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T follicular helper cells (TFH) are a specialized subset of CD4 T cells that reside in B cell 
follicles and promote B cell maturation into plasma cells and long-lived memory B cells. 
During chronic infection prior to the development of AIDS, HIV-1 (HIV) replication is largely 
concentrated in TFH. Paradoxically, TFH numbers are increased in early and midstages of 
disease, thereby promoting HIV replication and disease progression. Despite increased 
TFH numbers, numerous defects in humoral immunity are detected in HIV-infected individ-
uals, including dysregulation of B cell maturation, impaired somatic hypermutation, and 
low quality of antibody production despite hypergammaglobulinemia. Clinically, these 
defects are manifested by increased vulnerability to bacterial infections and impaired 
vaccine responses, neither of which is fully reversed by antiretroviral therapy (ART). 
Deficits in TFH function, including reduced HIV-specific IL-21 production and low levels 
of co-stimulatory receptor expression, have been linked to these immune impairments. 
Impairments in TFH likely contribute as well to the ability of HIV to persist and evade 
humoral immunity, particularly the inability to develop broadly neutralizing antibodies. In 
addition to direct infection of TFH, other mechanisms that have been linked to TFH deficits 
in HIV infection include upregulation of PD-L1 on germinal center B cells and augmented 
follicular regulatory T cell responses. Challenges to development of strategies to enhance 
TFH function in HIV infection include lack of an established phenotype for memory TFH as 
well as limited understanding of the relationship between peripheral TFH and lymphoid tis-
sue TFH. Interventions to augment TFH function in HIV-infected individuals could enhance 
immune reconstitution during ART and potentially augment cure strategies.

Keywords: follicular T helper cells, follicular T regulatory cells, germinal center, broadly neutralizing  
antibodies, Hiv

THe NATURAL HiSTORY AND FUNCTiON OF T FOLLiCULAR 
HeLPeR CeLLS (TFH) AND T FOLLiCULAR ReGULATORY  
CeLLS (TFR)

T follicular helper cells were identified 16 years ago when CD4 T cells with a unique phenotype, 
notably abundant CXCR5 expression, were identified in the follicles and germinal centers (GCs) 
of secondary lymphoid tissues (1–3). TFH express a unique transcriptional profile compared to 
extrafollicular and peripheral CD4 T cell subsets; they are a distinct population of CD4 T cells 
under the control of the master transcription regulator BCL-6 (4–6). TFH rely on signaling through 
inducible T cell co-stimulator (ICOS), IL-21, IL-6, and STAT3 to develop and promote the GC 
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response (7–9). Further, interactions with GC B cells support 
the development of CXCR5hiPD1hi GC TFH via sustained ICOS–
ICOSL and CD40–CD40L binding (10). TFH fail to accumulate 
in lymphoid tissues after immunization in the absence of B cells 
(11). TFH provide help for maturation of B cells into plasma and 
memory subsets, as well as drive class switch recombination and 
expression of enzymes, such as activation-induced deaminase 
(AID) that promote somatic hypermutation (SHM) to generate 
highly mutated antibodies (1–3). TFH are one of the main sources 
of IL-21, a key cytokine that promotes GC formation and main-
tenance, TFH and B cell proliferation, SHM, and memory B cell/
plasma cell differentiation (12–15). IL-21 is primarily produced 
by CD4 T cells and is particularly critical to generation of antigen-
specific IgG antibodies and expansion of class-switched B cells 
and plasma cells in vivo [reviewed in Ref. (16)]. TFH produce a 
variety of other cytokines including IL-4 (17), IL-17 (18), and 
IFNγ (19). In addition, they express increased levels of IL-10, 
ICOS, and CD40L compared to other T helper subsets, which 
allows them to positively regulate B cell differentiation and func-
tion (3, 20). Due to constraints of studying TFH from lymphoid 
tissues, recent studies have attempted to establish a marker for 
TFH in blood (21). While several markers have been used to define 
peripheral TFH (pTFH), several groups have used CXCR5 and PD1 
co-expression (22–24). In rhesus macaques receiving a modified 
vaccinia virus Ankara SIV vaccine, it was shown that CXCR5+ 
CD4 T cells accumulated in the blood at peak effector response 
post-immunization, and proliferating (Ki-67 +) CXCR5+ CD4 
T cells in blood were directly correlated to TFH and GC B cell 
frequency in lymphoid tissues (25). Yet, direct functional studies 
comparing lymphoid TFH to pTFH have not been done, and their 
relation to each other, as discussed later, remains uncertain.

More recently, TFR were identified as a unique CD4 T cell 
subset that controls and regulates GC responses (26–28). Similar 
to TFH, TFR express high levels of Bcl-6, CXCR5, ICOS, and PD-1 
(26–29). TFR are unique in their ability to express Blimp-1 simul-
taneously with Bcl-6, and express high levels of Foxp3 compared 
to TFH (27). TFR develop independently of TFH from natural Treg 
precursors, although they rely on similar signals as TFH, such as 
CD28 and ICOS, to differentiate (27). TFR are a crucial component 
of the GC response as they inhibit GC expansion and regulate TFH 
and GC B cell numbers to prevent development of autoimmunity 
(26–28). Recent studies have shown that the function of TFR and/
or a skew in the balance between TFH and TFR frequency can lead 
to impaired humoral immunity (30–33). Thus, an imbalance of 
the TFR-mediated GC regulation and skewing of the GC reaction 
may counteract this highly regulated response and dampen the 
immune response to pathogens.

TFH eXPAND AND ARe THe MAJOR 
ReSeRvOiR OF Hiv RePLiCATiON iN 
CHRONiC Hiv iNFeCTiON

In HIV infection prior to the development of AIDS, TFH serve as 
the major site of virus replication (34–37). A CD4 T cell in the GC 
is on average 40 times more likely to be productively infected than 
a CD4 T cell outside of the follicle (36) and a median of 60–75% of 

HIV-producing cells are found within follicles in lymph nodes of 
untreated chronically HIV-infected individuals (35, 36). Within 
B cell follicles, the majority of HIV-producing cells are found in 
GC (38). Similarly, in chronically SIV-infected rhesus macaques 
without simian AIDS, virus replication is concentrated in B cell 
follicles in lymph nodes, spleen, and gut-associated lymphoid 
tissues, and these differences persist even after controlling for 
memory CD4 cell populations in the follicular and extrafollicular 
compartments (39).

Both heightened TFH permissivity and factors in the follicular 
microenvironment play a role in promoting HIV replication 
within TFH. Tonsillar TFH and GC TFH are highly permissive to 
both X4- and R5-tropic HIV compared to other tonsillar T cell 
subsets ex vivo (38, 40). Heightened permissivity of TFH is not 
fully explained by differences in memory subsets (as determined 
by CD95 expression), cellular activation (as measured by 
HLA-DR and CD38 expression), or chemokine HIV co-receptor 
expression (38). Within the microenvironment of the B cell fol-
licle, specifically in the GC, follicular dendritic cells (FDC) bind 
HIV–antibody complexes via FC and complement receptors (41). 
Although FDC are not productively infected, the virions bound 
to their surface are adjacent to TFH within GCs (41–43), and 
these virions are highly infectious to TFH (42), likely contributing 
to the high viral burden found in TFH. FDC further upregulate 
HIV replication in CD4 T cells through release of TNFα (40). 
A relative lack of cytotoxic T lymphocytes (CTL) in the follicle 
both in HIV (36) and SIV infection (39, 44), likely promotes 
replication at those sites. Most SIV-specific CTL lack a follicular 
homing phenotype (CXCR5+CCR7−), which may explain their 
failure to home to sites of virus replication in B cell follicles (39). 
Depletion of CD8 cells from SIV-infected macaques leads to 
increases in virus replication primarily in the extrafollicular zone, 
further supporting the notion that CTL are primarily active in 
the extrafollicular compartment and exert little antiviral activity 
within the follicle (45). Thus, TFH are naturally highly susceptible 
to HIV, and their location within the immune privileged B cell 
follicle adjacent to FDC-bound virions further promotes high 
levels of HIV infection and replication.

Despite being highly permissive to HIV ex vivo and being the 
major virus-producing T cell subset in chronic HIV infection, 
the percentages of TFH increase in early- and mid-stage chronic 
HIV (37, 46) and SIV infection (47). One of the hallmarks of HIV 
infection prior to AIDS is follicular hyperplasia. The follicles and 
GCs in HIV-seropositive lymph nodes are substantially larger in 
size than those in HIV-seronegative lymph nodes (48), suggesting 
that there are likely numerically more TFH in HIV-seropositive 
compared to -seronegative lymph nodes in early and midstages 
of disease as well. Part of this expansion is likely antigen driven. 
In acute SIV infection, rapid formation of GC and accumulation 
of TFH, along with high p27 expression, in the follicle has been 
observed (49). In chronic HIV infection, virus-specific TFH are 
expanded (46). It has been shown in mice that sustained anti-
genic stimulation from GC B cells is required to maintain the 
TFH phenotype (50), further supporting the notion that antigen 
stimulation is key to TFH expansion. It is likely that other factors 
besides antigen contribute to TFH expansion. Cytokines known 
to promote TFH survival, such as IL-6 (47, 51), and interferon-γ 
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TAbLe 1 | T follicular helper cells (TFH) functional impairments during Hiv infection.

TFH definition Compartment Treatment impairment Reference

CD4+CXCR5+PD-1hi Lymph node Y/N Lower Env-specific responses than Gag-specific responses; decreased Bcl-6 
expression after antiretroviral therapy (ART); increased transitional B cells; 
hypergammaglobulinemia

(46)

CD4+CD45RA−CXCR5+PD-1+Bcl-6+ Lymph node Y/N Higher Gag- and Pol-specific than Env-specific responses; harbor high levels 
of HIV DNA

(37)

CD4+CD45RA−CXCR5hi Lymph node N Lower of proliferation, ICOS expression, IL-21, IL-10, and IL-4 production after 
PD-1 ligation

(58)

CD4+CD45RA−CCR7−CXCR5+ Spleen N Expansion coinciding with increased transitional B cells and lower memory B 
cells; disrupted transcriptional profiles in HIV-infected subjects; high levels of 
DNA integration

(59)

CD4+CXCR5+CCR6+CCR7+PD1+ Blood Y/N TFH decrease in treatment-naïve subjects; increase with ART but not to healthy 
control levels; low IL-4 production; weak supporters of IgG production

(24)

HIV-specific, IL-21+CD4+ Blood N Lower breadth and magnitude of HIV-specific responses compared to 
IFNγ+CD4 T cells; no HIV-specific peripheral TFH responses in patients with 
higher viral loads

(60)

CD4+CXCR3−CXCR5+PD-1+ Blood N Not all CXCR5+ cells promote B cell help, only CXCR3− subsets; high TFH 
frequency led to higher antibody neutralization scores but not decreased viral 
loads

(23)

CD3+CD4+CD45RA−CXCR5+CXCR3− Blood Y/N Diminished B cell help during acute infection progression; increased TNFα and 
decreased IL-10 production that both correlate to decreased HIV-specific IgG 
production and increased viral load

(61)

A summary of studies from individuals with HIV infection, including the definition of TFH used, the location of TFH, and a brief description of their key functional impairments.
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(IFN-γ) (52, 53), are increased in HIV and SIV infections, while 
IL-2, which inhibits TFH differentiation, is decreased (52). Bcl-2, 
an anti-apoptotic protein, is upregulated on productively infected 
cells in ex vivo R5 infection (54). The cytokines present in the 
microenvironment of the TFH, as well as possible resistance to 
apoptosis, could therefore contribute to the expansion of the TFH 
population.

TFH FUNCTiONAL iMPAiRMeNTS AND 
THeiR iMPACT ON HUMORAL iMMUNiTY 
DURiNG Hiv iNFeCTiON

T follicular helper cells provide B cell help via IL-21, IL-4, CD40L, 
and ICOS to drive antibody production by GC B cells (55). It was 
shown that TFH and CXCR5−PD1+ CD4 T cell populations from 
viremic subjects can support IgG1, IgM, and IgA production ex 
vivo (37), but numerous examples of TFH deficiencies have been 
demonstrated in HIV infection (Table 1). B cell dysfunction has 
been well characterized during HIV infection, including the loss 
of memory B cell function, decreased numbers of GC B cells 
and plasma cells, hypergammaglobulinemia and spontaneous 
antibody production, and loss of T-dependent responses (37, 
56, 57). Clinically, these deficits are manifested by increased 
vulnerability to bacterial infections as well as impaired responses 
to routine vaccinations. Increasing evidence has linked many of 
these deficits in humoral immunity to impaired TFH function.

In chronic SIV infection, a marked increase of proliferation 
and turnover of GC B cells was seen as TFH accumulated (49). 
TFH from lymph nodes of HIV-infected subjects did not produce 

IL-21 upon HIV antigen stimulation, but were able to after 
PMA/ionomycin stimulation (37). TFH have high levels of Ki-67 
expression but low rates of proliferation in uninfected tonsils (55) 
and HIV-infected lymph nodes (37). However, IL-21 levels have 
been reported as deficient in HIV-infected subjects (62), and a 
longitudinal study demonstrated that HIV-specific IL-21+ CD4 
T cells are decreased in viremic subjects (63). In this study, only 
elite controllers maintained high levels of IL-21 production, 
and antiretroviral therapy (ART) only partially restored IL-21 
levels (63). Interestingly, IL-21+ CD4 T cells from HIV-infected 
patients have low levels of CD40L expression (64). The loss of 
CD40–CD40L interactions could lead to impaired stimulation 
of B cells by CD4 T cells from viremic HIV-infected subjects 
(65). In another study, splenic TFH from HIV-infected subjects 
demonstrated impairments in IL-4 production, along with reduc-
tions in CD40L and ICOS gene expression (59). Recently, it was 
demonstrated that chronically SIV-infected rhesus macaques 
have an expansion of Th1-biased GC TFH, phenotypically distinct 
from conventional GC TFH, which express CXCR3, produce high 
levels of IFNγ, and contain higher levels of SIV RNA (66).

iMPACT OF ALTeReD TFH FUNCTiON ON 
ANTi-Hiv ANTibODY ReSPONSe

Deficits in TFH likely contribute to the failure to develop effective 
antibody responses to HIV. A recent study of acute HIV sero-
converters demonstrated the onset of impairments in the ability 
of circulating TFH to stimulate HIV-specific antibody production 
by B cells are associated with peak viremia, suggesting that TFH 
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defects occur very early following infection (61). Most antibod-
ies generated during infection that neutralize across clades of 
HIV, i.e., broadly neutralizing antibodies (bnAb), are generated 
after several years and show high levels of SHM resulting from 
extensive affinity maturation in the GC. These responses are only 
generated in a small fraction of infected individuals (67), and 
the critical components of bnAb generation are unknown (68). 
In both untreated and treated HIV-infected subjects, TFH from 
lymph nodes were shown to be on average five times more sensi-
tive to Gag than Env, with overall low TFH cytokine production 
after Env stimulation (46). This could be due to the increased 
presence of Gag antigen compared to Env antigen in the lymph 
node of HIV-infected subjects (69) and the persistence of p24 
antigen in lymph nodes after long-term ART (70). While it is 
not surprising there are more Gag-specific TFH than Env-specific 
TFH, a lack of specificity to the HIV envelope by TFH is likely 
one of the contributing factors to a lack of bnAb development. 
A loss of Gag-specific antibody response occurs during disease 
progression, but there is no simultaneous increase of high affinity 
Env-specific response (71). Thus, an early and sustained lack of 
Env-specific TFH response could contribute to the slow develop-
ment of HIV-neutralizing antibody responses and with the failure 
of many individuals to generate bnAbs.

While protective neutralizing antibodies and bnAbs have been 
structurally and genetically well characterized in HIV-infected 
individuals, it remains unclear how these antibodies are gener-
ated and whether or not TFH can promote bnAb development. 
The development of bnAbs is relatively slow and shown to not 
strongly correlate with CD4 T cell counts, MHC II alleles, or typi-
cal patient demographics (72). However, some evidence suggests 
that TFH function plays a role in HIV neutralization. Circulating 
CD4 T cells from HIV controllers and ART-treated individuals 
produced IL-21 when stimulated with an HIV peptide pool, but 
not those from HIV progressors (73). In a longitudinal assess-
ment of acute HIV infection (12 months), treated individuals had 
consistently higher IL-21 production than untreated individuals, 
and IL-21 contributed to viral control in CD4 and CD8 T cell 
co-cultures ex vivo (73). In a cohort of chronic aviremic subjects, 
IL-21 production was reduced in circulating TFH and supplemen-
tation of IL-21 or replacement of these subjects’ TFH with TFH 
from healthy controls led to increased production of HIV-specific 
antibodies by B cells ex vivo (74). In a cohort of HIV-infected 
individuals a limited proportion of patients developed bnAbs, 
but these patients had the highest levels of circulating, functional 
memory TFH (23). However, their viral loads did not decline after 
4 weeks, but began to decline in a few individuals at 40 weeks 
(23). TFH frequency correlated strongly with bnAb development, 
thus indicating that TFH are important for generating bnAb. In 
HIV-infected children receiving ART, circulating memory TFH 
declined, expressed low levels of ICOS, and had a diminished 
capacity to produce IL-4 (75). Thus, impairments of TFH function 
can persist in the absence of viremia. Further, in SHIV-infected 
rhesus macaques, the quality of TFH response was correlated with 
the degree of SHM in virus-specific B cells and bnAb production 
(60). As virus-specific IL-4+ TFH increased (IL-21 was not meas-
ured in this study), the amount of IgG+ virus-specific B cells and 
neutralizing response against HIV increased (60). Specifically, 

the frequency of IL-4+ and CD40L+ TFH correlated strongly 
with the frequency of Env-specific IgG + B cells (60). This study 
also identified a population of IFNγ+ Env-specific TFH, which are 
less likely to provide B cell help, and these did not correlate to 
Env-specific IgG+ B cells. In another study, IL-21+ CD4 T cells 
in the periphery of HIV-infected individuals were shown to be 
functionally and transcriptionally equivalent to TFH, and Env-
specific IL-21+ CD4 T cells provided higher quality B cell help 
than the Gag-specific subset. Env-specific IL-21+ CD4 T cells 
also positively correlated to protective responses of subjects who 
responded to vaccination in the RV144 study (76). Thus, eliciting 
the right type of TFH help, rather than broad TFH activation, is 
crucial to bnAb generation. Augmentation and promotion of TFH 
function to boost this Env-specific IL-21+ CD4 T cell response 
could benefit future preventive vaccine trials and lead to broader 
specificity of anti-HIV antibodies and perhaps promote more 
rapid development of bnAbs in vaccinated individuals.

TFH iMPAiRMeNT AND THeiR 
ReLATiONSHiP TO vACCiNe ReSPONSeS 
iN Hiv-iNFeCTeD iNDiviDUALS

Individuals with chronic HIV infection typically produce poor 
antibody responses to immunization (77) and specifically had a 
high failure rate after a dose of the H1N1/09 influenza vaccine 
(78). In HIV seronegative individuals, the emergence of blood 
ICOS+CXCR5+CXCR3+ TFH that are able to produce IL-21 
correlated with influenza-specific B cell responses (79) and 
blood ICOS+IL-21+ influenza-specific TFH expand after immu-
nization and correlate to antibody responses (80). TFH function 
in HIV-infected individuals could be important to respond to 
vaccinations, but research in this area is limited. In ART-treated 
HIV-infected individuals, responders to the H1N1/09 influenza 
vaccine had upregulated IL-21 production and increased IL-21 
receptor expression on B cells (81). Further, B cells from HIV-
infected influenza responders secreted high levels of IgG after 
stimulation with IL-21 and H1N1 antigen, whereas HIV-infected 
non-responders did not (81). Expression of AID was positively 
correlated to influenza neutralizing antibody responses in HIV-
infected individuals, and those with the highest levels of AID 
expression carried protective antibodies for the longest amount 
of time (82).

Recently, the quality of TFH responses to influenza vaccination 
was characterized in HIV-infected individuals. Of 16 HIV-
infected subjects on ART receiving the H1N1/09 influenza vac-
cine, 8 subjects responded.  Antibody responses were linked to the 
ability of pTFH to proliferate, to the ability of pTFH in responders 
to proliferate, produce IL-21, and stimulate IgG production (22). 
In this study, pTFH were not significantly altered in HIV-infected 
subjects and healthy controls at the time of vaccination, and 
the HIV-infected group had significantly higher frequencies of 
central memory pTFH (22). These data indicate that although pTFH 
were phenotypically similar in HIV-infected subjects compared 
to healthy controls, recall response and function of pTFH is sig-
nificantly impaired in HIV-infected subjects even after potent 
ART regimens. As B cell/pTFH cocultures were performed with 
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sorted cells it remains to be determined if TFR in the periphery 
play a role in the dichotomy of HIV-infected responders and 
non-responders.

MeCHANiSMS THAT UNDeRLie TFH 
DYSFUNCTiON

One of the obvious causes of TFH dysfunction is direct HIV 
infection of the TFH themselves. Nevertheless, only a minority of 
TFH are producing virus at any single time point (36), and thus 
this is unlikely to be the principal cause of their dysfunction. TFH 
are characterized by high levels of PD-1 expression. Ligation of 
PD-1 on TFH by lymph node B cells that express PD-L1, which are 
elevated in HIV-infected individuals, leads to decreases in IL-21 
production and ICOS expression (58). Blockade of this interac-
tion, with PD-L1 neutralizing antibodies, restores TFH help to B 
cells and promotes IgG production (58). One report has shown 
that HIV infection leads to an expansion of PD-L1 expressing 
regulatory B cells in peripheral blood that positively correlate 
with increased viral load and T cell exhaustion (83), however, TFH 
function was not examined.

Another likely cause of TFH dysfunction in HIV infection is 
regulation by TFR. In mice, the magnitude of the GC reaction 
increased and autoimmune responses were generated when TFR 
were unable to migrate into the follicle (84). Also in mice, it was 
demonstrated that excessive numbers of TFH are correlated with 
impaired affinity maturation, and restoring a balanced ratio of 
TFH to TFR allows for generation of highly mutated, high avidity 
antibodies (85). Recent studies in rhesus macaques have shown 
that TFR frequencies in secondary lymphoid tissues are increased 
in chronically SIV-infected animals (48, 86), while another study 
found decreases in TFR during chronic infection (87). Reasons 
for discrepancies among these studies are not clear. In chronic 
HIV infection, TFR are increased in lymph nodes (48) and 
spleen (59). They are also increased during acute ex vivo HIV 
infection of tonsil cells (48). In ex vivo HIV infection of human 
tonsil cells, our group found that TFR inhibited ICOS expression, 
IL-21 production, and IL-4 production by TFH (48). In another 
study of treatment-naïve, chronically HIV-infected subjects, the 
frequency of memory (CD45RA-CCR7-) TFR and TFH were shown 
to increase (59). These increases were associated with increased 
GC B cells; however, these cells were mostly naïve, pre-GC, and 
transitional B cells as opposed to memory B cells (59). Increases 
in TFH and TFR from spleen cells of HIV-infected subjects were 
associated with defects in the memory B cell compartment and 
reduced B cell help factors such as IL-4 (59). In addition, higher 
quality of Env-specific (gp120) antibodies in SIV-infected rhesus 
macaques was correlated with a lower frequency of TFR (87). 
Neutralizing antibodies to HIV were negatively correlated to 
Foxp3+ Env-specific TFH (TFR were not excluded from TFH in this 
work) in SHIV-infected rhesus macaques (60). Collectively, these 
data suggest that human TFR increase during chronic HIV infec-
tion and impair TFH function resulting in disruption of proper B 
cell differentiation and SHM. It has been shown in mouse models 
that the loss of TFR function allows for higher levels of antibody 
production, but the resulting antibody is much lower affinity 

than if TFR function is not impaired (32). Whether TFR are able to 
control B cell responses directly, through TFH impairment, or both 
remains to be shown.

MeMORY TFH iN Hiv-iNFeCTeD 
iNDiviDUALS

One clear area requiring more research is the development 
and fate of memory TFH subsets. It is currently unknown if TFH 
memory forms and is sustained inside or outside of the GC, or 
whether effector TFH persist in chronic infections due to prolonged 
antigen exposure and GC maintenance (88, 89). This is especially 
difficult to distinguish in HIV-infected subjects, as high levels 
of antigens persist in the lymph nodes well after ART initiation. 
Effector TFH are present as long as the GC persists, but if these 
cells become memory TFH or influence the response to vaccina-
tions in HIV-infected subjects remains to be determined. One 
challenge in defining memory TFH and effector TFH is the plasticity 
of phenotype of these cells. Studies in LCMV-infected mice have 
demonstrated that CXCR5+ memory TFH downregulate PD-1, 
Bcl-6, IL-21, and ICOS compared to effector populations, but 
are able to recall effector TFH phenotype upon antigen challenge, 
suggesting a TFH lineage commitment of these memory cells (90, 
91). CXCR5 has been used to distinguish memory TFH, but not 
all CXCR5+ CD4 T cells possess TFH function after activation 
(23). Furthermore, in a mouse model, TFH lost expression of 
Bcl-6, CXCR5, and PD-1 and acquired a memory phenotype 
when transferred into a mouse that did not express the cognate 
antigen (92). Thus, lack of a reliable phenotype for effector and 
memory TFH populations remains a barrier to studying memory 
TFH development and assessing memory responses (93).

Another important question is the location of the memory 
TFH pool and whether there is crosstalk between blood and 
lymphatic tissues. It has been shown that circulating and lymph 
node-resident memory populations may develop independently 
and both are antigen specific with potent effector functions (94, 
95). In mice, it was demonstrated that effector TFH can circulate 
to various GCs within the same lymph node, but rarely escape 
to the periphery (94). Further, pTFH with memory function were 
shown to develop independent of the GC in mice (96). As sam-
pling pTFH in the blood is more feasible than lymph node TFH and 
circulating TFH are shown to have memory and migrate to lymph 
nodes to stimulate B cell effector responses (95), most studies to 
date have focused on the function of pTFH in vaccine responses 
of HIV-infected subjects. Highly functional pTFH are reduced in 
viremic HIV-infected subjects, but rebound after the administra-
tion of ART (24). In this study, abundance of IgG+ memory B 
cells and neutralizing antibody did not strongly correlate with 
pTFH frequency, however, pTFH from HIV-infected subjects had 
relatively low IL-21 production in response to either SEB or Gag 
peptide pool stimulations and had low levels of IL-21 and IL-4 
gene expression (24). This suggests that humoral responses and 
vaccine responses not only need to boost pTFH/TFH numbers, but 
also elicit highly functional B cell help responses.

The extent to which HIV directly influences TFH function, 
or whether HIV-driven enhancements in TFR regulatory 
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activity influences TFH dysfunction, leading to poor memory 
and vaccine response, remains to be fully understood. In 
mice, circulating TFR were shown to be expanded after viral 
infection and could potently suppress pTFH function without 
requiring specific antigens (95). Whether TFR prevent memory 
TFH function, or prevent memory TFH from reacquiring effector 
TFH function, is an important area of future research. As TFR 
frequency has been found to negatively correlate with bnAb 
generation (60, 87), it will be necessary to determine if they 
also disrupt the formation or activation of memory TFH. TFR 
could prevent memory TFH from having high quality effector 
responses and thus represent a barrier to generating effective 
vaccine responses. TFR regulatory function could impair the 
activity of memory TFH and be one of the contributing factors 
to failure of preventative HIV vaccinations. Further, as TFR act 
non-specifically on target cells, they could also contribute to 
the relatively low efficacy of non-HIV vaccine responses in 
HIV-infected individuals.

CONCLUSiON

T follicular helper cells have a critical role in HIV immunopatho-
genesis. They proportionately expand compared to total CD4 T 
cells during chronic disease and are the major virus-producing 
cells during asymptomatic disease, thereby driving disease 
progression. They also exhibit multiple functional deficits that 

impair development of robust humoral immunity to pathogens, 
including HIV itself. Mechanisms underlying TFH impairment 
likely include direct infection of TFH, suppressive factors in 
the GC milieu such as PD-L1 expression on B cells, and TFR. 
Strategies to augment TFH immunity remain to be developed, but 
potential interventions include administration of IL-21 as well as 
inhibition of TFR responses. Such strategies need to be developed 
cautiously as unintended consequences of these interventions, 
such as development of autoimmunity due to excessive inhibition 
of TFR, could be deleterious. A better understanding of the nature 
of memory TFH populations is also essential in order to develop 
and test interventions. Knowledge of factors that influence TFH 
function in HIV infection could lead to improved immune recon-
stitution in ART-treated individuals and potentially augment 
strategies to cure HIV infection.
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