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OBJECTIVE—We investigated the mechanisms underlying vas-
cular endothelial and contractile dysfunction in diabetes as well
as the effect of HMR1766, a novel nitric oxide (NO)-independent
activator of soluble guanylyl cyclase (sGC).

RESEARCH DESIGN AND METHODS—Two weeks after
induction of diabetes by streptozotocin, Wistar rats received
either placebo or HMR1766 (10 mg/kg twice daily) for another 2
weeks; thereafter, vascular function was assessed.

RESULTS—Endothelial function and contractile responses
were significantly impaired, while vascular superoxide formation
was increased in the aortae from diabetic versus healthy control
rats. Using RNA microarrays, cytochrome P4502E1 (CYP2E1)
was identified as the highest upregulated gene in diabetic aorta.
CYP2E1 protein was significantly increased (16-fold) by diabetes,
leading to a reduction in levels of the potent vasoconstrictor
20-hydroxy-eicosatetraenoic acid (20-HETE). Induction of CYP2E1
expression in healthy rats using isoniazide mimicked the diabetic
noncontractile vascular response while preincubation of aortae
from STZ-diabetic rats in vitro with 20-HETE rescued contractile
function. Chronic treatment with the sGC activator HMR1766
improved NO sensitivity and endothelial function, reduced CYP2E1
expression and superoxide formation, enhanced 20-HETE levels,
and reversed the contractile deficit observed in the diabetic rats
that received placebo.

CONCLUSIONS—Upregulation of CYP2E1 is essentially in-
volved in diabetic vascular dysfunction. Chronic treatment with
the sGC activator HMR1766 reduced oxidative stress, decreased
CYP2E1 levels, and normalized vasomotor function in diabetic
rats. Diabetes 59:2001–2009, 2010

D
iabetes is associated with accelerated develop-
ment of cardiovascular disease, which is the
primary cause of morbidity and mortality
among patients, accounting for more than 80%

of deaths. Subjects with diabetes develop abnormal endo-
thelial function, platelet hyperreactivity, aggressive ath-
erosclerosis, and adverse arterial remodelling relatively
early on (1).

The endothelium plays a crucial role in the control of
vascular homeostasis by releasing a spectrum of endothe-
lium-derived autocoids, the most important of which is
nitric oxide (NO) generated by the endothelial NO syn-
thase (eNOS) (2). The generation of reactive oxygen
species (ROS) within the vascular wall scavenges NO,
thereby decreasing its bioavailability for intracellular re-
ceptors (e.g., the soluble guanylyl cyclase [sGC]). In-
creased radical production has been proposed as an
important contributor to impaired endothelial function in
hyperglycemia and diabetes (3). Enhanced oxidative
stress decreases the expression and impairs NO-induced
activation of heme-containing sGC, making vasodilator
therapy with NO donors less effective. Under conditions of
enhanced oxidative stress in vivo in several disease states
including diabetes, sGC is indistinguishable from the in
vitro oxidized/heme-free enzyme. The oxidized/heme-free
sGC variant is unresponsive to NO and prone to degrada-
tion (4). In addition to its effects on vascular tone, the
healthy endothelium plays a pivotal role in preserving the
normal contractile or differentiated smooth muscle cell
phenotype. In diabetes, the smooth muscle cell phenotype
changes to a noncontractile or synthetic phenotype, result-
ing in a loss of contractility and enhanced proliferation
(5–7). Indeed, cyclic guanosine monophosphate (cGMP)
generated by sGC regulates cell cycle molecules in smooth
muscle cells and suppresses proliferation and migration,
thus preventing the switch toward a noncontractile, syn-
thetic phenotype (8). NO inhibits the angiotensin II–
induced migration of smooth muscle cell (9) and gene
transfer of cGMP-dependent protein kinase sensitized
smooth muscle cells for the antiproliferative effects of
NO/cGMP (10). Chronic inhibition of NOS in vivo alters
smooth muscle cell gene expression in favor of cell
proliferation (11).

Decreased levels of cGMP appear to be a prerequisite
for smooth muscle cell proliferation after vessel damage
(12). In fact, organic nitrates suppress proliferation and
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mitogenesis—an effect enhanced by inhibition of phospho-
diesterase 5 (13,14). An NO-independent stimulator of sGC
(15), 3-(5�-hydroxymethyl-3�-furyl)-1-benzylindazole (YC-
1), also exerts vascular protection through inhibition of
smooth muscle cell proliferation (16). HMR1766 (at-
aciguat), a novel anthranilic acid derivative (17), belongs
to a new structural class of sGC activators capable of
activating the oxidized or heme-free forms of sGC inde-
pendent from NO bioavailability (17). Thus, HMR1766 is
active under conditions of oxidative stress (18), when
other sGC stimulators or NO itself are ineffective because
of sGC dysfunction (19,20).

The aim of the present study was to determine the
mechanisms underlying vascular contractile dysfunction
in streptozotocin (STZ)-induced, insulin-deficient type 1
diabetes. We hypothesized that improvement of cGMP
signaling by chronic treatment with HMR1766 would ben-
eficially affect vasomotor function in diabetes.

RESEARCH DESIGN AND METHODS

The investigation conforms with the Guide for the Care and Use of Laboratory
Animals published by the U.S. National Institutes of Health (NIH publication
no. 85-23, revised 1996) and current guidelines at the University of Würzburg.
Unless stated otherwise, all chemicals were obtained from Sigma (Deisen-
hofen, Germany) in the highest purity available.

Male Wistar rats (250–300 g; obtained from Harlan-Winkelmann, Borchen,
Germany) were housed in temperature-controlled cages (20–22°C) with a 12-h
light-dark cycle and given free access to water and formulated diets.
Induction of diabetes by STZ injection. A single dose of STZ was used to
induce pancreatic islet cell destruction and persistent type 1 diabetes–like
hyperglycemia. STZ (10 mg/ml; Sigma, Deisenhofen, Germany) was freshly
dissolved in sterile sodium citrate buffer (25 mmol/l, pH 4.5) and used within
10 min. Rats received a single 50 mg/kg intravenous injection of STZ or citrate
buffer (control). Blood glucose was monitored using a one-touch blood
glucose meter (Ascensia Elite; Bayer-Vital, Leverkusen, Germany). Hypergly-
cemia was defined as random blood glucose level �20 mmol/l at 2 and 4 weeks
after injection. Rats were randomized to placebo or HMR1766 (15 mg/kg twice
daily; sanofi-aventis, Frankfurt/Main, Germany) at day 14. Two weeks later,
vasomotor function was assessed.
Vascular reactivity studies. The descending thoracic aorta was dissected
following removal of the heart and cleaned of connective tissue. One section
was used for measurement of O2

� production, and the other was cut into
3-mm rings, which were mounted in an organ bath (Föhr Medical Instruments,
Seeheim, Germany) for isometric force measurements. The rings were equil-
ibrated for 30 min under a resting tension of 2 g in oxygenated (95% O2; 5%
CO2) Krebs-Henseleit solution (in millimoles per liter: NaCl 118, KCl 4.7,
MgSO4 1.2, CaCl2 1.6, KH2PO4 1.2, NaHCO3 25, and glucose 12; pH 7.4, 37°C)
containing diclofenac (1 �mol/l). Rings were repeatedly contracted by KCl
(with a maximum of 100 mmol/l) until reproducible responses were obtained.
A contractile response curve using cumulative doses of phenylephrine was
performed in the absence and presence of the NOS inhibitor NG-nitro-L-
arginine (L-NNA) (100 �mol/l). In separate experiments, contractile responses
to angiotensin II were assessed.

The relaxant response to cumulative doses of acetylcholine was assessed
after preconstriction with phenylephrine to comparable levels. Afterward,
aortic rings were slightly preconstricted to �20% of the maximal constriction
with low, incremental doses of phenylephrine, and the additional contraction
to L-NNA was measured as a marker of physiological stretch-induced, calcium-
independent NO formation (21). Furthermore, relaxant responses to the
endothelium-independent vasodilator 2-(N,N-diethylamino)-diazenolate-2-ox-
ide (DEA-NONOate; Alexis Biochemicals, San Diego, CA) were determined
after preconstriction with phenylephrine in the presence of L-NNA.
sGC activity assay. Aliquots of thoroughly rinsed artoae from control or
STZ-injected rats were added to four parts of TED-buffer (50 mmol/l TrisHCl,
1 mmol/l EDTA, and 1 mmol/l dithiothreitol and protease-inhibitor mix
[Complete mini; Roche, Mannheim, Germany]). The aorta was macerated and
homogenized with an Ultaturrax; all steps were performed on ice. The
homogenate was centrifuged at 100,000g for 60 min at 4°C. The supernatant
containing soluble sGC was hence used in the sGC activity assay. Protein
concentration of the rat aorta supernatant was determined with the Lowry
method.

A 10-�l aliquot of rat aortic sGC was added to the reaction mixture
containing 50 mmol/l tetraethylammonium/HCl (pH 7.5), 3 mmol/l MgCl2, 3

mmol/l glutahione, 0.1 mmol/l GTP, and 1 mmol/l isobutylmethylxanthine to a
final volume of 100 �l. The reaction mixture was incubated for 60 min at 25°C
in the presence of either solvent, 10 �mol/l HMR1766 (dissolved in dimethyl
sulfoxide/water), 100 �mol/l sodium nitroprusside (SNP), or HMR1766 plus
SNP. The reaction was stopped by adding 100 �l stop reagent (50 mmol/l
EDTA, pH 8). These reaction mixtures (50 �l) were used to determine the
cGMP content according to the nonacetylation protocol (EIA kit; Amersham,
Munich, Germany). Absorbance at 450 nm was read in a microtiter plate
reader with the reference wavelength set at 620 nm. Specific activity of sGC is
expressed in picomoles of cGMP formed per milligram protein per minute.
Measurement of superoxide anion (O2

�) formation. Vascular O2
� forma-

tion was measured using lucigenin-enhanced chemiluminescence (22). The
light reaction between O2

� and 5 �mol/l lucigenin was detected in a
luminometer (Wallac, Freiburg, Germany) during incubation of rings in a
HEPES-modified Krebs buffer (pH 7.40). The specific chemiluminescence
signal was expressed as counts per minute per milligram dry weight of tissue.

The oxidative fluorescent dye hydroethidine was used to evaluate in situ
production of superoxide as previously described (22). Unfixed frozen ring
segments were cut into 10-�m-thick sections and placed on a glass slide.
Hydroethidine (2 �mol/l) was topically applied to each tissue section and
coverslipped. Slides were incubated in a light-protected humidified chamber
at 37°C for 30 min. Images were obtained with a Bio-Rad MRC-1024 laser
scanning confocal microscope equipped with a krypton/argon laser. Aortic
rings from STZ animals and control tissues were processed and imaged in
parallel. Laser settings were identical for acquisition of images from STZ and
control specimens. Fluorescence was detected with a 585-nm long-pass filter.

To achieve more specific determination of superoxide formation, aortic
segments were incubated with dihydroethidium and 2-hydroxyethidium for-
mation was measured using high-performance liquid chromatography as
recently described (23,24).
Liquid chromatography–mass spectometry/mass spectometry measure-

ments. The aortae were homogenized and resuspended in 100 �l of 0.1 mol/l
potassium phosphate buffer (pH 7.2), hydrolyzed for 15 min at 37°C using
NaOH (10 N), and neutralized with glacial acetic acid, and deuterated internal
standard for 20-HETE-d6 was added. A liquid-liquid extraction was performed
twice using 0.5 ml ethyl acetate. After evaporation of the solvent in a vacuum
block under a gentle stream of nitrogen, samples were reconstituted with 50
�l methanol/water (1:1 vol/vol) and eicosanoids were determined with a Sciex
API4000 mass spectrometer operating in the multiple reaction monitoring
mode. Chromatographic separation was performed on a Gemini C18 column
(150 � 2 mm inner diameter, 5-�m particle size; Phenomenex, Aschaffenburg,
Germany).
Microarray. Total RNA from aorta tissues was extracted using a microRNA
isolation kit (mirVana; Ambion) following the manufacturer’s instructions.
RNA quality was assessed with Bioanalyzer 2100 (Agilent Technologies). RNA
samples were converted to biotinylated cRNA and hybridized to GeneChip
arrays (Rat Expression Array 230, version 2.0; Affymetrix, Santa Clara, CA)
according to the manufacturer’s directions. Microarray data analysis was
performed using R packages of Bioconductor (open-source software for
Bioinformatics [http://www.bioconductor.org]).
Immunoblot. Rat aorta samples with endothelium were homogenized in
ice-cold Tris-buffer containing 30 mmol/l Tris-HCl, pH 7.6; 5 mmol/l MgCl2; 2
mmol/l EDTA; 1 mmol/l dithiothreitol; 1% sodium cholate; 1% Triton-X-100;
0.025% sodium dodecyl sulfate; and 250 mmol/l sucrose). The homogenates
were centrifuged at 8,000g for 10 min at 4°C. The resulting supernatants were
mixed with sample blue loading buffer (category no. 7722; Cell Signaling
Technology, Denver, CO) and separated on 15% sodium dodecyl sulfate–
polyacrylamide gels under reducing conditions. Proteins were electrotrans-
ferred onto polyvinylidine difluoride membrane (0.2 �m Immun-Blot; Bio-Rad,
Munich, Germany). The bands were detected using chemiluminescence assay
(ECL; Amersham). The primary antibodies used recognize cytochrome
P4502E1 (ab28146; Abcam, Cambridge, U.K.), proliferating cell nuclear anti-
gen (PCNA) (ab29; Abcam), gp91phox (611414; BD Bioscience, Heidelberg,
Germany), and glyceraldehyde-3-phosphate dehydrogenase (GAPDH) (ab8245;
Abcam).
Immunohistochemistry. For immunohistochemical analysis, frozen aortic
5-�m sections were stained using primary antibodies against smooth muscle
actin (VPS281; Vector Laboratories, Burlingame, CA). Briefly, sections were
fixed in cold acetone for 5 min followed by pretreatment with 0.3% hydrogen
peroxide for 20 min to inhibit endogenous peroxidase activity. Subsequently,
sections were blocked with 2% horse serum for 30 min and incubated with the
primary antibody for 2 h at room temperature. After rinsing with PBS, the
sections were incubated for 30 min with a biotinylated secondary antibody.
Staining was performed using a VECTASTAIN Elite ABC kit (PK-6100; Vector
Laboratories) and 3,3�diaminobenzidine tetrahydrochloride (DAB) (SK4100;
Vector Laboratories).
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Statistics. Data are means � SEM. Relaxant responses are given as percent-
age relaxation relative to the preconstruction level. Statistical analysis was
performed by repeated-measures ANOVA followed by Tukey-Kramer multiple
comparisons test. O2

� formation was analyzed by ANOVA followed by a Tukey
post hoc test where appropriate; P � 0.05 was considered statistically significant.

RESULTS

Vasomotor function: relaxant responses. In aortic
rings from control animals, the cumulative administration
of acetylcholine, which was used to elicit the Ca2	-
dependent activation of eNOS, induced an endothelium-

dependent vasorelaxation. This response was significantly
impaired in vessels from diabetic animals but was pre-
served by treatment with HMR1766 (Table 1, where blood
glucose levels and body weights are also shown, and Fig.
1A). Endothelium-independent vasorelaxation induced by
2-(N,N-diethylamino)-diazenolate-2-oxide was also dimin-
ished in diabetic rats but was normalized by HMR1766
treatment (Fig. 1B and Table 1). We further assessed the
relaxant response to acetylcholine in HMR1766-treated
STZ-diabetic rats in the presence of L-NNA and absence of
diclofenac (supplemental Fig. 1A, available in an online
appendix [http://diabetes.diabetesjournals.org/cgi/content/
full/db09-1668/DC1]), which indicated that neither prosta-
cyclin nor an endothelium-derived hyperpolarizing factor
plays a substantial role in vasorelaxation in diabetic rat
aorta during HMR1766 treatment. Furthermore, impaired
smooth muscle cell sensitivity toward NO in STZ-induced
diabetes was not modulated by the presence or absence of
the endothelium (supplemental Fig. 1B).

We assessed the stretch-induced release of NO by
adding L-NNA to slightly preconstricted aortic rings as
previously described (21). This protocol elicits the gener-
ation of NO by a Ca2	-independent mechanism similar to
that activated by shear stress in vivo and can be function-
ally detected as an NOS inhibitor–induced vasoconstric-
tion. Whereas a normal response was observed in arteries
from control animals, the response was significantly atten-
uated in animals with diabetes. Though we observed a
slower onset of vasoconstriction to L-NNA in aortae from
diabetic animals receiving HMR1766, the absolute maxi-

TABLE 1
Blood glucose levels, body weight, acetylcholine- and 2-(N,N-
diethylamino)-diazenolate-2-oxide (DEA)-induced relaxations in
phenylephrine-preconstricted aortic rings from diabetic STZ rats
compared with nondiabetic controls

Control
placebo

STZ
placebo

STZ
HMR1766

N 35 35 35
Blood glucose (mmol/l) 141 � 7 500 � 10* 489 � 13*
Body weight (g) 354 � 6 243 � 4* 245 � 5*
Acetylcholine

EC50 (nmol/l) 20.6 � 3.4 157.6 � 44.1* 17.3 � 1.9†
Rmax (%) 95.7 � 2.5 81.7 � 2.8* 99.5 � 0.2†

DEA
EC50 (nmol/l) 2.8 � 0.4 20.6 � 3.2* 3.8 � 0.7†
Rmax (%) 100.0 � 0.0 99.0 � 0.7 100.0 � 0.0

STZ rats were administered either placebo or HMR1766. *P � 0.01 vs.
control. †P � 0.01 vs. STZ placebo.
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line (A) and endothelium-independent relaxation by incremental concentrations of 2-(N,N-diethylamino)-diazenolate-2-oxide (DEA-NONOate)
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mal contractile response achieved was similar to the one
in healthy control animals (Fig. 1C). These findings indi-
cate that the novel sGC activator is able to prevent the
diabetes-associated decrease in NO release in response to
receptor-dependent and mechanical stimuli.
Vascular ROS. Because the excessive formation of ROS
significantly contributes to reduced NO sensitivity in dia-
betes, aortic O2

� production was assessed by several
techniques. Lucigenin-enhanced chemiluminescence (Fig.
2A) and high-performance liquid chromatography (Fig.
2B) demonstrated significantly increased superoxide for-
mation in rats with diabetes, which was reduced by
chronic treatment with HMR1766. One major source of
O2

� in diabetes is the NADPH oxidase (25), and protein
expression of the gp91phox (Nox2) subunit was signifi-
cantly increased in aortae from diabetic rats and reduced
by chronic treatment with HMR1766 (Fig. 2C). Represen-
tative microtopographic images of O2

� formation demon-
strated increased signal intensity throughout the vessel
wall in diabetic versus control animals and was markedly
reduced in rats treated with HMR1766 (Fig. 2D).
Vascular sGC expression and activity. The expression
of sGC protein was not modified by diabetes or treatment
with HMR1766. (Values normalized for GAPDH in arbi-
trary units were as follows: control 1.73 � 0.13, STZ
placebo 1.72 � 0.10, and STZ HMR1766 1.63 � 0.16; P �
0.05.) As expected, the in vitro sensitivity of the sGC to the
NO donor SNP was markedly attenuated in diabetes—a
phenomenon previously attributed to the oxidation of the
sGC (4). However, HMR1766 enhanced aortic sGC activity
in vessels from control as well as diabetic animals to
approximately the same extent (Fig. 3A). Similarly,
HMR1766 itself induced comparable relaxant responses in
diabetic and nondiabetic aortae (Fig. 3B). Furthermore,
the downstream signaling cascade for cGMP was not
modified by the presence of diabetes or the treatment with

HMR1766, as shown by incremental relaxations to 8-bro-
mo-cGMP (Fig. 3C).
Vasomotor function: contractile responses. Next, va-
soconstrictions in aortae from placebo and HMR1766-
treated diabetic rats were systematically evaluated and
compared with the contractile response in aortae from
healthy, nondiabetic rats. The response to angiotensin II
was significantly impaired in diabetes and improved by
chronic treatment with HMR1766 (Fig. 4A). Phenyleph-
rine-evoked vasoconstriction was highly significantly at-
tenuated in diabetic rats and nearly normalized by chronic
treatment with HMR1766 (Fig. 4B). Receptor-dependent as
well as -independent vasoconstriction was also impaired
in endothelium-denuded aortae from diabetic rats and
similarly improved by HMR1766 (supplemental Fig. 1C and
D). The fact that the response to phenylephrine was
unchanged in the presence of L-NNA or following endothe-
lial denudation indicates that the impaired vasoconstric-
tion observed cannot be attributed to an excessive
production of NO in the diabetic animals (Fig. 4C).
Aortic CYP2E1 expression and HETE formation in
diabetes. The marked differences in the contractile re-
sponse and its modulation by chronic treatment with the
sGC activator HMR1766 prompted the systematic profiling
of gene expression in the aortae using microarrays (Fig.
5A). Several highly upregulated mRNAs detected in the
aortae from diabetic rats were of particular interest. These
included PCNA (mRNA upregulation by 3.2-fold vs. con-
trol), which is a marker for cells in the early G1 and S
phase of the cell cycle. These values were reflected at the
protein levels; PCNA protein levels were significantly
increased in STZ rats and reduced by chronic sGC activa-
tion (Fig. 5B). Furthermore, histological assessment of
aortae from the three different groups demonstrated aortic
media thickening accompanied by interrupted and de-
formed elastic fibers in aortae from diabetic animals,
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which appeared less pronounced in HMR1766-treated an-
imals (supplemental Fig. 2) (26).

The gene most affected by diabetes was, however,
CYP2E1 (mRNA upregulation by 42-fold vs. control). This
was also observed at the protein level, where CYP2E1
protein expression (Western blot) was significantly in-
creased in the aortae from diabetic rats and significantly
attenuated after HMR1766 treatment (Fig. 5C). To further
elucidate whether CYP2E1 overexpression contributes to
the impaired contractile response in the rat aorta, we
induced CYP2E1 expression by repeated injection of iso-
niazide (27). This procedure resulted in significantly
higher aortic CYP2E1 protein levels (Fig. 6A) and a
rightward shift in the contractile response to phenyleph-
rine (EC50: STZ-placebo 53.9 � 6.1 nmol/l and STZ-isonia-
zide 112.6 � 14.7 nmol/l; P � 0.01), which was similar to
that recorded in diabetic animals (Fig. 6B).

CYP2E1 generates lipid mediators such as 18- and
19-HETE, which in turn inhibit CYP4A enzymes. The
latter enzymes are of particular pathophysiological im-
portance because the 
-hydroxylases are the source of
20-HETE, an important vasoconstrictor eicosanoid (as
summarized in Fig. 7) (28,29). We therefore determined
aortic 18-, 19-, and 20-HETE levels and found that
20-HETE was markedly reduced in the aortae from
diabetic versus control animals, whereas treatment with
HMR1766 significantly increased 20-HETE levels in dia-
betic aortae (Fig. 6C). In line with the hypothesis that
CYP2E1 products contribute to lowered 20-HETE levels,
18- and 19-HETE levels were increased in aortae from
diabetic rats and 19-HETE was substantially lowered by
HMR1766 treatment (Fig. 6D and E). Preincubation of
isolated aortic rings from control and diabetic animals
with 1 �mol/l 20-HETE (30) augmented the contractile
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sentative of n � 6 experiments. *P < 0.05 vs. control.
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response to phenylephrine in diabetes to an extent
observed in healthy control rats (Fig. 6F).

DISCUSSION

The results of the present investigation demonstrate that
upregulation of CYP2E1 within the diabetic aorta results in
deficient synthesis of the vasoconstrictor eicosanoid 20-
HETE. Moreover, it seems that the decrease in 20-HETE
production is a central mechanism underlying the im-
paired contractile function in diabetes. Chronic activation
of sGC by HMR1766-enhanced NO/cGMP signaling pre-
served endothelial and contractile function in diabetes.

Endothelial dysfunction in diabetes is generally charac-
terized by an imbalance between NO and ROS production
and was documented in our study by impaired vasorelax-
ation in response to two distinct stimuli that activate eNOS
by completely different intracellular mechanisms (21). The
pronounced rightward shift of the concentration response
curve to exogenous NO further indicates either or both of
the following possibilities: that smooth muscle sensitivity
to NO is reduced or that NO is scavenged by ROS before
relaxing smooth muscle cells. Oxidative stress is the major
cause of reduced NO bioavailability in diabetes (1). In-
deed, we recorded significantly higher O2

� formation in
aortic segments from diabetic rats compared with that
in healthy controls. Chronic sGC activation enhanced
smooth muscle cell sensitivity toward NO (31), improved

overall vascular relaxation, and reduced vascular O2
�

levels. While the assessment of O2
� production by lucige-

nin-enhanced chemiluminescence has been criticized, the
measurement of 2-hydroxyethidium formation using high-
performance liquid chromatography provides a sensitive
and specific determination of superoxide anions (23).
Similar to long-term enhancement of eNOS expression
(32), chronic sGC activation with HMR1766 reduced O2

�

formation and thereby improved NO bioactivity in the
present study. Whereas enhancing NO formation or de-
creasing its degradation does not counteract impaired NO
sensitivity on the sGC level, direct sGC activation with
HMR1766 causally modifies oxidized sGC and thereby
improves endothelial function.

A diminished contractile response has previously been
observed in insulin-deficient models of diabetes (33,34),
but the molecular mechanisms underlying this effect are
currently obscure. To address this point, we used a
microarray-screening approach to assess the major differ-
ences in aortic gene expression between diabetic and
nondiabetic rats. The gene most influenced in the rat
model of diabetes studied was CYP2E1. Given that
CYP2E1 is regulated by insulin, it seems plausible that
during states of hyperinsulinemia (such as early type 2
diabetes), vascular hyperreactivity can be observed (35–
37)—in contrast to the phenotype observed in insulin-
deficient diabetes in the present study. A similar increase
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in CYP2E1 gene expression and enzymatic activity has
been described in peripheral blood mononuclear cells
from diabetic patients (38) and in nonvascular tissues
from STZ-diabetic rats, where it also increased mitochon-
drial oxidative stress (39). CYP2E1 is of potential interest
in arteries because it can generate 19-HETE and 18-HETE
and because, in spontaneously hypertensive rats, a de-
crease in 19-HETE and 18-HETE alleviates the intrinsic
inhibition of a second class of CYP enzymes (CYP4A) that
generates 20-HETE to either directly induce vasoconstric-
tion or augment sensitivity to another vasoconstrictor
such as phenylephrine (Fig. 7) (40). Mechanistically, 20-
HETE modulates the vasoconstrictor effects of several
mediators such as angiotensin II and phenylephrine
(28,29) by affecting membrane potential (29) and �-kinase
activity (30). In STZ-induced diabetes, the increase in
CYP2E1 expression was paralleled by a decrease in 20-
HETE levels and with a decreased sensitivity to phenyl-
ephrine and angiotensin II.

To demonstrate cause and effect between CYP2E1
expression and altered vasoreactivity, we chose to in-
crease the expression of CYP2E1 in vivo by injecting rats
with isoniazid (41). Indeed, 5 days’ treatment with isonia-
zid was sufficient to enhance CYP2E1 expression in the
aorta and attenuate the vasoconstrictor effect of phenyl-
ephrine, thus mimicking the vascular consequences of
diabetes. Moreover, the exogenous application of 20-

HETE in vitro augmented the vasoconstriction to phenyl-
ephrine in aortae from diabetic rats, indicating that
upregulation of CYP2E1 resulting in deficient synthesis of
20-HETE is a central mechanism underlying the impaired
contractile function in diabetes.

Initially, NO was described as an inhibitor of CYP2E1
catalytic activity and ROS formation (42). In this study,
chronic treatment with HMR1766 activating downstream
NO signaling reduced vascular CYP2E1 expression, in-
creased 20-HETE formation, and improved the contractile
response to phenylephrine. The diabetes-induced increase
in CYP2E1 expression has been attributed to the impaired
insulin-mediated inhibition of CYP2E1 mRNA stabilization
and elevated ketone bodies (43,44). While loss of insulin
activity could explain the increased aortic expression of
CYP2E1, leading to reduced levels of 20-HETE and im-
paired vasoconstriction in diabetes, the fact that chronic
treatment with HMR1766 was able to reverse the noncon-
tractile smooth muscle cell phenotype was initially sur-
prising. However, cGMP regulates cell-cycle regulatory
mechanisms in human smooth muscle cells and sup-
presses phenotype switching toward a noncontractile,
synthetic phenotype (8). While the noncontractile smooth
muscle cell phenotype is also characterized by a shift
toward proliferation, chronic NOS inhibition leads to a
prosynthetic shift in smooth muscle cell gene expression
in healthy rats (11). High levels of cGMP also attenuate the
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proliferative response of smooth muscle cells to many
mitogens (12). Suggesting that impaired cGMP signaling
contributes to proliferative changes in diabetes, in our
study, the proliferation marker PCNA was significantly
increased in aortic tissue from diabetic rats and sup-
pressed by chronic sGC activation.

Impaired NO/cGMP signaling in diabetes induces endo-
thelial dysfunction but also precipitates the switch of
smooth muscle cells to a proliferative, noncontractile
phenotype. Increased expression of vascular CYP2E1, a
phenomenon also observed in other cells during insulin
deficiency, reduces the availability of the potent covaso-
constrictor 20-HETE. Our data provide evidence that im-
proved NO/cGMP-mediated signaling using HMR1766 in
diabetes results in the inhibition of vascular CYP2E1
expression. Thereby, formation of the potent and impor-
tant co-vasoconstrictor 20-HETE is preserved in the vas-
culature of diabetic animals treated with HMR1766,
preventing the shift toward a noncontractile smooth mus-
cle cell phenotype. Furthermore, reduced CYP2E1 expres-
sion during HMR176 treatment also attenuates CYP2E1-
derived ROS formation, which contributes to enhanced
NO bioavailability. Hence, stimulation of sGC in diabetes
provides a useful therapeutic approach to improve vascu-
lar function, especially in diabetes.
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