatin, an inorganic platinum-based
chemotherapeutic agent, is widely used in the
treatment of many solid organ malignancies.
However, its use is limited by the significant incidence
of (approximately 25–35%) nephrotoxicity.82

Cisplatin concentrates in the epithelial cells of the
S3 segment of proximal tubules, where it induces
both necrotic and apoptotic cell death with an
accompanying substantial pro-inflammatory immune
response.83 CD4+ Foxp3+ Tregs are protective in
experimental cisplatin nephrotoxicity, where they
migrate to the kidney as early as 6 h after injury.84

As in IRI, studies that have either depleted
endogenous Tregs or adoptively transferred Tregs
(into immunodeficient or immunocompetent mice)
have demonstrated a protective role for Tregs in
cisplatin nephrotoxicity,3,84 Mechanistically, Tregs
are likely to have their effects, at least in part, by
suppressing macrophage infiltration and innate
immune responses. While the detailed mechanisms
of Treg recruitment to the kidney in AKI remain
unclear, one study used a series of reconstitution
and depletion studies in wild type, Rag1�/� and
Foxp3DTR mice to demonstrate that Toll-like
receptor 9 (TLR9)-deficient Tregs fail to effectively
localise to the kidney following cisplatin
administration, resulting in enhanced renal injury
and dysfunction.3 The impaired Treg recruitment in
the absence of TLR9 was due to impaired adhesion
molecule expression on Tregs.3 However, the
details of the underlying mechanism by which
Tregs influence the intrarenal innate immune
response and promote renoprotection in cisplatin
nephrotoxicity remain unclear.

As in other disease models, a variety of
interventions have been linked to enhance Treg
number or function in cisplatin nephrotoxicity.
Interestingly, bee venom injections, with the
active component being phospholipase A2 (PLA2),
a calcium-dependent lipolytic enzyme before the
administration of cisplatin increase Treg numbers
in the spleen and enhance their recruitment
during the early phase of cisplatin-induced
nephrotoxicity, reducing renal dysfunction and
intrarenal inflammation, accompanied by reduced
intrarenal IL-6 and TNF.85,86 The effects of PLA2
were dependent on the presence of Tregs, and
mediated through binding to mannose receptor
CD206 on dendritic cells, inducing IL-10
production.86 The renoprotective effects of
human-umbilical cord blood-derived MSCs

administered early after cisplatin administration
are potentially via Tregs.87 As in IRI, the hybrid
cytokine IL-233 protected mice from cisplatin-
induced AKI, but whether this was mediated
through increased recruitment of Tregs to the
kidney (as in IRI) was not determined.81 Given
that patients with solid organ tumours are given
cisplatin in a known timeframe, IL-233 as well as
PLA2 and MSCs, assuming they do not limit the
anticancer effects of cisplatin may have
therapeutic potential.

Sepsis-induced acute kidney injury

Sepsis, a systemic inflammatory response to
infection, is a common cause of AKI.88

Inflammation, oxidative stress, microvascular
dysfunction and tubular epithelial responses are
involved in the pathogenesis of this complex and
multifactorial syndrome.89 Patients with septic AKI
have increased serum soluble CD25 and IL-10 that
is strongly associated with immunosuppression.90

Similarly, in a mouse model of caecal ligation and
puncture (CLP)-induced sepsis, septic AKI increased
Treg numbers, immune cell apoptosis and IL-10
levels.91 In contrast to IRI and cisplatin
nephrotoxicity, depletion of Tregs before CLP
with anti-CD25 antibody was renoprotective and
resulted in better survival, highlighting a
paradoxical immune effect of Tregs in AKI
secondary to sepsis syndrome.

REGULATORY T CELLS IN CHRONIC
KIDNEY DISEASE

The development of glomerulosclerosis and
progressive interstitial fibrosis and tubular atrophy
is a common feature of many types of renal
disease. These progressive lesions are a function
of persistent inflammatory, metabolic or genetic
insults, but when disease is advanced and
functional nephron number reduced beyond a
critical threshold, progressive fibrosis occurs even
in the absence of ongoing insults. Thus,
modulation of Tregs may have a place not only in
switching off the disease causing insults, but
might also have direct and beneficial components
on fibrosis within the kidneys themselves.

Adriamycin nephropathy

Adriamycin nephropathy in rodents is a
reproducible model of chronic kidney disease
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induced by the chemotherapeutic agent
adriamycin. This model is characterised by focal
segmental, global glomerular sclerosis, podocyte
fusion and severe proteinuria that subsequently
causes tubulointerstitial fibrosis and
inflammation.92 Although it remains unclear
whether there is a role for antigen-specific cells
in this model, both T and B lymphocytes, as well
as macrophages, mediate disease progression.
The depletion of CD4+ T cells in established
adriamycin nephropathy exacerbates glomerular
and tubulointerstitial injury, suggesting that a
CD4+ regulatory subset may inhibit disease
progression.93 Following on from this, adoptive
transfer experiments using Foxp3-transduced
CD4+ cells protected mice from adriamycin
nephropathy, and anti-CD25 antibodies
exacerbated disease.94 Transfer of CD4+ CD25+

Tregs into SCID mice with established adriamycin
nephropathy also reduced glomerular and
interstitial injury associated with a marked
decline in intrarenal macrophage numbers,
suggesting a direct effect on renal mononuclear
phagocytes independent of adaptive immunity.95

In vitro mechanistic studies suggested that the
lymphocyte-independent protective effect of
Tregs was mediated via a TGF-b-dependent Treg-
macrophage inhibitory interaction.95 The transfer
of a subset of activated M2 macrophages
generated ex vivo IL-10/TGF-b was protective in
established AN.96 Treated mice exhibited reduced
renal fibrosis, associated with reduced
macrophage infiltration and increased Tregs in
the draining lymph nodes, with Treg depletion
abolishing these protective effects.97 Thus, it is
likely that in chronic kidney disease, Tregs
mediate protection by direct effects on innate
immune cells, particularly macrophages, and on
the injured kidneys themselves. However, despite
the absence of direct evidence for antigen-
specific events in this model, when Tregs from
TcR transgenic mice were transferred into
immunocompetent mice, they did not limit
adriamycin-induced renal injury.98 Tregs also
appear to mediate protection in adriamycin
nephropathy via increased CD39 expression, with
CD39-overexpressing mice protected against renal
injury, and transfer of CD39Tg Tregs being
highly effective in limiting renal damage in
adriamycin nephropathy.99 Expanding Tregs with
IL-2/anti-IL-2 complex in vivo also reduced renal
dysfunction and inflammation, even after the
onset of AN.100

Diabetic nephropathy

Diabetic nephropathy, occurring as a result of the
autoimmune disease type 1 diabetes mellitus
(T1DM) or the more metabolically defined type 2
diabetes mellitus, is a major complication of these
diseases and is the leading cause of end-stage
renal disease worldwide. DN is characterised by
glomerular hypertrophy, basement membrane
thickening, the accumulation of extracellular
matrix components and kidney inflammation that
is crucial in promoting the development and
progression of DN.101 While autoimmune
pancreatic b-cell destruction causes insulin
deficiency that leads to T1DM, there is little
evidence for autoimmunity in the nephropathy
that results from many years of DM. While it is
unclear whether patients with DN have altered
Treg numbers, Foxp3+ Tregs are increased fivefold
in the renal interstitium of mice with
streptozotocin-induced T1D compared with
nondiabetic wild-type mice.102 However, these
results could conceivably be confounded by the
fact that streptozotocin is a tubular toxin. In
T2DN, Tregs may modulate renal inflammation
and disease severity. Patients with T2DN have
reduced levels of CD4+ CD25+ Foxp3+ Tregs in the
periphery, which negatively correlates with the
urine albumin:creatinine ratio.103–105 In db/db
mice with T2D, Treg depletion using anti-CD25
antibodies enhanced insulin resistance,
albuminuria and glomerular filtration, whereas
the adoptive transfer of CD4+ CD25+ Foxp3+ Tregs
improved insulin sensitivity and diabetic
nephropathy with increased Foxp3 mRNA
expression in both the kidney and visceral adipose
tissue.106 Despite these studies suggesting a
possible link between Foxp3+ Tregs and disease
progression in DN, further investigation is
required to understand their precise role for more
targeted therapeutic options.

REGULATORY T CELLS IN RENAL
TRANSPLANTATION

Renal transplantation is clearly the optimal
therapy for end-stage kidney disease. While rates
of early graft loss falling over the past 15 years,
long-term graft survival and toxicities of
immunosuppression remain as major issues.
Regulatory T cells in renal transplantation are
highly relevant, not only because of their
importance in potentially establishing graft
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tolerance, but also as the timing of renal
transplantation allows for isolation, expansion
and infusion of a patient’s own Tregs. As in
autoimmune diseases, a protective role for Tregs
is implied by a number of observational studies in
human renal transplantation, backed by
functional evidence in experimental renal
transplantation. In addition, in human renal
transplantation a number of clinical trials of Treg
therapy are underway (e.g. in the ONE Study,
www.onestudy.org). Early reports show the
feasibility of expanding nTregs with allogeneic
DCs107 and support the safety of cell therapy with
nTregs.108 Table 2 lists some of the differences
between the use of human and mouse Tregs.

In something of a contrast to disease in native
kidneys, the relative frequency of biopsy of
transplanted kidneys (including via ‘protocol
biopsies’) has allowed a more detailed assessment
of intrarenal Tregs. While Tregs are present in and
around tubules in grafts, intragraft Tregs in
aggregates are present in some human renal
transplants. These aggregates correlate both with
long-term graft survival and relative donor
hyporesponsiveness.109 Not all studies assessing
Treg numbers or FOXP3 mRNA have demonstrated
these associations, suggesting that Treg numbers
increase in inflammatory states and that Treg:Teff
ratios might be more predictive. Alternately,
FOXP3 can be expressed by effector cells in
humans raising the question of whether the
FOXP3+ cells demonstrated in renal allografts are
in fact functionally Tregs. While these cells have
been reported to exhibit demethylation of the
Treg-specific demethylated region (TSDR) at the
FOXP3 locus,110 kidney transplant patients do
exhibit a variable degree of TSDR demethylation
in FOXP3+ cells,111 implying that ongoing

allogeneic stimulation may influence the
phenotype and stability of Tregs. Several cytokines
produced by Tregs, including IL-10, TGF-b and IFN-
c, have been associated with good outcomes in
renal transplantation.112–117

Experimentally, tolerance in murine kidney
allografts is Treg dependent and can be established
by Treg transfer.2,118 Tregs in grafts from tolerant
mice with the ability to transfer tolerance
expressed TGF-b, IL-10, IFN-c, Blimp-1 and Cxcr3.2

Immature renal dendritic cells can induce IL-10
producing Tregs in vitro,119 emphasising
the need to minimise innate inflammation, such
as prolonged warm ischaemic times at
transplantation, as IRI can activate intrarenal
mononuclear phagocytes to enhance their antigen-
presenting functions.120 Renal tubular cells may
also be important in influencing suppressive Treg
phenotypes and behaviours in transplantation.121

While some details of Treg biology in renal
transplantation are unclear and Treg stability (at
least in some Treg subsets) may be a challenge,
infusion of Tregs has real therapeutic potential in
renal transplantation. Successful Treg therapy
would at least allow significant reduction in drug
therapy and may establish tolerance or operational
tolerance to the graft. Clearly, unlike autoimmune
renal disease, the timing of transplantation allows
the infusion of Tregs prior to allogenic stimulation
at the time of surgery. After nTreg isolation, both
nonantigen-specific and allogeneic stimulation and
expansion protocols are being employed, including
the use of belatacept (CTLA 4-Fc) ex vivo.107,122

These protocols have been generating cells that
maintain their phenotype including demethylation
of the FOXP3 TSDR.107 Furthermore, Tr1 cells can
also be generated from patients with end-stage
kidney disease who are on dialysis.123

Table 2. Comparison of some of the features of human and mouse Tregs

Feature Human Mouse

Surface markers CD4+ CD25+ CD127lo/�

CD4+ CD25+ CD127lo/� CD45RA+

CD4+ CD39+

CD4+ CD25high CD6lo

CD4+ CD25high

Use of Foxp3 Functional studies cannot be

performed with Foxp3 as a marker

Foxp3 reporter mice

Isolation Autologous fresh peripheral blood and FACS Splenocytes and/or lymph nodes and FACS (higher purity

than MACS)

Expansion Ex vivo polyclonal expansion of CD4+ CD25hi CD127lo

with anti-CD3 and anti-CD28 paramagnetic

beads with IL-2

Ex vivo polyclonal expansion with CD4+ CD25hi

from na€ıve mice with anti-CD3 and anti-CD28 microbeads

with high dose IL-2

FACS, fluorescence-activated cell sorting; MACS, magnetic-activated cell sorting.
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A further dimension in the role of Tregs in
transplantation is the effect of current and new
immunosuppressive agents on Tregs and their
interactions with Tregs. Current regimens, while
effective, have not evolved with consideration of
their effects on Tregs. If Treg therapy finds a
place in renal transplantation, it would ideally be
combined with therapies that do not themselves
negatively affect Treg function in vivo, for
example, mTOR inhibitors, low-dose IL-2 or
histone deacetylase inhibitors.

SUBSETS OF SUPPRESSIVE T CELLS

The focus of this review has been on the role of
CD4+ Foxp3+ Tregs in renal disease. However,
several other T-cell subsets with suppressive
activity have been identified. These include
CD4+ Foxp3� T cells that secrete IL-10, TGF-b and
IL-35 and are termed Tr1, Th3 and Tr35,
respectively.124–126 In addition, other suppressive
cells not belonging to the Th lineage include
CD3+ CD4� CD8� double-negative T cells, Qa-1-
restricted CD8 Tregs and CD28loCD8+ Tregs.127–129

While these additional regulatory T-cell subsets
have not been as well studied as the conventional
CD4+ Foxp3+ Tregs that are discussed in this
review, there is evidence for their protective
involvement in renal disease.27,123,130–132

CONCLUSION

While the detailed phenotype of Tregs within the
kidney remains understudied, Tregs, both systemic
and local, play a major role in limiting many forms
of renal injury. These include conditions that
would intuitively be Treg responsive, such as the
growing number of autoimmune forms of
glomerulonephritis and renal transplantations, but
also conditions with less obvious links to innate
immunity, for example acute kidney injury. Treg
therapy is being trialled in renal transplantation
and has potential in other renal diseases, and
interventions that promote the number or function
of Tregs also are possible future treatments for a
variety of diseases that affect the kidney.
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