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A B S T R A C T

Many observations have demonstrated that the hypothalamic neuroendocrine change determines the
chronological sequence of aging in mammals. However, it remains uncertain on the mechanism to account
for the hypothalamic aging manifestations. In this article, it is pointed out that, as constantly exposed to
sunshine and oxygen, the skin would undergo both telomere-shortening and oxidative senescent processes. The
senescent alterations of skin, such as attenuation in electrodermal activities, would in turn reduce the emotional
responses and memories. Whereas previously I demonstrated that the slow wave sleep just functioned to adjust
the emotional balance disrupted by accumulated emotional memories, especially capable of ameliorating the
symptoms of depressed patients. Therefore, the reduction in emotional responses and memories from skin
senescence would reduce the requirement for slow wave sleep in many senescent observations. The decrement
in slow wave sleep would in further cause functional but not chronological degeneration of suprachiasmatic
nucleus rather than paraventricular nucleus in hypothalamus. In these respects, from skin senescence to slow
wave sleep, there forms a new degenerative aging pathway able to account for the hypothalamic chronological
sequence of aging, specifically addressed to the suprachiasmatic nucleus.

1. Introduction

Mammalian aging is a complex degenerative process involving
many biochemical, cellular and physiological changes. The underlying
mechanisms for mammalian aging have been diverse, and remained
controversial on which plays more important roles than others. Among
the mechanisms, there are oxidative accumulations in cells [1–4],
length-shortening of telomeres [5,6], chronological changes in hy-
pothalamic neuroendocrine control of hormones [7,8], thymic involu-
tion [9,10], amyloid-beta accumulation in brain [11,12], and so on.

In spite of the various aging mechanisms, the hypothalamic
neuroendocrine change determines the chronological sequence of aging
in mammals. Whereas, it remains uncertain on the mechanism to
explain the hypothalamic chronological manifestation of aging. On the
other hand, not all aging processes are controlled by the hypothalamic
neuroendocrine system in mammals. Aging processes such as thymic
involution [9,10], brain senescence [11,12], as well as skin exposure to
sunshine and oxygen are all beyond the influence of hypothalamic
neuroendocrine control. In this theoretical essay, it is attempted to
hypothesize a mechanism to account for the hypothalamic aging of
suprachiasmatic nucleus (SCN) with skin senescence beyond the
hypothalamic neuroendocrine control.

2. Integrative review as the method to raise new hypothesis

This paper belongs to a theoretical essay. Many theoretical essays
are adopted in the form of review, so is this paper. To raise a new
hypothesis, there is no better and more convincing way than integrative
reviewing all relevant fields of studies. It is necessary to point out that
meta-analysis fits hypothesis in a well-studied subfield, but not for
integrative hypothesis from several fields. Citing updated reviews or, if
not available, salient and repeated experimental results in subfields is
the best method. With this integrative methodology, in this paper, it is
hypothesized a new theory on the mechanism for the hypothalamic
aging of SCN with skin senescence.

3. The vulnerability of skin to aging

Since thymic involution [9,10], brain senescence [11,12] as well as
skin aging from sunshine and oxygen are all beyond the hypothalamic
control, it is necessary to briefly review them for the purpose of finding
out the plausible candidate of mechanism responsible for causing
hypothalamic aging.

http://dx.doi.org/10.1016/j.slsci.2016.09.004
Received 22 February 2016; Received in revised form 5 July 2016; Accepted 22 September 2016

Peer review under responsibility of Brazilian Association of Sleep.
E-mail address: hrsh8@126.com.

Sleep Science 9 (2016) 212–215

Available online 13 October 2016
1984-0063/ © 2016 Brazilian Association of Sleep. Production and hosting by Elsevier B.V.
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/BY-NC-ND/4.0/).

MARK

http://www.sciencedirect.com/science/journal/19840063
http://www.elsevier.com/locate/ssci
http://dx.doi.org/10.1016/j.slsci.2016.09.004
http://dx.doi.org/10.1016/j.slsci.2016.09.004
http://dx.doi.org/10.1016/j.slsci.2016.09.004
http://crossmark.crossref.org/dialog/?doi=10.1016/j.slsci.2016.09.004&domain=pdf


3.1. Thymic involution

Thymic involution occurs early in childhood before puberty [9,13],
which is dissociated from the later aging processes controlled by the
hypothalamic neuroendocrine system. Thymic involution is believed to
contribute to morbidity and mortality in elderly humans due to the
increased incidence of infection, autoimmunity, and cancer [10,13].
Whereas, the later aging processes controlled by hypothalamic neu-
roendocrine system manifest mainly as decrease in sexuality [14] and
increase in stress [8]. In this regard, the aging processes of thymic
involution and hypothalamic neuroendocrine dysfunction are disso-
ciated but concurrent with each other.

3.2. Amyloid-beta and brain aging

The hypothalamus is in turn controlled by many higher brain
structures, so that the brain aging, characterized as the accumulation of
amyloid-beta [4,11], is also beyond the hypothalamic neuroendocrine
control. In reverse, the hypothalamic aging may result from brain
aging. However, recently it was reported that sleep helped biophysical
clearance of amyloid beta from the adult brain [12,15], implicating that
the neurons of brain were equally subject to the aging toxicity of
amyloid beta, including the hypothalamic nuclei.

Investigation on hypothalamic change during aging revealed that
each cell group of the hypothalamic nuclei had their own specific
pattern of aging, some decreasing while others increasing in volume
during aging [7,16–18]. Since the biophysical homogeneity in toxicity
of amyloid beta from forebrain [12,15] would cause homogenous
degeneration of all hypothalamic nuclei, the heterogeneity in degen-
eration of hypothalamic nuclei [7,16–18] indicated that the hypotha-
lamic aging would result from the aging mechanisms other than the
toxicity of amyloid beta from forebrain.

3.3. Sunshine, oxygen, telomere length and skin aging

After exclusion of thymic involution and forebrain amyloid-beta as
the cause of hypothalamic aging, skin aging is the major process not
controlled by the hypothalamic neuroendocrine system, and most likely
to feedback to cause hypothalamic aging.

Skin aging is characterized in appearance as gray in hairs, increase
in wrinkles, deposition of pigments and so on. Skin is constantly
exposed to sunshine and oxygen, which makes skin aging beyond the
influence from hypothalamic neuroendocrine system. It has been
demonstrated that dysfunction of skin collagen [19] and elastin [20]
may be responsible for the generation of skin wrinkles from photoa-
ging. It has also been demonstrated that oxidative accumulations are
intimately associated with skin aging [21,22]. Obviously, both sunshine
and oxygen are the environmental causes resulting in the aging of skin.

In addition to the damage from environmental sunshine and
oxygen, the skin also undergoes aging genetically by shortening the
length of telomeres. It has been shown that the telomerase activity and
telomere length may be relevant to skin aging [23]. Particularly, it was
reported that the telomerase reversed the hair follicle stem cell defects
in epidermis [24]. Obviously, genetic shortening telomere length is an
additional mechanism causing skin aging in addition to environmental
sunshine and oxygen.

3.4. Skin aging and electrodermal activities

One of the important consequences of skin aging is the change in
electrodermal activities. It was reported that the electrodermal activ-
ities decreased in the older subjects than younger [25,26]. At the
cellular level, it was shown that the electrodermal activity was
intimately related to the count and filling of sweat glands [27,28].
Likewise, it was demonstrated that the sweating response was de-
creased during aging in humans [29,30]. In this regard, both electro-

dermal activities and sweating responses were reduced in parallel
during aging.

4. Aging, emotion and slow wave sleep

4.1. Electrodermal activities in depression and aging

Emotional response can also cause changes in electrodermal
activities. It has been demonstrated that the psychological stress can
elicit significant changes in electrodermal activities in humans [31,32].
Whereas, it has also been shown that the electrodermal activities vary
among subgroups of depressive patients [33,34], with a tendency of
decrease in electrodermal activity during acute suicidal period [35].

As has been demonstrated above, in aging the electrodermal
activities were reduced [25,26]. In this regard, aging parallels to
depressive patients with suicidal tendency as reduction in electroder-
mal activities.

It is common knowledge that both aging [7,8] and depression [36–
38] result from long-term accumulation of stress. In this regard, the
parallel of aging and depression on electrodermal activity is consistent
with the fact that they both result from stress.

On the other hand, as has been demonstrated above, decrease in
electrodermal activities during aging results from the environmental
sunshine and oxygen as well as the genetic shortening of telomere
length. In this regard, it is the skin damage and aging that reduces the
electrodermal activities in similarity to depression, manifesting the
shift of body state toward depression.

4.2. Slow wave sleep ameliorating depression from emotional
memories

Previously, through integrative review of various studies, I demon-
strated that slow-wave sleep (SWS) played the function in regulation of
emotional balance disrupted by emotional memories randomly accu-
mulated during waking [36–38], while the rapid-eye-movement (REM)
sleep played the opposite role [36–38]. This theoretical analysis on
sleep functions pertains to Freudian psychoanalysis more than other
sleep theories [38].

In this theoretical analysis on sleep functions, there reviewed the
observations and experiments in many aspects [36–38]. For the
emotional regulation of SWS, there were integratively reviewed [36–
38] as: (1) SWS was frequently related with depression, while increase
in SWS duration ameliorated depression [36–38]. (2) Hippocampal but
not neocortical lesions caused impairment of SWS, while the neuronal
activity in SWS increased in hippocampus but not in neocortex [36–
38]. For the REM sleep, I and others reviewed it as tending to disrupt
the emotional balance toward depression [36–40], with the REM sleep
deprivation cited as therapeutic against depression [36–38].

The function of REM sleep matches to the Freudianism that learned
memories conflict against disinhibited drives during dream sleep,
consolidating the psychoanalysis of Freudianism [38]. Whereas, the
function of SWS in contrary to that of REM sleep supplements the
neglect of Freudianism, important to further advancement of psycho-
analytic theory and therapy in future.

4.3. Aging, emotional memory and slow wave sleep

Aging [25,26] and depression with suicidal tendency [35] both
manifest reduction in electrodermal activities, indicating decrease in
physiological responses of emotion [31,32]. In this regard, emotional
memories would also be reduced in accordance.

SWS just plays the function in regulation of emotional balance
disrupted by emotional memories randomly accumulated during wak-
ing [36–38]. Decrease in emotional memories would result in decrease
in requirement for SWS to adjust their disrupted emotional balance. In
this regard, SWS would decrease in duration during aging. Indeed,
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many observations have demonstrated that SWS really decreases in
duration during aging [41–43].

5. Slow wave sleep and aging of suprachiasmatic nucleus in
hypothalamus

5.1. Heterogeneity of hypothalamic nuclei in aging

The hypothalamic nuclei manifest variation in degeneration during
aging [7,16–18]. The paraventricular nucleus (PVN) is responsible for
stress response and is functional throughout the lifespan, maintaining
its neuron number during aging [7,16]. In contrast, the number of
vasoactive intestinal polypeptide (VIP) neurons is decreased in the SCN
as the main controller of circadian rhythm during the process of
senescence [7,16–18], consistent with the gradual decrease in SWS
during aging [41–43]. Moreover, the sexually dimorphic nucleus in
preoptic area (SDN-POA) declines sharply in cell number after aging
[7,16]. This nucleus is twice as large in men as in women [7],
manifesting its functional differentiation in sex. In all, the hypotha-
lamic nuclei manifest differentiation in degeneration corresponding to
their functions in aging, with useful maintained while useless degen-
erated.

5.2. Slow wave sleep and aging of hypothalamic suprachiasmatic
nucleus

As mentioned above, in response to skin aging and reduction in
emotional memories, the SWS is observed to decrease gradually in
duration during aging [41–43]. The SCN controls the circadian
rhythm, while the reduction in SWS would reduce the requirement
for the function of SCN. In this regard, the hypothalamic SCN follows
to degenerate during aging [7,16–18], as other neurons and muscles.
In turn, many biological processes controlled by hypothalamic SCN
also become less coordinated during aging. In this regard, herein it is
formulated a hypothalamic aging pathway from skin senescence to
degeneration of hypothalamic SCN in aging via SWS.

The aging-related disorganization in expression of core clock genes
in various brain regions supports this hypothetic pathway. It is
common knowledge that the hippocampus is responsible for learning
and memory [44]. It was demonstrated that the expression of Clock,
Bmal1 and Per2 genes in hippocampus lost circadian rhythm earlier
than those in hypothalamic SCN [45,46], implicating that the hippo-
campal circadian rhythm relevant to SWS for adjusting the memories
therein decreased earlier in response to reduction of emotional
responses, while such dysfunctions later began to affect the hypotha-
lamic SCN.

6. Perspectives

The new theory for the aging pathway from skin to hypothalamic
SCN via SWS is significant. On the one hand, it provides an explanation
to account for the chronological aging of hypothalamic SCN with the
cellular senescent processes from skin via SWS, arguing against the
conceivable cause of aging chronologically set by the intrinsic circadian
rhythm within the SCN. In consistence, the expression of Clock, Bmal1
and Per2 genes in hippocampus lost circadian rhythm earlier than
those in hypothalamic SCN [45,46]. In parallel, this mechanism also
provides a clue to understand how other hypothalamic nuclei undergo
degeneration during aging in similarity. On July 4, 2016, the European
people in television speculated that there was a similar senescent
pathway for male reproduction from accumulation of lipid to reduction
of sperm to degeneration of hypothalamic preoptic area, while senes-
cence of female reproduction likely resulting from ovary degeneration.

On the other hand, it provides a useful theory to guide the
therapeutic efforts against aging in future. With regard to SCN
degeneration during aging, the therapeutic anti-aging efforts should

be more devoted to skin protection, sleep recovery and so on. In these
regards, this new theory would be important to biomedical sciences.

7. Conclusions

In this article, it is pointed out that the skin undergoes aging from
exposure to environmental sunshine and oxygen as well as genetic
shortening of telomere. The skin senescence results in reduction in
electrodermal activities, which would in turn ameliorate the emotional
responses and memories in brain, and thus reduce the requirement for
SWS. The decrement in duration of SWS in many senescent observa-
tions would in further cause functional but not chronological degen-
eration of SCN in hypothalamus during aging. In this regard, from skin
senescence to SWS, it is herein formulated a new degenerative aging
pathway to explain the hypothalamic chronological sequence of aging
addressing to SCN.
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