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Abstract

Modeling the relationship between chemical structure and molecular activity is a key goal in 

drug development. Many benchmark tasks have been proposed for molecular property prediction, 

but these tasks are generally aimed at specific, isolated biomedical properties. In this work, we 

propose a new cross-modal small molecule retrieval task, designed to force a model to learn to 

associate the structure of a small molecule with the transcriptional change it induces. We develop 

this task formally as multi-view alignment problem, and present a coordinated deep learning 

approach that jointly optimizes representations of both chemical structure and perturbational gene 

expression profiles. We benchmark our results against oracle models and principled baselines, 

and find that cell line variability markedly influences performance in this domain. Our work 

establishes the feasibility of this new task, elucidates the limitations of current data and systems, 

and may serve to catalyze future research in small molecule representation learning.
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1. Introduction

Identifying molecules that are likely to have a specific biological effect is a cornerstone of 

drug discovery and a key component of efforts to achieve precision medicine. Classically, 

computational profiling of small molecules has centered on predicting affinities for 

specific biological targets, using tools ranging from biophysics-driven techniques such as 

molecular docking1 to literature-mined annotations.2 Small molecule modeling has also 

recently become a major area of interest in deep learning, a trend catalyzed by graph 

neural networks3 and benchmarking datasets.4 Graph neural networks allow for end-to-end 
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modeling of molecular graphs,5–8 and have yielded state-of-the-art performance on certain 

tasks.9,10 In addition, deep learning approaches have been used at a more global scale 

modeling cross-molecule relationships.11 To date, deep learning efforts in this space have 

generally focused on two extremes: highly local, biochemical prediction problems, which 

test the model’s ability to predict specific chemical properties, and more global, clinical 

modeling tasks, such as indication or side effect prediction. Missing from the field, however, 

are benchmark tasks between these two extremes, that test the ability of deep models 

to encode rich, general representations of a molecule’s broad-spectrum effect on cellular 

biology.

In parallel to these developments, connectivity mapping has emerged as a alternative 

approach for drug development.12 In connectivity mapping, compounds are foremost 

characterized not by individual chemical properties or downstream targets, but by the broad 

transcriptional effects they induce in cells. Connectivity mapping begins by first developing 

a large dataset of perturbational signatures of molecules by physically treating cell lines with 

these molecules, then measuring the resultant changes in gene expression. These datasets 

are then compared to one or more query signatures, which are typically differential gene 

expression (GE) signatures representing disease states that investigators hope to reverse. 

Various public datasets have been curated to enable these efforts,13,14 and researchers 

have sought to use these for drug repurposing, precision medicine, and analysis of gene 

expression data in general.15–22

Connectivity mapping is promising because it can be used to search for new indications of 

drugs without making any specific a priori assumptions about their mechanism of action. 

However, the typical framework for connectivity mapping is limited by the fact that it can 

only query against drugs that have already been profiled using the transcriptional assay. 

In other words, connectivity mapping is – in principle – very flexible with respect to the 

disease signatures they accept as a query, but is transductive rather than inductive with 

respect to the target small molecule signatures. This is the perfect complement to structure

based computational chemistry, which is typically inductive to new drug structures but can 

only make predictions for diseases with known targets.

In this work, we combine these two fields, by using deep chemical embedders to learn the 

transcriptional space encoded by CMAP profiling. More specifically, we train coordinated 

networks to jointly embed chemical structures and perturbational gene expression profiles 

such that learned chemical representations are most similar to the encodings of the 

transcriptional patterns they induce.a. Note that this task naturally fills the gap in inductive 

molecular modelling identified previously; by tasking the model to produce highly similar 

embeddings for chemical structures and the perturbational profiles they induce, we force 

the model to learn a transcriptome-wide reflection of the drug’s action on the cell. We 

then evaluate these chemical representations by using gene expression signatures as queries 

into the embedding space and recovering their corresponding compounds. (See Figure 1). 

Crucially, the evaluation is set up such that the validation and test set compounds and cell 

aCode available here: https://github.com/sgfin/molecule_ge_coordinated_embeddings
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lines are not used in training, which allows us to test the ability of the model to generalize to 

new drugs and cell lines.

In the rest of this work, we first offer some background on joint embedding alignment, 

then detail the methods used in this work. Finally, we walk through the results and 

discussion of these experiments, then close with concluding thoughts. A version of this 

work, with supplementary material present, can be found here: https://github.com/sgfin/

molecule_ge_coordinated_embeddings/blob/master/paper_08_2020.pdf.

2. Background

In multi-view representation alignment, embeddings of two associated data modalities are 

learned separately but in a coordinated manner, such that the resulting embeddings are 

similar. These methods have been used in comparing images to text but also in other 

domains.23,24 In this work, we learn aligned representations such that small molecules are 

embedded in close proximity to the differential gene expressions they induce. Multi-view 

representation alignment can be achieved through a variety of methods, including classical 

methods, such as canonical correlation analysis (CCA)25 and methods using distance, 

similarity, correlation, or ranking based penalties during training.26 Ranking-based methods 

for multi-view representation alignment, such as that described by Deng at al,27 allow the 

incorporation of ranking information into the training procedure, which may be important in 

tasks such as gene expression where perturbation signals may be small relative to baseline 

state. In addition, the field of rank-based embedding learning is intertwined with a broader 

literature of uni-modal embedding learning, which pioneered such architectures as Twin28,29 

and Triplet networks,30 which optimize embeddings to bring similar data together while 

driving dissimilar data apart. An analysis of best practices of these architecture can be found 

in Wu et al.31

3. Methods

3.1. Dataset & Tasks

Data Acquisition and Subsetting—All data in this study comes from the LINCS 

Consortium/NIH Next-Generation Connectivity Map Level 3 L1000 data.14 This dataset 

features 978-dimensional gene expression profiles from a variety of human cell lines treated 

with chemical and genetic perturbations. To ensure support over possible drugs, our data cut 

uses the most frequent 8 cell lines split into train, validation, and test sets such that no cell 

line or drug in the train set appears in the validation or test sets. To mitigate non-random 

missingness, we included only drugs assayed in all cell lines, and limited experiments to 

those incubated with small molecules for 24 hours at a dose of 10µm. Final statistics of these 

data are shown in Table A1. For drug structures, we used the SMILES32 structures provided 

by LINCS, canonicalized using RDKIT.33

Preprocessing and Feature Engineering—Gene expression intensity values from 

the training, validation, and test sets were centered and scaled at the gene-level based 

on the mean and standard deviation of each gene intensity across the training set. 

We augmented each gene expression profile with three additional sets of features: the 
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corresponding gene expression intensities from a control signature on the same plate, 

the log2 fold-change between the perturbation and control signatures, and the difference 

between these gene expression signatures. For use in our baseline and oracle models, 

we also computed numerical representations of each small molecule: Morgan extended

connectivity fingerprints34 and the output of the ChemProp network.6

Detailed Task Description—Our goal is to learn embedders which map molecular 

structures and gene expression profiles into a vector space such molecular structure 

embeddings are close to the gene expression profile they induce while being far from 

other gene expression profiles (Figure 1). Formally, given a collection of gene expression 

signatures G, chemical structures ℳ, and similarity function Sim : ℝd × ℝd ℝ, we seek 

to learn a gene expression embedder Eg:G ℝd and chemical embedder Em:ℳ ℝd to 

maximize Sim(Eg(gi);Em(mj)) while simultaneously minimizing Sim(Eg(gi), Em(m¬j)), where 

gene expression gi was induced by molecule mj. Unless otherwise specified, the similarity 

function can be assumed to be Pearson Correlation in our experiments. Across our baseline 

and oracle methods, we realize many variants of Eg and Em.

3.2. Baseline and Oracle Methods

Nearest Neighbor Baseline—Nearest-neighbor (NN) methods have been previously 

shown to establish strong baselines for machine learning tasks on the L1000 data.35,36 In our 

cross-modal, information retrieval (IR) context, traditional NN methods are not applicable, 

so we employ the following “double NN” baseline: given a gene expression profile as a 

query, we first identify the nearest gene expression profile in the train set and look up its 

corresponding small molecule. We then take this small molecule (from the train set) as a 

query, and return the most structurally similar drug from the test set as our final prediction.

In particular, given a mapping G2M :G ℳ from gene expression profiles to the small 

molecule that induced them, and a molecular embedding Em (which may include molecular 

fingerprints, Chemprop embeddings, or embeddings learned from other models), we 

define embedder Eg:gquery Em(G2M(argmaxgtr ∈ GtrainSim(gquery,gtr))). Then, we perform 

information retrieval (IR) analyses with such embedders as usual.

Canonical Correlation Analysis Baseline—Given training matrices of transcriptional 

Gtrain and molecular ℳtrain encodings, we can learn a set of linear mappings Eg:Gtrain ℝd

and Em:ℳtrain ℝd via d-dimensional CCA such that these mappings optimize the 

correlation between elements of Gtrain and ℳtrain.

Note that this procedure requires a default numerical representation for molecules, which, 

as with other methods, can be either fingerprints, ChemProp embeddings, or learned 

embeddings by our learning model (described below). CCA can also be performed atop 

other embedding systems to further optimize embedding results. CCA was performed 

using SciKit Learn,37 using 50 components, chosen to optimize validation set performance 

via a grid-search over a range of 5–125 components, run for 1000 iterations to ensure 

convergence.
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Oracle Models—The central objective of our task is to learn small molecule embeddings 

that can stand in as surrogates for their corresponding gene expression signatures. To 

provide a rough upper-bound for expected performance on this task, we also implemented 

two “oracle” models, each of which queries test set GE signatures against pseudo-“chemical 

embeddings” that are in reality the average GE signatures from each test set drug when 

it was measured on either (1) the train set cell lines,b to simulate an embedder that 

perfectly associates all structures to perturbational profiles, but cannot generalize beyond 

the train set cell lines, or (2) the test set cell lines, which simulates a model of the 

same capabilities but able to generalize perfectly to the test set as well. These oracle 

models are still dependent on the underlying gene expression signature representation, 

so further innovation could offer improved upper bounds for this task. Formally, given 

G2M mapping gene expression profiles to their corresponding perturbing molecule, 

we define oracle embeddings Eg
train:gquery Avg( gi ∈ Gtrain |G2M(gi) = G2M(gquery) ), and 

Eg
test:gquery Avg( gi ∈ Gtest |G2M(gi) = G2M(gquery) ).

3.3. Deep Coordinated Metric Learning Approach

For our learned model, we realize Eg as a self-normalizing neural network (of size 

dictated by hyperparameter search), and Em as a directed message-passing neural network 

(D-MPNN), initialized by the Chemprop system, followed by a feed-forward output layer 

whose shape was dictated via hyperparameter search.6 To train these architectures, we use 

a margin-based quadruplet loss, building on Wu et al’s adaptive margin loss.31 The base of 

the adapted margin loss is defined over two data points i and j as marα,β := (α + yi,j (Dij − 

β))+, where D is distance function (here euclidean distance), α defines a permissible margin 

of separation, β controls the boundary between positive and negative pairs, and yi,j is an 

indicator variable equal to 1 if i and j are of the same class and 0 otherwise (α and β were 

tuned as hyperparameters).

Given two pairs of matching gene expression and molecular structure embeddings, (gA, 
mA), (gB, mB), our quadruplet loss is defined as the sum of the margin losses between all 

cross-modality pairs of embeddings: ℓquad = marα,β(gA, mA)+marα,β(gA, mB)+marα,β(gB, 
mA)+ marα,β(gB, mB). The network is thus optimized to bring the positive embedding within 

the margin of the anchor and negative embedding outside the margin. For sampling these 

two pairs (an analog of negative sampling for a more traditional triplet network), we first 

sample one matching pair, choose the molecular structure for the other pair based on the 

distance-weighted negative sampling scheme described in Wu et al, which was successful 

with their margin-based approach,31 then fill in the other gene expression profile to match 

the sampled molecular structure. To make this process computationally efficient we pre

computed the average distance in average post-perturbational gene expression space between 

every pair of small molecule structures in the dataset. We additionally tried other losses, 

including two varieties of traditional triplet losses, and a quintuplet loss, but ultimately 

found the quadruplet loss to be most performant via our hyperparameter search.

bNote that we can do this as we limited our choice of drugs to those that were measured in all 8 cell lines, even though our actual data 
split prohibits training on any drug that appears in the validation or test sets.
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Training and Hyperparameter Selection—Each model was trained on a Nvidia 

GeForce GTX 1080 GPU. Early stopping was used to select the model with the best mean 

reciprocal rank on the validation set. Hyperparameter tuning via the Bayesian Hyperopt 

library38 was performed over a wide range of possible hyperparameters, including network 

depth and width (parametrized by the size of the first hidden layer and a growth rate), 

learning rate, number of epochs, batch size, margin and β parameters, triplet model 

orientation (i.e., gene first or compound first), activation function/network type (e.g., 

SNNN vs. unconstrained fully connected network), and dropout, with no early stopping 

for hyperparameter search runs. The optimal hyperparameters from this search are shown in 

Appendix Section 7.2.

3.4. Experiments

We designed a range of experiments with two purposes: First, we sought to evaluate if 

and how our deep coordinated representation learning method offers improvements over 

principled baselines. This entails a quantitative performance comparison against baseline 

methods and ablated versions of our model. Second, we introspect into the representations 

learned by training on this new task, to better understand the challenges and utility of 

the general framework. This entails a quantitative performance comparison against oracle 

models, a statistical analysis probing the ability of our models to generalize to new 

structures, and a qualitative exploration of the changes in chemical representations that are 

induced by our training scheme.

Quantitative performance analyses began by computing the embeddings of gene expression 

signatures and chemical structures in the test set, using the baseline, oracle, and deep 

coordinated methods defined in Sections 3.2 and 3.3. Using each embedded gene expression 

signature as a query, we ranked all chemical structures in the test set based on their 

proximity to that gene expression signature in the embedding space. These rankings 

were then used to compute standard information-retrieval metrics (precision-recall curves, 

MR, MRR, and Hits at/H@ 10 or 100). For our ablation analyses, we repeated the 

above experiments using various combinations of raw and learned GE and chemical 

representations.

In addition to the information retrieval analyses, we probed the generalizability of our 

representations by analysing the statistical relationship between the average retrieval 

performance for each chemical structure and the structural similarity to the most similar 

chemical in the training set. Similarity was measured via the Tanimoto distance between all 

pairs of molecular fingerprints in the train and test set. We further examined performance vs. 

chemical specificity, using the number of genes that a molecule, on average, affected as a 

measure of specificity. Finally, we visualized the latent space of our chemical embedder 

(versus their pre-trained representations learned by ChemProp), and noted the relative 

position of drugs with the same mechanism of action (MOA) in each latent space.
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4. Results & Discussion

4.1. Quantitative IR Experiments

Baseline and Proposed Method—Information retrieval results from the baseline and 

proposed methods are reported in Figure 2. This figure shows that our model variants offer 

significant performance improvements over either of the CCA or NN baselines, and even 

approach the performance of the train-set only oracle model. All models fall dramatically 

short of the test-set generalizability oracle, which indicates that while our tasks offer 

significant improvement over baseline models here, there are still major gains possible, 

primarily by focusing on improving the generalizability to the novel cell-types of the test set.

In addition, we show various ablation studies over the baseline models in Table 1 to probe 

what gene or molecular representations would make them better or worse. Strikingly, we 

can note that uniformly using aligned representations (meaning representations based on 

our multi-view alignment neural network architecture) offers significant improvements over 

other representations, indicating that even with a baseline approach such as the double 

nearest neighbor (D-NN) model, improvements to the embedding quality translate to 

notable improvements to IR performance. Notably, this is true both for GE and Chemical 

embedders, with Aligned-Aligned representations yielding optimal performance for both 

D-NN and CCA query mechanisms. Additionally, it is also clear that CCA is the preferred 

query metric, over either raw correlation (Corr) based lookups or D-NN based lookups.

Oracle Model Analysis—Results from the oracle models are reported in Figure A1 and 

Table 2. As expected, oracle models using GE signatures from the test cell line greatly 

outperformed those using signatures from the train cell lines. This stark difference suggests 

that one of the largest barriers to performance here is the generalization gap between 

different cell lines. This further motivates for the curation of larger, cell-line heterogeneous 

datasets in the future.

In addition, aligned embeddings modestly improved the performance of test set oracles, and 

greatly improved the performance of train set oracles, consistent with the GE embedders 

learning slightly more generalizable representations. Of note, our proposed model achieved 

comparable results as the oracle model that leveraged raw GE signatures from the train 

cell lines. More specifically, our approach yielded slightly worse than the oracle on metrics 

(MRR, H@10) that emphasize early rankings, and slightly better on metrics (MR, H@100) 

that focus on more aggregate results. This is also apparent in the precision-recall plot, which 

shows the aligned embeddings curve starting out slightly below that of the raw/train oracle 

curve but then moving rapidly above it as further results are considered.

4.2. Introspection Analyses

Figure 3A contains the results of our experiments comparing performance to distance from 

the training set. Regardless of the measure of chemical similarity, compound retrieval 

performance was inversely correlated with distance from the training set. As can be seen 

in Supplementary Figure A2, the same trend held with learned gene expression embeddings, 

and was present but much weaker using raw gene expression profiles.
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Figure 3B depicts the relationship between the transcriptional specificity of a compound 

and its ability to be retrieved using our analysis. As can be seen, there is a mild negative 

correlation, implying that molecules that affect the expression of many genes are easier to 

retrieve using this approach. Note that this observation is concordant with our findings on 

the difficulty of generalizing to new cell lines – drugs that affect a small, targeted set of 

genes are more likely to be cell line specific, and as our model is forced to surmount a 

significant generalization gap in evaluation, such cell-line specific signals are largely wiped 

out.

In addition, our analysis of the changes induced in the embedding space, shown in 

Supplementary Figure A4, reveal that our model’s embeddings of molecules appear to better 

cluster shared MOAs than do the raw ChemProp embeddings, from which our model is 

initialized. This suggests that, as hypothesized regarding the nature of this task, our model is 

learning rich representations of the underlying molecules, though additional work remains to 

investigate this effect more thoroughly.

4.3. Future Work

We see several opportunities for further work on this task. First, expanding our data 

coverage, across molecules, cell lines, dosages, and treatment durations will allow us to 

measure and improve generalizability here. Second, exploring additional strategies to use 

the oversampled nature of these data (e.g., ensembling together control and perturbational 

signatures to reduce variance) could be beneficial. Third, a more robust exploration of 

model architectures, losses, and deep metric learning/negative sampling methods, could 

offer improvements here.26 Additionally, other styles of multimodal embedding could be 

explored, such as the use of cycle generative adversarial network, which in particular would 

enable us to adopt a semi-supervised approach.39,40 The use of interpretability methods, 

particularly those used for graph analyses,41 as well as additional studies interrogating 

how our model’s performance changes with the amount of available training data could 

also be insightful here. Fourth, we recommend exploring methods to improve cell-line 

generalizability, e.g. incorporating information across many cell lines when forming 

predictions. Finally, we also note that while our analyses only examine small-molecule 

therapeutics, similar methods could also be applied to other modalities, such as RNA-based 

therapies.

5. Conclusion

We present a new task: cross-modal multi-view alignment between drug structures and 

perturbational gene expression profiles, which links molecular structure to an objective, 

functional readout of drugs with very broad biomedical relevance. We profile state-of-the

art representation learning methods on this new task, and inspect the learned chemical 

embeddings. We find that this modeling task induces an embedding space reflective of drug 

mechanism of action – which is not explicitly included in the training regime – and see 

modest generalization to both new structures and a new biological environment. Our oracle 

experiments demonstrate major performance gaps when trying to generalize to new tissues. 
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We hope that this new benchmark task will catalyze future research and ultimately help 

enable a rapid, in silico compound prioritization methods.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. 
Our representation learning method. Neural networks are trained to embed gene expression 

profiles close to the small molecule structures that induce them. Given a cross-modal 

alignment, gene expression signatures can be used as queries to rank chemical structures by 

their likelihood to induce such a signature.
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Fig. 2. 
Precision Recall curves for drug identification given gene expression signatures, across 

various baselines (dashed lines), oracles (dotted lines) and our model (solid lines).
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Fig. 3. 
Left: Performance (lower is better) vs. structural distance to the nearest compound in the 

training set. This plot demonstrates that compounds more structurally dissimilar to the train 

set show mildly worse performance than those that are more similar. See Appendix Figure 

A2 for analogous plots for four additional measures of distance from the training set. Right: 

Average Performance vs. # of Genes deferentially expression following treatment with the 

molecule of interest, showing that compounds that have broader transcriptomic effects are 

better retrieved by this method.
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Table 1.

IR metrics across various configurations of the model/baselines. ‘Chemprop’ refers to pretrained model from 

Yang et al.6 ‘Aligned’ indicates representations learned from our method (see Section 3.3). MR=median rank, 

MRR=mean reciprocal rank, H@K=Hit/Recall at K.

GE Chemical Method MR MRR H@10 H@100

Raw Morgan FP D-NN 206 0.025 0.037 0.240

Raw Chemprop D-NN 211 0.025 0.035 0.254

Raw Aligned D-NN 189 0.033 0.047 0.290

Aligned Morgan FP D-NN 214 0.025 0.041 0.256

Aligned Chemprop D-NN 196 0.022 0.037 0.278

Aligned Aligned D-NN 137 0.039 0.072 0.402

Raw Morgan FP CCA 180 0.027 0.045 0.303

Raw Chemprop CCA 184 0.024 0.040 0.294

Raw Aligned CCA 134 0.039 0.076 0.412

Aligned Morgan FP CCA 177 0.027 0.050 0.319

Aligned Chemprop CCA 163 0.028 0.051 0.334

Aligned Aligned CCA 130 0.048 0.093 0.425

Aligned Aligned Corr 126 0.042 0.085 0.432
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Table 2.

IR metrics for the various oracle methods.

Oracle Model MR MRR H@10 H@100

Oracle - Train Cell Lines (Raw GE) 138 0.057 0.101 0.400

Oracle - Train Cell Lines (Embed) 110 0.064 0.128 0.466

Oracle - Test Cell Line (Raw GE) 82 0.076 0.147 0.565

Oracle - Test Cell Line (Embed) 79 0.093 0.160 0.568

Our Approach 126 0.042 0.085 0.432
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