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Summary
Background Multiplexed immunofluorescence (mIF) staining, such as CODEX and MIBI, holds significant clinical
value for various fields, such as disease diagnosis, biological research, and drug development. However, these
techniques are often hindered by high time and cost requirements.

Methods Here we present a Multimodal-Attention-based virtual mIF Staining (MAS) system that utilises a deep
learning model to extract potential antibody-related features from dual-modal non-antibody-stained fluorescence
imaging, specifically autofluorescence (AF) and DAPI imaging. The MAS system simultaneously generates
predictions of mIF with multiple survival-associated biomarkers in gastric cancer using self- and multi-attention
learning mechanisms.

Findings Experimental results with 180 pathological slides from 94 patients with gastric cancer demonstrate the
efficiency and consistent performance of the MAS system in both cancer and noncancer gastric tissues. Furthermore,
we showcase the prognostic accuracy of the virtual mIF images of seven gastric cancer related biomarkers, including
CD3, CD20, FOXP3, PD1, CD8, CD163, and PD-L1, which is comparable to those obtained from the standard mIF
staining.

Interpretation The MAS system rapidly generates reliable multiplexed staining, greatly reducing the cost of mIF and
improving clinical workflow.
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Introduction
Pathological functional staining by multiplexed immu-
nofluorescence (mIF) allows accurate identification and
diagnosis of various diseases, ranging from cancer and
infectious diseases to autoimmune disorders and ge-
netic disorders,1–3 and provides an indispensable tool for
individualised patient care. By visualising the presence
and precise location of specific biomolecules in tissue
samples, mIF empowers pathologists with crucial
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insights into underlying biology and facilitates informed
treatment decisions,4 especially in prognostic prediction
and selection of patients for immunotherapy.5 While
multiplexing is highly desirable for the detection and
location of diverse antigens in various tissues,6 existing
techniques, such as multiplexed ion beam imaging
(MIBI)7 and co-detection by indexing (CODEX),8 often
suffer from hurdles like staining inconsistency, sub-
stantial time and cost requirements,9,10 as well as the
du (Y. Jiang), lei@stanford.edu (L. Xing).
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Research in context

Evidence before this study
Before undertaking this study, we conducted a comprehensive
review of the existing literature and available evidence on
standard multiplexed immunofluorescence (mIF) staining,
virtual mIF staining, and related deep learning techniques in
pathological imaging. We searched multiple databases,
including PubMed, HTAN, and TCIA, focusing on studies
published up to April 2023. The search terms included
combinations of “virtual staining”, “multiplexed
immunofluorescence”, “deep learning”, “autofluorescence
(AF)”, “DAPI imaging”, and “gastric cancer prognosis”.
We included studies that explored the use of deep learning for
virtual staining and image-to-image translation in pathology.
The evidence reviewed included works demonstrating the
potential of generative adversarial networks (GANs) for cross-
modality super-resolution in fluorescence microscopy, as seen
in Wang et al. (2020), and the application of deep learning to
bright-field holography by Wu et al. (2021). Additionally,
research by Zhang et al. (2022) on multiplexed H&E, Jones
silver, and Masson’s trichrome staining using AF images was
considered, as well as studies by Sun et al. (2021) and He et al.
(2022) on in silico immunohistochemical staining from H&E
images. The quality of these studies varied, with some
presenting robust experimental designs and extensive
computational validation, while others were more preliminary
in nature. Notably, the clinical reliability of virtual staining
was often limited, and the usability of these methods in
routine pathological workflows was not consistently
validated. While some studies demonstrated the potential for
deep learning models to produce high-quality virtual staining
images, the translation of these methods into clinically usable
pathological modalities remained a significant challenge.
The pooled estimate from the meta-analysis of these studies
suggested that deep learning models show promise in
generating high-quality virtual staining images comparable to
traditional methods. However, challenges remained in
achieving consistent performance across diverse biomarkers
and tissue types.

Added value of this study
This study introduces the Multimodal-Attention-based virtual
mIF Staining (MAS) system, which significantly advances the
field by employing a deep learning model to generate high-
quality virtual mIF images from dual-modal non-antibody-

stained fluorescence imaging, specifically AF and DAPI
imaging. The MAS system utilises self- and multi-attention
mechanisms to accurately predict multiple survival-associated
biomarkers in gastric cancer, providing a cost-effective and
rapid alternative to traditional mIF techniques.
Our findings add substantial value to the existing evidence by
demonstrating that the MAS system can achieve prognostic
accuracy comparable to standard mIF staining. We validated
the system using 180 pathological slides from 94 gastric
cancer patients, showing consistent performance across both
cancerous and non-cancerous gastric tissues. The inclusion of
seven key gastric cancer biomarkers (CD3, CD20, FOXP3, PD1,
CD8, CD163, and PD-L1) in the study highlights the system’s
versatility and potential clinical applicability.

Implications of all the available evidence
The integration of our MAS system into clinical practice could
revolutionise the workflow for multiplexed staining,
significantly reducing both time and costs. This advancement
has profound implications for personalised medicine, enabling
more efficient and accessible prognostic evaluations for
gastric cancer patients and potentially for other cancers as
well.
The ability to rapidly generate reliable mIF images from easily
obtainable AF and DAPI slides can facilitate broader adoption
of multiplexed staining in clinical and research settings. This
method alleviates the high costs and labour-intensive nature
of traditional mIF techniques, promoting more widespread
use in routine diagnostics and large-scale studies.
Looking ahead, we aim to design improved networks that can
incorporate precise and stable nuclear information from DAPI
through pre-training. This advancement will enable our
system to generate real-time mIF images directly from AF
inputs during the testing phase, without any prior staining.
Future research should also focus on expanding the
application of the MAS system to other biomarkers and
cancer types, further validating its generalisability and
robustness. Additionally, exploring the integration of
different wavelengths in AF imaging could enhance the
system’s performance and accuracy. Continued development
and optimisation of deep learning models for virtual staining
will undoubtedly contribute to advancing precision medicine
and improving patient outcomes.
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fading of stained slides over time (Fig. 1a). Given these
limitations, there is an urgent demand for a rapid and
cost-effective solution to overcome these limitations and
facilitate its clinical application.

Recent advancements in generative artificial intelli-
gence (AI) have shown significant potential in image-to-
image translation,11–15 particularly in pathological image
generation.16–19 Several studies have focused on
improving the resolution and quality of pathological
imaging across different modalities. For instance, Wang
et al.20 employed a generative adversarial network (GAN)
to achieve cross-modality super-resolution in fluores-
cence microscopy, enhancing low-resolution images to
match high-resolution ones and democratising access to
advanced imaging techniques. Similarly, Wu et al.21

applied cross-modality deep learning to bright-field ho-
lography, using a GAN to achieve artifact-free bright-
field contrast in holographic images. Other researchers
www.thelancet.com Vol 107 September, 2024
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Fig. 1: Overview of the proposed MAS system. (a) Pipeline comparison between the standard manually mIF staining and the virtual mIF staining
by MAS system. (b) Architecture of MAS system.

Articles
have investigated regression-based models to learn the
relationships between different pathological imaging
patterns or modalities for various applications.22 For
example, Zhang et al.23 developed a method for multi-
plexed H&E, Jones silver, and Masson’s trichrome
staining using a single network that takes auto-
fluorescence (AF) images and a digital staining matrix
as inputs. Jo et al.24 introduced label-free multiplexed
microtomography, using deep learning to decode
refractive index measurements into 3D fluorescence
tomograms. Further studies have explored deep
learning techniques for antibody-related virtual staining.
Among them, Sun et al.,25 He et al.,26 and Zhang et al.27

Utilised deep learning to produce in silico immunohis-
tochemical (IHC) staining from haematoxylin and eosin
(H&E) stained tissue images. Additionally, research has
explored the potential of deep learning to digitally
generate specific antibody stains from AF imaging, such
www.thelancet.com Vol 107 September, 2024
as virtual IHC HER2 staining using AF images.28 Efforts
have also been made to directly predict multiplexed
fluorescent labels in unlabelled transmitted-light z-
stacks.29 In addition, to enhance the accessibility and
cost-effectiveness of high-plex mIF insights, Wu et al.
developed a machine learning framework capable of
generating in silico 40-plex CODEX data from a standard
7-plex mIF panel.30 These studies underscore the pres-
ence of inherent and unexplored information related to
biomarkers in non-antibody-stained fluorescence im-
ages of tissues and cells.

Aiming to devise a rapid, economical, and reliable
mIF framework for gastric cancer prognosis, we intro-
duced a multimodal-attention-based virtual mIF stain-
ing (MAS) system, developed to efficiently and reliably
produce virtual mIF staining from non-antibody-stained
fluorescence imaging. The MAS model is built upon an
end-to-end generative convolutional neural network
3
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(CNN) and utilises AF and 4′,6-diamidino-2-
phenylindole (DAPI) slides as inputs to generate mIF
staining for gastric cancer related biomarkers (Fig. 1b).
The model’s feature extractors, fortified with pretrained
masked auto-encoders (MAEs) (Fig. 2a) and a self-
attention combination strategy (Fig. 2b), adeptly extract
antigen-label-related features and precisely locate targeted
cells. Employing a composite loss function minimisation,
parallel multi-attention decoders concurrently predict a
set of images for varied biomarkers (Fig. 2c). The MAS
system’s efficacy was assessed using a cohort of 94 pa-
tients with gastric cancer, successfully achieving virtual
staining for seven gastric cancer survival-associated bio-
markers (CD3, CD20, FOXP3, PD1, CD8, CD163, and
PD- L1) in cancerous and non-cancerous gastric tissues,
with quality equivalent to manually stained reference
images. Furthermore, the prognostic prowess of the vir-
tual mIF images was validated, matching results derived
from manually stained mIF images. The MAS system
stands out by enabling the rapid, cost-effective generation
of reliable mIF staining. Through its consistent and
efficient performance, it holds the potential to redefine
mIF staining paradigms, offering a pathway towards
personalised medicine without imposing substantial time
and financial burden.

Methods
Ethics
This study was approved by the institutional review board
of Nanfang hospital (NFEC2017171). Original data was
collected from Nanfang Hospital (Guangdong, China)
from July toDecember 2010, and the survival information
was followed up and recorded until December 2016. All
manual staining processes were conducted at the
Shanghai Outdo Biotech Company (Shanghai, China).
Considering the retrospective nature of this study, the
requirement for informed consent was waived.

Data preparation
The detailed data preparation procedure, including the
tissue microarray and training data staining rules, is
provided in the Supplementary Material, Table S4, and
Table S5. Specifically, for the AF images: excitation
wavelength = 360 nm; emission wavelength = 420 nm.
For the DAPI images: excitation wavelength = 350 nm;
emission wavelength = 450 nm. These wavelengths
were selected to optimise the visualisation of specific
tissue components and biomarkers. The chosen wave-
lengths for AF allow for the effective imaging of
endogenous fluorophores such as collagen and elastin,
which are commonly present in gastric tissue. After data
collection, we obtained experimental data from 94 pa-
tients with gastric cancer. During the data collection, sex
was self-reported by study participants. Since our
research focuses on the efficacy of the staining network
and its clinical reliability in gastric cancer prognosis, sex
was considered as a covariate of non-interest. Pathological
slides of both cancer and noncancer tissues are selected.
To acquire aligned training pairs, we first generated DAPI
and AF images of each tissue sample and then simulta-
neously stained them with CD3, CD20, FOXP3, and PD1
labels. Finally, we obtained 180 aligned slide pairs, each
possessing dimensions of 3616 × 3612. The same pro-
cedure was executed to obtain another set of 180 aligned
slide pairs for the CD8, CD163, PD-L1 stained slides, along
with their corresponding DAPI and AF slides. In network
training, we used data from 80 patients as the training set
and data from the remaining 14 patients as the indepen-
dent testing set for the original task dataset. For the
transfer learning task, we employed an additional dataset
from the same patients but with different scanning and
staining times. This dataset followed the same train-test
split strategy as the original task. The independent
testing set ensures the integrity of our evaluation process.
We implemented a sliding window strategy to generate
patches from the whole slides. For the training set
involving predictions of CD3, CD20, FOXP3, and PD1
biomarkers, the sliding window yielded 26,563 patches,
whereas for the training set of CD8, CD163, and PD-L1
predictions, we obtained 10,240 patches in total. All
patches were resized to 256 × 256, and normalised to a
scale of 0–1. During network training for both the original
task and the transfer learning task, 20% of the original
training set was randomly selected as the validation set,
while the remaining 80% was used as the actual training
set. A standard data augmentation process31 was conducted
to increase the diversity of the training data and enhance
the robustness of network training. By applying trans-
formations such as shifting, rotating, shearing, zooming,
and flipping with random parameters during each training
epoch, our augmentation strategy effectively broadens the
training landscape. This approach helps prevent the model
from overfitting to the peculiarities of the training set.
Experimental setup
During the training process, the two MAE models were
pretrained using the stochastic gradient descent (SGD)
optimiser. The initial learning rate was 10−4 with a
momentum of 0.9 and a clip value of 5.0. Convergence
of the MAE models was considered achieved when the
loss value on the validation set did not decrease for 20
consecutive epochs. For training the MAS network, we
employed the Adam optimiser with an initial learning
rate of 10−4 and a weight decay of 10−2. Similarly to the
MAE models, we determined the convergence status of
the MAS by monitoring the loss value on the validation
set. The experiments were performed in Linux operating
system (Ubuntu 16.04 LTS), with Python 3.7. The
training process was conducted using Keras with Ten-
sorflow as the backend. In addition, an NVIDIA Tesla
V100 DGXS graphic processing unit (GPU) was adopted
to increase the training speed.
www.thelancet.com Vol 107 September, 2024
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MAS system details
a) Deep learning architecture establishment
The network within the MAS system melds four sub-
modules: the input splitting module, dual feature
extractor module, multi-channel image generator mod-
ule, and output restructuring module (Fig. 2).

The input splitting module utilises a sliding window
of size 256 × 256 to traversing over the slides, extracting
autofluorescent and DAPI patches from the corre-
sponding whole slides. Concurrently, the dual feature
extractor employs AF-based and DAPI-based MAEs to
capture relevant features from the inputs. Each MAE is
pretrained using AF images and DAPI images, effec-
tively harnessing targeted characteristics from both
input modalities (Fig. 2a). The MAEs undergo training
with a blend of data from both panel 1 and panel 2,
incorporating a random masked mechanism, wherein
each patch receives a random-sized, randomly-located
mask during MAE training in each epoch, with a new
mask generated in subsequent epochs. The encoder
outputs from the MAEs intertwine through a concate-
nation layer, illustrated in Fig. 2b.

Subsequently, multiple residual blocks and attention
blocks are employed to integrate the multimodality fea-
tures, incorporating both cytoplasm and nucleus infor-
mation. The multimodality features extracted from the two
MAEs, named MAE-AF and MAE-DAPI, are then
concatenated and combined by a self-attention feature
combination block inspired by Zhang et al.‘s research.32

The self-attention block, composed of several residual-
attention sub-blocks, allows the network to spotlight
essential parts of the double-expanded feature dimension.

Moreover, drawing upon the proven efficacy of self-
attention in image-to-image generation and the robust
feature extraction capability of the residual attention
module, attention blocks are strategically incorporated
(see Figure S13). Each attention block consists of a trunk
branch and amask branch. Themask branch, comprising
max pooling layers, residual blocks, and upsampling
layers, generates an attention mask that highlights rele-
vant features and suppresses noise. The attention sys-
tem’s dexterity in directing the network towards the
input’s most informative aspects has proven to be
instrumental, offering a nuanced understanding and
visualisation of the complex, multimodal biological data.

Subsequently, the multi-channel image generator
branches out into N image generating channels, facili-
tating parallel prediction of pathological slides, each
stained with N distinct biomarkers. In this study, we set
N to four, generating staining images for the CD3,
CD20, FOXP3, and PD1 biomarkers. The output from
the dual feature extractor is then fed into four parallel
Fig. 2: MAS system method details. a, Detailed architecture of masked
extractors in the MAS system. b, Self-attention feature combination str
presents the detailed gated attention connection mechanism used in the
multi-attention decoders, each following the structure
showcased in Fig. 2c. The multi-attention decoder re-
places conventional skip connection with a gated atten-
tion feature connection.33 This mechanism utilises the
decoder feature as a gating signal to selectively prune
low-level encoder features from MAE-AF and MAE-
DAPI, assuring that insightful information is effec-
tively extracted from the multimodality inputs. The
gating coefficient is obtained using additive attention,
which is defined as follows:

qlatt =ψT(σ1(WT
x x

l
i +WT

g gi + bg)) + bψ (1)
αli = σ2(qlatt(xli, gi;Θatt)) (2)

where σ2(xi,c) = 1 /1+exp ( − xi,c). Θatt denotes the
entire parameters in the gated attention calculator. To be
specific, Θatt includes linear transformationsWT

x ,W
T
g , ψ

and bias terms bψ, bg .
The multi-attention decoders produce positive

signals stained with different labels, utilising DAPI
images as the background. This design choice is
motivated by the precise positional information of cell
nuclei provided by DAPI, which allows the network to
accurately determine the location of each cell and
contribute to precise staining positioning. Afterwards,
outputs from the multi-attention decoders are
directed to the residual finetune block, which deducts
the input DAPI image from the decoders’ output
slides, deriving the residual signal. This signal is then
refined via three convolutional layers to formulate the
final staining prediction. This system allows for the
parallel generation of desired predictions, accommo-
dating flexibility in producing multiple staining
outcomes.

b) System training and hyperparameter optimisation
The training process of MAS system contains two steps.
The first step is the pre-training of MAE-AF and MAE-
DAPI. In this stage, each MAE uses MSE as the loss
function and applies randomly sized and randomly-
located masks to the training patches in each epoch.
The objective of the network is to generate the
unmasked patches that correspond to the input patches
after going through the encoder-decoder structure with
multiple convolutional layers. The composite loss
function can be defined as follows:

lMAE = 1
M

∑M
i=1

⃦⃦
Irefi −MAE(Iini )⃦⃦2

2
(3)
auto-encoders, where the encoders are utilised as powerful feature
ucture. c, Gated attention details in multi-attention decoder, which
MAS system.
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where MAE(Iini ) and Irefi denote the predicted virtual
mIF slides of MAS in the training batch and its corre-
sponding standard manually stained slides of the i-th
sample, respectively, and M is the training batch size.
Compared to conventional auto-encoder feature extrac-
tors, the MAE compels the network to predict unknown
masked features using their surrounding information.
As a result, the MAE demonstrates enhanced general-
isation capabilities and possesses superior feature
capturing and contextual feature prediction abilities.

Next, we begin by extracting the pretrained weights
from the encoders of MAE-AF and MAE-DAPI and then
loading them into the corresponding layers of the MAS
model. The remaining parts of the model are initialised
using Glorot Uniform initialisation, which generates
initial values from a Uniform distribution. The loss
function of the MAS network consists of two compo-
nents: constraints on the outputs of the multi-attention
decoder module and the residual finetune module. Our
objective is to minimise the MSE between the predicted
virtual mIF signals and the corresponding manually
stained signals, aiming to reduce the differences between
them. The final loss can be formulated as follows:

lMAS = ∑N
n=1

lnMAS (4)
lnMAS = 1
M

[∑M
i=1

⃦⃦
Ir1i −MA(IAUi , IDAi )⃦⃦2

2

+ ∑M
i=1

⃦⃦
Ir2i − RF(MA(IAUi , IDAi ))⃦⃦2

2
]

(5)

where M is the training batch size, N is the number of
mIF labels the MAS predicted, lnMAS denotes the sub-loss
for n-th staining prediction. MA( ⋅) and RF( ⋅) represent
the calculations of multi-attention decoder and residual
finetune modules, respectively. IAUi , IDAi , Ir1i and Ir2i
represent the AF input, DAPI input, referenced mIF
manual-stained image covered on DAPI image and the
pure referenced mIF stained image, respectively.

c) Implementation of transfer learning for unseen label
adaption
To ensure the effective adaptation of the model in the
proposed MAS system to new immunofluorescent la-
bels, we employed transfer learning, a widely used
technique in deep learning. This process involved two
stages. In the first stage, we transferred the pretrained
weights of the dual feature extractor, which were already
trained on the original task, to the new label training.
We then froze these weights and trained the parameters
of the residual-restricted multi-channel image generator
from scratch until the network reached convergence.

In the second stage, we unfroze the dual feature
extractor and finetuned the entire MAS system with a
www.thelancet.com Vol 107 September, 2024
small learning rate until convergence was reached again.
This approach allowed the network to adjust its pa-
rameters and learn more specialised features for the
new labels. As a result, the MAS system could rapidly
adapt to unseen immunofluorescent labels with less
additional training data and faster convergence speed.
Furthermore, this approach reduced the likelihood of
overfitting the network to a specific set of labels.

Model complexity
The MAS model, which simultaneously predicts CD3,
CD20, FOXP3, and PD1, has 9,021,688 parameters and
4.5219 × 1011 FLOPs. The MAS model’s training time is
approximately 72 h. During the testing stage, the pro-
cessing time to stain a whole-slide image is around 3.3 s
with a GPU and about 38 s with a CPU. Similarly,
staining for CD8, CD163, and PD-L1 takes around 2.6 s
with a GPU and approximately 30 s with a CPU.

Quantification and statistical analysis
To evaluate the performance of the different methods,
we employed various assessment techniques, including
similarity-based metrics, patch-based clinical observa-
tion assessment, and survival prediction analysis.

a) Computational-similarity-based evaluation
The similarity-based metrics used in the evaluation
included the PSNR and the SSIM. These metrics pro-
vide measures of the pixel-based and perceptual-based
similarities between the predicted virtual mIF slides
and the standard manually stained images (without
DAPI as background), respectively. The PSNR is calcu-
lated using the following formula:

PSNR = 10 × log10(2552MSE
) (6)

where MSE represents the mean squared error calcu-
lated between the virtual mIF slides of the i-th input in
the testing dataset and its corresponding standard
manually stained slides. The SSIM is calculated by.

SSIM = (2μMμA+C1)(2σA,M+C2)(μ2M+μ2A+C1)(σ2M+σ2A+C2) (7)

where μA, μM, σA, σM and σA,M denote the means,
standard deviations and covariance of the virtual mIF
slides and the standard manually stained slides,
respectively. C1 and C2 are defined values used to sta-
bilise the calculation.

b) Patch-based pathologists’ observation assessment
To evaluate the density of stained immune cells, the
nucleated stained cells in each core were quantified and
expressed as the number of cells per core. This evalua-
tion was performed by 2 gastroenterology pathologists
7
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who were blinded to the clinical outcome. In cases
where differences arose between the two primary pa-
thologists, a third pathologist was consulted to reach a
consensus. Subsequently, we evaluated the observed
results using Pearson and Spearman correlation ana-
lyses to measure the linear and monotonic relation-
ships, respectively, between the virtual mIF patches and
the manually stained patches. By employing both cor-
relation measures, we ensured that our findings are
robust and not solely dependent on the assumption of
linearity.

c) Survival prediction analysis
Among the 94 patients with gastric cancer, 86 have both
gastric cancer tissues and matched noncancer samples,
while 8 patients only have gastric cancer samples. For
the survival analysis of patients with gastric cancer, we
only used the tumour samples, as all patients have these
tumour samples. We assessed the association of each
biomarker’s expression with overall survival (OS). OS
was defined as the time from surgery to death from any
cause. Survival curves were generated according to the
Kaplan–Meier method and compared using the log-rank
test. Statistical analysis was conducted with R software
(version 4.1.0). A two-sided p value < 0.05 was consid-
ered statistically significant. The cutoff score for the
density of each biomarker was the medium number of
stained immune cells. The combined positive score
(CPS) was defined as the total number of PD-L1 positive
cells (tumour, lymphocytes, and macrophages) divided
by the total number of viable tumour cells multiplied by
100. CPS was categorised as high (CPS ≥10), interme-
diate (10 > CPS ≥1), and low (CPS <1). We used the
multivariable Cox regression model to select the bio-
markers, and then constructed an integrated score.

In addition, we performed the subgroup analysis
stratified by clinicopathological factors. We also conduct
multivariate Cox analyses using the clinical factors as
covariates, including sex, age, tumour grade, tumour
size, tumour location, depth of invasion, and lymph
node metastasis, distant metastasis, TNM stage.

Statistics
In this study, various statistical methods were employed
to ensure the robustness and validity of the findings.
Sample size determination was conducted using data
from 94 patients with gastric cancer. Of these, 80 pa-
tients were considered as training set, and 14 patients
formed an independent testing set. Randomisation was
implemented by randomly selecting 20% of the original
training set as the validation set for network training.
Additionally, during patch-based pathologists’ observa-
tion assessment, two gastroenterology pathologists,
blinded to clinical outcomes, evaluated the density of
stained immune cells. Pearson and Spearman correla-
tion analyses were conducted to measure the linear and
monotonic relationships between virtual and manually
stained patches. For survival prediction analysis,
Kaplan–Meier analysis and log-rank tests were utilised
to demonstrate the prognostic value of the biomarkers.
The cutoff score for each biomarker was set as the
median number of stained immune cells. Multivariable
Cox regression models were then used to select bio-
markers and construct an integrated score, accounting
for various clinical factors.

Role of funders
The funders had no role in the study design, data
collection, data analyses, interpretation or writing of the
report; the findings and conclusions contained herein
are those of the authors and do not necessarily reflect
positions or policies of the aforementioned funding
bodies.
Results
The proposed MAS system enables high-
performance virtual mIF staining
For training of the MAS system, we collected 180 slides
of tissue samples containing both gastric cancer (94
samples) and noncancer (86 samples) from 94 patients
with gastric cancer. During the data preparation phase,
we obtained AF and DAPI images for each tissue sam-
ple, and the mIF images with four biomarkers (CD3,
CD20, FOXP3, and PD1) from the same sample. Here,
the four immune cell biomarkers are commonly
employed in evaluating patients’ prognosis and treat-
ment outcomes.34

We illustrate the predicted staining slides of cancer
and noncancer tissue cases in Fig. 3a and b. The virtual
mIF images exhibit remarkable similarity to the corre-
sponding manually stained images, demonstrating the
capability of the proposed MAS system in achieving
automated staining of both cancer and noncancer
tissues.

Patch-based observation assessment of pathologists
was also conducted, where 100 sets of patches were
randomly selected for each biomarker. Pathologists
evaluated and recorded the number of true positive cells
in both the predicted virtual mIF stained patches and
the manual-stained referenced mIF patches. Scatter
plots were generated to visualise and compare the re-
sults (Fig. 3c). The scatter plots clearly depict a distinct
thin diagonal line, indicating a strong positive correla-
tion between the predicted virtual mIF patches and the
standard manually stained patches. The Pearson corre-
lation coefficient (PCC) values for the CD3, CD20,
FOXP3, and PD1 labels are 0.884, 0.970, 0.981, and
0.963, respectively. The corresponding p-values in t-test
for the CD3, CD20, FOXP3, and PD1 labels are
2.37×10−41, 2.89×10−64, 1.11×10−93, and 1.30×10−75,
respectively. The Spearman correlation coefficient
values for the CD3, CD20, FOXP3, and PD1 labels are
0.809, 0.959, 0.943, and 0.879, respectively. The
www.thelancet.com Vol 107 September, 2024
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Fig. 3: Illustrative examples of the predicted staining slides for noncancer cases (a) and cancer cases (b). For each case, we present three el-
ements: the inputs to the MA model, denoted as non-antibody-stained fluorescence images; the outputs generated by the MA model, being the
virtual mIF stained images; and the standard manually mIF stained images. The results independently display CD3, CD20, FOXP3, PD1, along
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corresponding p-values in approximate t-test for the
CD3, CD20, FOXP3, and PD1 labels are 1.70×10−29,
7.72×10−58, 2.62×10−63, and 2.69×10−43, respectively.
These results provide compelling evidence that the vir-
tual mIF images obtained from the MAS system exhibit
a high degree of similarity to the standard manually
stained slides when examining individual cells.

Quick adaptation of MAS model for virtual staining
of other biomarkers via transfer learning
The MAS system is generalisable to unseen labels
through a transfer learning step (Fig. 4a). To ensure
effective adaptation of the MAS system to new labels,
the transfer learning process was performed in two
phases. First, the pretrained weights of the dual feature
extractor, obtained from the original task, are trans-
ferred and frozen for the new label prediction task. The
remaining parameters in the residual-restricted multi-
channel image generator are trained from scratch until
convergence is achieved. Second, the dual feature
extractor is unfrozen, and the MAS system is finetuned
with a lower learning rate until it converges again. In
this way, the MAS system can rapidly adapt to any un-
seen mIF staining task.

The transfer learning dataset included DAPI and AF
slides, as well as stained slides with CD8, CD163, and
PD-L1 labels. The results of transfer learning are pre-
sented in Fig. 4b, showcasing the capability of the MAS
system in mIF staining for external biomarkers.
Among the three new labels, the proposed approach
demonstrates the best performance in predicting the
PD-L1 label, potentially attributed to the strong corre-
lation between PD-L1 and PD1, which is one of the
training labels in the original network. Concerning
CD163, the MAS system accurately predicts the loca-
tion of positive signals, although the presence of
diffuse false positive signals in the referenced images
of the training data slightly affects the network
training, resulting in reduced sharpness of the output
image. In the case of CD8 staining, the abundance of
numerous small target positive signals poses a chal-
lenge for prediction, leading to some loss of detail in
the transferred results. Overall, the transfer learning
strategy employed by the MAS system generates
staining slides that exhibit high similarity to the
referenced images, thus confirming its robust gener-
alisation capability.

Patch-based observation assessment by pathologists
was also conducted to evaluate the transferred results.
The scatter plots comparing the predicted virtual mIF
with the consolidated multiplexed outcomes. To clearly depict the intr
comprehensive slide images. (c) Scatter plots of the virtual mIF patches a
The colour gradient shows the density of the dots. The X-axis and Y-axi
patches and the manually stained mIF patches, respectively. The colour g
patches with the manually stained patches are shown
in Fig. 4c. The PCC values for the CD8, CD163, and
PD-L1 labels are 0.930, 0.944, and 0.888, respectively.
The corresponding p-values in t-test for these labels are
9.05×10−58, 2.62×10−49, and 1.45×10−35, respectively.
The Spearman values in approximate t-test for the
CD8, CD163, and PD-L1 labels are 0.931, 0.934, and
0.923, respectively. The corresponding p-values in
approximate t-test for these labels are 2.07×10−58,
6.49×10−46, and 2.71×10−43, respectively. The results of
patch-based observation assessment (Fig. 5a) provide
strong evidence that the transferred learning results of
the MAS system are highly correlative to the manually
stained images, particularly when examining individ-
ual cells.

Survival prediction of patients with gastric cancer
by using the virtual mIF images
The MAS system was used to perform end-to-end pre-
dictions of the gastric cancer related biomarkers at pa-
tient level. We found the virtual mIF images generated
by the MAS system not only exhibit high resemblance to
the manually stained images, but they also offer reliable
information for downstream applications such as sur-
vival prediction. The association between the selected
biomarkers (CD3, CD20, FOXP3, PD1, CD8, CD163,
and PD-L1) and prognosis is well established and has
been validated in previously published studies.35,36 We
utilise this downstream task to evaluate the clinical
consistency of pathologists’ prognostic predictions
based on virtual stained images compared to manually
stained reference images. During the prognostic anal-
ysis, we first classified each patient as high or low
expression group based on the numbers of positive cells.
Then, we performed Kaplan–Meier analysis37 with log-
rank test to show the prognostic value of the generated
biomarkers (Fig. 5b and c). Our results revealed that
patients in the CD3-high group exhibited significantly
better OS compared to those in the CD3-low group
(p < 0.001). This is consistent with the analysis results
observed from the standard manually stained images.
We expanded our analysis to other generated stained
biomarkers, namely CD20, FOXP3, PD1, CD8, CD163,
and PD-L1. Among these biomarkers, CD20, CD8, PD1,
and CPS score demonstrated a significant association
with longer OS, while CD163 and FOXP3 showed a
tendency towards shorter OS. In a multivariable Cox
proportional hazards regression analysis, CD3, FOXP3,
CD163, and CPS score were identified as robust prog-
nostic biomarkers, with corresponding regression
icate details, we enlarged four distinct sections, located below the
nd manually stained patches for CD3, CD20, FOXP3, and PD1 labels.
s denote the count of true positively stained cells on the virtual mIF
radient shows the density of the dots.
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Fig. 4: Illustration and results of transfer learning strategy in the MAS. (a) Details of the transfer learning strategy. To facilitate quick adaptation
of a trained MAS system to unseen new biomarkers, we implement a two-phase transfer learning process. The framework’s generalisability is
highlighted by its flexible output channel. (b) and (c) Illustrative examples and scatter plots results of the transferred results.

Articles
coefficients of 1.299778, −0.911491, −0.804614, and
0.49202, respectively. Utilising these coefficients, we
calculated an Integrated Score for each patient using the
formula: Integrated Score = 1.299778 × CD3–0.911491 ×-
FOXP3–0.804614 × CD163 + 0.49202 × CPS. The Inte-
grated Score exhibited a significant association with
www.thelancet.com Vol 107 September, 2024
longer OS (p < 0.0001). These findings provide
compelling evidence that the generated stained slides
can yield clinical prognostic results comparable to
those obtained from manually stained images. In the
subgroup analysis stratified by clinicopathological fac-
tors, both the integrated scores of virtual staining and
11
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Fig. 5: (a) Overall performance through the observation assessment. To compare the similarity between the observation results between the manually
stained images and the virtual stained images, we calculate the Pearson correlation value and the p-value (using a t-test) for CD3, CD20, FOXP3, PD1, CD8,
CD163, PD-L1, noted that * represents p < 0.05, ** represents p < 0.01, *** represents p < 0.001. (b) Kaplan–Meier curves according to predicted virtual
stained slides labelledbydifferentbiomarkers for survival analysis of patientswithgastric cancer. (c) Kaplan–Meier curves according tomanually stained slides
labelled by different biomarkers for gastric cancer survival. Each plot in (b) and (c) shows the probability that a subject will survive up to time t.

Articles

12 www.thelancet.com Vol 107 September, 2024

http://www.thelancet.com


Articles
manually staining were still associated with patients’
OS. Moreover, multivariate Cox regression analysis after
adjustment for clinicopathological variables revealed
that both the integrated scores of virtual staining and
actual staining remained powerful prognostic factor (see
Figure S11, Figure S12, Table S6, and Table S7).
Discussion
Generative AI has emerged as a promising strategy for
image reconstruction, generation, and translation.12,38 In
general, existing research in pathological image gener-
ation can be divided into two categories. The first cen-
tres around generating high-quality functional stained
images from low-quality functional stained images.19

The second aims to generate functional stained im-
ages from non-functional stained images.26,27,29 In both
categories, however, significant efforts are demanded to
prepare the input images, raising concerns about the
practicality of these methods for widespread clinical
applications. In this work, we have presented a genera-
tive MAS deep learning strategy to generate multiplexed
mIF images from low-cost and easily attainable AF and
DAPI images. The quality of the mIF images and
downstream prognosis are demonstrated by using 180
slides of pathological images from 94 patients with
gastric cancer. By harnessing advanced deep learning
techniques and integrating modules such as the input
splitting module, dual feature extractor module, multi-
channel image generator module, and output restruc-
turing module, the proposed MAS system empowers
rapid mIF staining from unlabelled slides. It is
intriguing that the technique enables nearly instant
multiplexed staining, resulting in significant cost
reduction and improved workflow.

A special case analysis was conducted as shown in
Fig. 6a. In Case 1, the whole slides contain a large
number of densely packed, relatively small positive cells
for all four biomarkers. Our MAS method generally lo-
cates the positions of positive cells, but for CD3 and
CD20, the staining appears larger than the ground truth
manually stained image. In FOXP3 and PD1, some false
negatives are present. In Case 2, positive reactions are
relatively concentrated throughout the whole slides,
particularly in CD20, where the staining is both
concentrated and strongly reactive. Our MAS method
accurately pinpoints the high-intensity areas. However,
within these areas, CD3, FOXP3, and PD1 show some
false positives, and CD20 reveals slight discontinuity
along the patch edges. In Case 3, the manually stained
ground truth already contains staining errors, displaying
large patches of false positives. In this case, the pre-
dicted image could not avoid this false positive inter-
ference. In Case 4, negative reactions are predominant,
with positive cells being quite sparse. Our MAS method
can locate most of the positive cells among the
numerous negative cells, but some errors and omissions
www.thelancet.com Vol 107 September, 2024
still occur. Briefly, although there are some unideal re-
sults in special cases, our method generally identifies
most positive cells, and the results remain within an
acceptable range.

The input to our MAS system consists of AF and
DAPI slides. The former captures a wide range of
complex signal sources, including various tissue com-
ponents with endogenous fluorescence such as extra-
cellular matrix proteins, red blood cells and
macrophages. However, single AF images are prone to
inherent instability and noise. DAPI delivers stable and
precise nuclear information, ensuring exact cell nuclei
localisation and enabling refined staining impacts.39

Therefore, we incorporated DAPI and AF as inputs to
enhance the network’s sensitivity, particularly for small
cells. During the experiments, we compared the per-
formance of predicted virtual mIF slides using different
input modalities (Fig. 6b, Figure S1, and Table S1),
including single DAPI input, single AF input, and
multimodality inputs combining DAPI and AF. As
illustrated in Figure S1, the results demonstrated that
using AF input alone outperformed using DAPI alone
due to its ability to provide a more diverse range of in-
formation from cells and tissues. However, relying
solely on either DAPI or AF had limitations in accu-
rately predicting the staining. By integrating both DAPI
and AF as multimodal inputs, the performance was
significantly improved, resulting in enhanced similarity
between the generated predictions and the correspond-
ing manually stained images across multiple bio-
markers. These observations are further supported by
the boxplots in Fig. 6b, highlighting the advantage of
using multimodalities to achieve accurate and reliable
staining. Looking ahead, we aim to design improved
networks that can incorporate precise and stable nuclear
information from DAPI through pre-training. This
advancement will enable our system to generate real-
time mIF images directly from AF inputs during the
testing phase, without any aforehand staining.

In architecting the MAS system’s model structure,
we factored in the potential interdependence among
different staining labels, recognising that multi-task
learning can offer valuable complementary informa-
tion across tasks. Generally, the shallow-level features
can capture more generalised characteristics, while
deep-level features are typically more specific.40 To
ensure the independence of prediction for each
biomarker in the multiplex fluorescence staining task
while leveraging their complementary information, we
utilise a shared structure in the encoder and feature
combination components, followed by parallel multi-
attention decoders (Fig. 2) to generate distinct staining
predictions. The comparisons in Figure S2, Figure S3,
and Table 1 demonstrate that the proposed joint training
strategy significantly improves PSNR, SSIM, and MI
scores, highlighting its effectiveness in leveraging
complementary information. Comparative experiments
13
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Fig. 6: a, Special case analysis. b, Boxplots of PSNR, SSIM and MI. The boxplots illustrate the PSNR, SSIM and MI values for predictions generated
by dual-modal inputs and the compared single modality inputs.

CD3

MAS with separate traini

PSNR 30.86 ± 3.1

SSIM 0.56 ± 0.11

MI 0.14 ± 0.11

MAS with joint training a

PSNR 33.37 ± 4.0

SSIM 0.87 ± 0.06

MI 0.23 ± 0.16

MAS with joint training a

PSNR 32.39 ± 4.53

SSIM 0.87 ± 0.06

MI 0.18 ± 0.14

The highest PSNR, SSIM, an
staining methods are highlig
no PANCK staining results a

Table 1: Quantitative com
biomarkers.
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against the vanilla U-Net,41 U-Net with a residual fine-
tune module (ReU-Net), and a modified attention U-
Net33 with a residual finetune module (Att-ReU-Net)
were executed to assess each component’s role. The
CD20 FOXP3 PD1 PANCK

ng and individual biomarker prediction

1 31.10 ± 6.55 36.56 ± 4.78 30.86 ± 3.11 36.83 ± 6.91

0.86 ± 0.08 0.91 ± 0.06 0.56 ± 0.11 0.85 ± 0.08

0.09 ± 0.09 0.08 ± 0.07 0.14 ± 0.11 0.02 ± 0.05

nd prediction for four biomarkers (Our approach)

3 33.67 ± 6.75 37.61 ± 5.53 35.09 ± 4.96 –

0.87 ± 0.08 0.94 ± 0.06 0.90 ± 0.06 –

0.14 ± 0.14 0.12 ± 0.10 0.24 ± 0.18 –

nd prediction for five biomarkers

33.12 ± 7.87 37.35 ± 5.17 33.38 ± 5.33 38.16 ± 8.99

0.92 ± 0.06 0.93 ± 0.05 0.89 ± 0.08 0.91 ± 0.09

0.10 ± 0.10 0.13 ± 0.12 0.16 ± 0.15 0.03 ± 0.06

d MI results for the CD3, CD20, FOXP3, and PD1 biomarkers in the virtual mIF
hted in bold in Table 1. Please note that due to the suboptimal results for PANCK,
re bolded.

parison of experiments for MAS in predicting different combinations of
implementation details of our method are given in
Supplementary Materials. The outcomes, exemplified in
Figure S4, reveal that while the virtual mIF image
created by the vanilla U-Net resembles the conventional
manually stained image, it exhibits a notable loss of
details. Although ReU-Net and Att-ReU-Net presented
improvements, they showcased false negatives. In
contrast, the MAS model achieves superior staining
performance with more accurate staining of true posi-
tive cells, validated by the highest PSNR and SSIM
values, as depicted in Figure S5 and Table S2. In our
preliminary experiments, we found that GANs were
challenging to train, while CNNs achieved convergence
more easily for our specific task. Figure S6 shows a
sample of real-time predictions during GAN training.
The GAN training process was unstable, with FOXP3
and PD1 exhibiting gradient vanishing issues. Addi-
tional comparisons between GANs and our MAS
method are reported in Figure S7 and Table S3. The
predictions generated by MAS surpassed those of
GANs. We investigated the reasons behind the poor
performance of GANs in our task. Immunofluorescence
staining images often contain sparse positively stained
cells, with some images appearing nearly black. This
www.thelancet.com Vol 107 September, 2024
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makes it difficult for the discriminator to differentiate
between real and fake data, hindering effective adver-
sarial training due to insufficient direct competition
between the generator and discriminator. This obser-
vation led us to choose CNNs over GANs.

The MAS system employs a transfer learning strat-
egy to ensure robust generalisability and swift adapta-
tion to new tasks, particularly predicting unseen
biomarkers (see Figure S8). Beyond the original four-
biomarker prediction task, we also explored various
biomarker combinations in transfer learning. Pre-
liminary studies indicated that a virtual staining network
for CD68 and CD66B were more challenging to achieve
satisfactory performance compared to CD8, CD163, and
PD-L1. The transfer learning strategy underscores the
system’s efficacy in realising excellent staining results
for a variety of unseen biomarkers, and even adaptable
for other pathological staining task (predicting DAPI,
anti-MAP2, and anti-lslet1 from transmitted-light im-
aging,29 see Figure S9), showcasing its adaptability
through transfer learning.

Despite the promising prospects of generative AI in
natural image generation tasks, its applicability in medi-
cal scenarios, where AI-generated results impact patient
safety, invites scrutiny and demands rigorous usability
assessments to ensure secure and effective implementa-
tion. Our proposed generative AI model underwent a
thorough examination of its clinical applicability,
involving a patch-based clinical observation assessment
and a survival prediction analysis. The comprehensive
clinical appraisal affirmed that our MAS system reliably
generates mIF images with clinically significant attri-
butes. While the prevailing standard for evaluating
tumour-infiltrating immune cells hinges on intricate,
labour-intensive histopathological staining methods, our
model predicts survival rates and treatment responses in
gastric cancer directly from autofluorescence and DAPI
images, sidestepping the need for manual staining.
Interestingly, in some instances, AI-predicted mIF
stained slides surpassed manually stained counterparts in
performance (see Figure S10), reducing extensive false-
positive errors in certain cases. Attributable to the occa-
sionally inaccurate signals in manually stained slides
from varied factors like excessive antibody concentrations
or suboptimal epitope retrieval methods,42 generative AI
models, bolstered by abundant training data, minimise
such inaccuracies, emphasising correct protocols and
representing a substantial advancement in pathological
functional image generation. This underscores generative
AI’s potential to mitigate limitations inherent in manual
staining techniques.

Our study showcases the prognostic value of pre-
dicted mIF images, offering efficiency and consistent
performance while providing results comparable to
standard mIF staining, and illuminates new insights
into molecular-based cancer classifications through
comprehensive research on tumour-infiltrating immune
www.thelancet.com Vol 107 September, 2024
cells.5,35,36,43–46 The quantification of diverse immune cell
subpopulations within the tumour microenvironment
reveals associations with prognosis and/or response to
chemotherapy and immunotherapy, including immune
checkpoint inhibitors.5,35,36,43,45,46 Specifically, in gastric
cancer, infiltration of CD3+/CD8+ T lymphocytes cor-
relates with extended survival, whereas a high preva-
lence of CD163+ macrophages indicates a poorer
prognosis.35,36,44,47 These observations underscore the
pivotal role of immune cell biomarkers in gastric cancer
prognosis and spotlight mIF staining’s potential for
precise biomarker assessment. Our method generates
predictive mIF images, capturing immune cell sub-
population distribution and aiding in identifying prog-
nostic factors, thereby facilitating informed clinical
decisions-making.

Previous research underscores the importance of
immune cell scoring in guiding chemotherapy and
immunotherapy decisions for gastric cancer, with
studies substantiating the significance of this
approach.5,35,48–50 Additionally, the expression level of PD-
L1 has emerged as a pivotal clinical biomarker, widely
used to predict immunotherapy responses in patients
with cancer. However, the clinical implementation of
both immune cell and PD-L1 scoring methods is hin-
dered by their reliance on time-consuming and costly
pathological staining procedures. The proposed
approach overcomes these limitations. Our generative
AI model streamlines the process, enabling rapid and
cost-effective generation of multiplexed staining images,
including six immune cell biomarkers and PD-L1. Thus,
our research introduces a viable solution that addresses
the challenges associated with tumour-infiltrating im-
mune cell and PD-L1 scoring, with significant reduced
time and costs, leading to improved clinical decision-
making in cancer treatment.

It is useful to acknowledge the limitations of our
proposed method. In this current study, we evaluated
the framework of the MAS system by predicting seven
representative biomarkers. To fully assess the wide-
ranging applicability of our method, it is crucial to
examine its predictive efficacy across a more extensive
array of biomarkers. However, due to the challenges
associated with data collection, we have not yet
expanded our experimental validation to include a larger
set of biomarkers. Besides, future external validation is
crucial to confirm the MAS system’s reliability and
generalisability across diverse clinical settings. By
testing the model with independent datasets from
various institutions, potential biases and limitations
inherent to our initial study can be identified and
addressed, ensuring broader applicability and
enhancing clinical trust in the MAS system.

Furthermore, while the MAS system has yielded
satisfactory results, we are actively working towards
identifying a solution that can streamline the workflow
and make our method more accessible and user-
15
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friendly. We recognise the need to address these prac-
tical aspects to enhance the usability and adoption of the
MAS system in real-world settings. Moreover, there are
several valuable tasks that can be accomplished in future
work. For instance, the significant time and cost asso-
ciated with traditional mIF techniques present a sub-
stantial barrier, limiting their effective utilisation in
investigating the diagnostic and prognostic implications
of various biomarkers. In this regard, the proposed
virtual mIF staining method offers a compelling solu-
tion to overcome this challenge, enabling researchers to
explore the correlation between an extensive array of
biomarkers and the diagnosis or prognosis of numerous
diseases. Further research and development efforts are
needed to fully leverage the potential of this approach
and extend its applications in clinical and research set-
tings. Moreover, different wavelengths in AF imaging
can capture varied information, which might influence
the efficacy of virtual staining. In future work, we will
explore the correlation between different wavelength
selections and staining performance for various bio-
markers. This research could provide valuable insights
and potentially enhance the accuracy and effectiveness
of our virtual staining techniques.

In summary, deep learning-based generative AI
presents a promising solution to overcome the chal-
lenges of existing manual mIF staining techniques by
enabling the generation of virtual mIF staining from
non-antibody-stained fluorescence imaging. Our MAS
system, a dedicated framework for virtual mIF staining,
achieve this by leveraging an enhanced feature extractor
to derive insights from dual-modal non-antibody-stained
fluorescence images. Through incorporation of self- and
multi-attention mechanisms, the MAS system effec-
tively discerns the most relevant information, facili-
tating rapid and reliable generation of multiplexed
staining. The proposed technique brings about a sig-
nificant reduction in the cost associated with mIF
staining and greatly improves the clinical workflow.
Furthermore, future integration of this methodology
into clinical practice should empower healthcare pro-
fessionals to make more informed treatment decisions,
ultimately advancing precision medicine and enhancing
patient care.
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