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Mutation-selective KRAS inhibitors are revolutionizing the treatment of RAS-mutant tumors but cannot
achieve durable effects alone. Kemp and colleagues1 recently showed how theKRAS-G12D-specific inhibitor
MRTX1133, while impairing cancer proliferation, stimulates T cell infiltration, which is crucial for sustained
disease control.
The KRAS oncogene has been found to

be mutated in 30% of all human cancers,

which has made of it, for more than 30

years, themost wanted, yet elusive, target

for anti-cancer therapy. RAS functions as

a molecular switch, transducing mito-

genic signals from the membrane recep-

tors, and activates a signaling cascade

leading to proliferation. When RAS is

mutated, this signaling goes out of con-

trol, resulting in unrestrained cell division,

tumor initiation, and progression. The last

5 years have seen the rise of a new gener-

ation of cleverly designed KRAS inhibi-

tors, capable of blocking the mutated on-

coprotein in its inactive state. The most

clinically advanced of those drugs, target-

ing specifically the G12C mutant, quickly

made it through clinical trials, and thanks

to their favorable toxicity profile and

promising anti-tumor efficacy, two of

them have been approved for the

treatment of KRAS-G12C-mutant lung

cancer.2

Unfortunately, KRAS-G12C mutations

are very rare in the highly deadly pancre-

atic cancer, where G12D mutants are

the most frequent (40%). Recently, a

new KRAS-G12D-specific non-covalent

inhibitor, MRTX1133, has been developed

by Mirati Therapeutics.3 Although not yet

ready for clinical use, this drug can pro-

vide valuable information in the pre-clin-

ical setting, especially when applied to

in vivo models that closely mimic the hu-

man disease. This is what the Stanger

lab did in their recent work in Cancer

Discovery,1 where they studied the effi-

cacy of MRTX1133 in immunocompetent

murine models of pancreatic cancer.

Kemp and colleagues use both implant-
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able and spontaneous mouse models ex-

pressing the KRAS-G12D oncogene (the

so-called KPC mice), in the presence of

an intact immune system. Importantly,

this model closely reproduces the dense,

stroma-rich microenvironment of human

pancreatic cancer, which is thought to

limit the efficacy of therapeutic interven-

tions.4 Kemp et al. report partial or com-

plete tumor regression in 50%–100% of

the mice treated, with variability depend-

ing on the specific model used. Neverthe-

less, the response is neither always com-

plete nor durable, as tumors relapse in

most of the mice after the treatment is

interrupted.

If we think about what we have learned

from the KRAS-G12C inhibitors, though,

those results don’t seem surprising. The

enthusiasm elicited by the early phase

clinical studies of either Amgen’s com-

pound sotorasib or Mirati’s adagrasib5,6

is primarily justified by the previous lack

of any targeted therapeutic option for

RAS-mutant patients. But as a matter of

fact, those drugs clearly have limitations.

First, less than one-third of patients with

advanced G12C-mutant lung cancer and

less than one-tenth with G12C-mutant

colorectal cancer, respond to the treat-

ment. Second, even in the responsive pa-

tients, G12C inhibitors can only halt tumor

growth for about 6 months, after which

the tumors relapse. It is thus apparent

that KRAS-mutant-specific inhibitors will

likely need to be used in combination

with other drugs in order to achieve a

more substantial clinical benefit. But

which ones? Pre-clinical studies have

investigated the reasons behind the

limited efficacy of KRAS-mutant-specific
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inhibitors. Part of it, seems to reside in

the capacity of cancer cells to adapt to

KRAS-G12C inhibition by re-activating

the inhibited signaling pathway or by

switching to an alternative survival

route.2 This would suggest combinations

with inhibitors of other signaling mole-

cules within the cancer cells, which are

currently being clinically explored. But

another very important aspect for the effi-

cacy of any anti-cancer therapy relies on

the capacity to elicit a potent anti-tumor

immune response. In this sense, the com-

bination of G12C inhibitors with immuno-

therapy is also being investigated.

Luckily, KRAS inhibition seems to do

more than just impair the mitogenic

signaling in the mutation-bearing cancer

cells. Studies have shown that KRAS-

G12C-specific inhibitors also stimulate

anti-tumor immunity by inducing a pro-in-

flammatory tumor microenvironment,

enriched in tumor-suppressive M1 mac-

rophages and cytotoxic T cells.7,8 Now,

what about KRAS-G12D inhibition?

Before MRTX1133 was developed, re-

searchers explored the effect of geneti-

cally depleting the oncogene using the

siRNA tool technology. This allowed

them to uncover how decreased KRAS-

G12D expression also had an effect on tu-

mor microenvironment.9 In their Cancer

Discovery work, the Stanger lab confirms

that pharmacologic inhibition of KRAS-

G12D using MRTX1133 also induces a

decrease in myeloid-derived suppressor

cells and an increase in pro-inflammatory

M1 macrophages, thus creating an envi-

ronment that favors immune response.

Moreover, they add another important

piece to the puzzle, by showing that the
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treatment increases tumor-infiltrating

cytotoxic T cells, the effectors of the

anti-cancer immune response. This is

particularly important in the light of two

additional observations that Kemp and

colleagues make in their in vivo experi-

ments. On the one hand, they obtain

deeper tumor regression in the T cell-in-

flamed KPC 2838c3 tumors, as compared

to the T cell-excluded 6419c5 KPC clone.

On the other hand, they experimentally

deplete cytotoxic T cells from the

2838c3 KPC mice and found that this ab-

rogates the capacity of MRTX1133 to

induce complete remissions. Moreover,

while 50% of the T cell-infiltrated tumors

remain in remission even after the treat-

ment is suspended, all the tumors in

which T cells have been depleted inevi-

tably relapse. Those results clearly show

that while MRTX1133 has a potent tu-

mor-intrinsic, anti-proliferative effect on

KRAS-G12D-mutant pancreatic cancer

cells, a complete and durable tumor erad-

ication can only be achieved in the pres-

ence of active tumor-infiltrating cytotoxic

T cells. The good news is that the drug it-

self seems to stimulate a tumor microen-

vironment that favors their expansion.

Altogether, the data from theStanger lab

build on the recent progressmade in inhib-

iting the most potent of oncogenes, the

no-more-undruggable KRAS, and shed

important light on the role of T cells and

tumor microenvironment in the response
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to anti-KRAS-G12D compounds. Their

observations support the exploration of

MRTX1133 in combination with immuno-

therapy (immune checkpoint inhibitors, tu-

mor-infiltrating lymphocytes [TIL], or CAR

T cell therapy), stimulating the patient’s im-

mune system to work together with the

drug to achieve a complete anddurable tu-

mor eradication.
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