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Abstract
Objective  The aim of this study was to develop and validate a deep learning–based convolutional neural network (CNN) 
for the automated detection and categorization of teeth affected by molar-incisor-hypomineralization (MIH) on intraoral 
photographs.
Materials and methods  The data set consisted of 3241 intraoral images (767 teeth with no MIH/no intervention, 76 with 
no MIH/atypical restoration, 742 with no MIH/sealant, 815 with demarcated opacity/no intervention, 158 with demarcated 
opacity/atypical restoration, 181 with demarcated opacity/sealant, 290 with enamel breakdown/no intervention, 169 with 
enamel breakdown/atypical restoration, and 43 with enamel breakdown/sealant). These images were divided into a train-
ing (N = 2596) and a test sample (N = 649). All images were evaluated by an expert group, and each diagnosis served as a 
reference standard for cyclic training and evaluation of the CNN (ResNeXt-101–32 × 8d). Statistical analysis included the 
calculation of contingency tables, areas under the receiver operating characteristic curve (AUCs) and saliency maps.
Results  The developed CNN was able to categorize teeth with MIH correctly with an overall diagnostic accuracy of 95.2%. 
The overall SE and SP amounted to 78.6% and 97.3%, respectively, which indicate that the CNN performed better in healthy 
teeth compared to those with MIH. The AUC values ranging from 0.873 (enamel breakdown/sealant) to 0.994 (atypical 
restoration/no MIH).
Conclusion  It was possible to categorize the majority of clinical photographs automatically by using a trained deep learn-
ing–based CNN with an acceptably high diagnostic accuracy.
Clinical relevance  Artificial intelligence-based dental diagnostics may support dental diagnostics in the future regardless of 
the need to improve accuracy.
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Introduction

Visual examination is the method of choice for screening, 
monitoring, detecting, and diagnosing dental pathologies of 
teeth, and the corresponding diagnostic indices and method-
ological procedures have been described by the researchers 
[e.g., 1, 2]. However, the knowledge transfer from scientists 

to dental practitioners might sometimes be lacking, which is 
especially true for detecting and diagnosing individuals or 
teeth with molar-incisor-hypomineralization (MIH). Here, 
families notified diagnostic uncertainties by dental profes-
sionals which potentially results in conflicting positions, 
diverging recommendations and additional dental consul-
tations [3, 4]. It might be beneficial to develop diagnostic 
methods to verify suspected dental hard tissue findings 
independently from the investigating dentist. In addition, 
this aim might be supported by the documented MIH preva-
lence rates. The mean global MIH prevalence was estimated 
recently at 13.1% by Schwendicke et al. [5]. In Germany, 
28.7% of all 12-year-olds were found to have hypomin-
eralizations [6, 7]. Both numbers indicate that a relevant 
proportion of adolescents is affected by this developmental 
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disorder. Therefore, diagnosing and managing MIH is a fre-
quent challenge in daily dental practice.

The aim of establishing independent diagnostic methods 
might become feasible by the availability of smart image 
analysis methods. Artificial intelligence (AI) currently 
offers the potential for the automated detection and evalu-
ation of diagnostic information in medicine and dentistry 
[6–9]. The aim to digitalise medical and dental workflows 
must be understood as an emerging topic, and interest in 
this area has recently increased in dental research as well. 
Meanwhile, different workgroups have started to analyze 
all available types of dental radiographs [10–14] by using 
deep learning with convolutional neural networks (CNNs) 
for the detection of caries [15], apical pathologies [16], or 
periodontitis [17]. In contrast, only a few projects using 
AI-based algorithms for the automated identification of 
pathologies on intraoral clinical photographs have been 
reported [18–26]. When considering recently published 
reports and the latest software developments, it can be 
stated that, to the best of our knowledge, no application for 
the automated detection of MIH on intraoral photographs 
has been developed and/or evaluated thus far. Therefore, 
this diagnostic study aimed to train a CNN for MIH detec-
tion (test method); this CNN was then compared in its final 

stage to the expert evaluation (reference standard). The 
aim was to reach a diagnostic accuracy of at least 90% for 
the test method.

Materials and methods

Study design

This diagnostic study used anonymized intraoral clinical 
photographs (Fig. 1) from clinical situations in which pho-
tographs were captured for educational purposes as well as 
from previously conducted clinical trials. The Ethics Com-
mittee of the Medical Faculty of the Ludwig-Maximilians 
University of Munich reviewed and approved the study 
concept (project number 020–798). This investigation was 
reported in accordance with the recommendations of the 
Standard for Reporting of Diagnostic Accuracy Studies 
(STARD) steering committee [27] and recently published 
recommendations for the reporting of AI studies in den-
tistry [28]. The pipeline of methods, mentioned below, was 
applied and described in previously published reports [19, 
20].

Fig. 1   Overview of the chosen diagnostic categories based on the criteria provided by the European Academy of Paediatric Dentistry [3] and 
frequent intervention modalities
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Intraoral photographs

Dental photographs were consistently taken with profes-
sional single-reflex cameras equipped with a 105-mm macro 
lens and a macro flash after tooth cleaning and drying [19, 
20]. All images were stored (jpeg format, RGB colors, aspect 
ratio of 1:1) and selected for this study project. To ensure 
high data quality, duplicate or inadequate photographs, such 
as out-of-focus images, under- or overexposed pictures and 
photographs with saliva contamination, were excluded. Clin-
ical photographs showing additional caries cavities and any 
other developmental disorders, e.g., amelogenesis or den-
tinogenesis imperfect or hypoplasia, were omitted. Caries-
related restorations were also excluded to rule out potential 
evaluation bias. Finally, 3241 anonymized, high-quality 
clinical photographs from anterior and posterior permanent 
teeth with MIH (test group) and without any pathology/res-
toration (control group) were included in the study.

Classification of teeth with MIH (reference standard)

Each photograph was classified with the goal of detecting 
and categorizing teeth with MIH in relation to the diagnostic 
classification system of the European Academy of Paediat-
ric Dentistry [3] and possible dental interventions, such as 
restorations or fissure sealants. In detail, characteristics indi-
cating the well-established MIH categories of demarcated 
opacities and enamel breakdowns are prevalent and can 
appear clinically in combination without any dental resto-
ration, with an MIH-related—so called atypical—restoration 
or sealant (Fig. 1). Each image was precategorized by three 
graduated dentists (JS, PE, and AS) according to the given 
cross classification; afterwards, images were independently 
counterchecked by an experienced examiner (JK, > 20 years 
of clinical practice and scientific experience). In the case 
of divergent findings, each intraoral photograph was re-
evaluated and discussed until consensus was reached. Every 
diagnostic decision—one per image—served as a reference 
standard for cyclic training and repeated evaluation of the 
deep learning-based CNN.

All the annotators were trained and calibrated before the 
study. During a 2-day theoretical and practical workshop 
guided by the principal investigator (JK), all annotators (JS, 
PE, and AS) were educated. Finally, 140 photographs were 
evaluated by all participating dentists to determine intra/
interexaminer reproducibility for MIH classifications. Statis-
tically, kappa values were computed for all coder pairs using 
Excel (Excel 2016, Microsoft, Redmond, WA, USA) and 
SPSS (SPSS Statistics 27, 2020, IBM corporation, Armonk, 
NY, USA). Intra/interexaminer reproducibility was calcu-
lated as 0.964/0.840–0.712 (JS), 0.982/0.747–0.727 (PE), 
1.000/0.774–0.693 (AS), and 0.836/0.749–0.693 (JK), 

respectively. The documented kappa values indicated sub-
stantial to perfect agreement [29].

Training of the deep learning‑based CNN (test 
method)

In the following, the used pipeline of methods for develop-
ing the AI-based algorithm is described. Before training, the 
whole set of images (N = 3241) was divided into a training 
sample (N = 2596) and a test sample (N = 649); the CNN 
had no knowledge of the latter during training; it served as 
an independent test set only. The distribution of all images 
in relation to the diagnostic classification can be taken from 
Table 1.

To increase variability within the images, the underlying 
training set was augmented. For this purpose, the randomly 
selected images (batch size = 16) were multiplied by a factor 
of ~ 5, altered by different transformations (random center 
and margin cropping by up to 30% each; random deletion 
removing up to 30%; random affine transformation up to 
180°; random perspective transformation up to a distortion 
of 0.5; and random changes in brightness, contrast, and satu-
ration up to 10%) and resized (300 × 300 pixels). In addition, 
to compensate for under- and overexposure, all images were 
normalized [19, 20]. Torchvision (version 0.9.1, https://​pytor​
ch.​org) in conjunction with the PyTorch library (version 
1.8.1, https://​pytor​ch.​org) was used. ResNeXt-101–32 × 8d 
[30] was selected as the basis for the continuous adaptation 
of the CNN for MIH detection and categorization. The CNN 
was trained using backpropagation to determine the gradi-
ent for learning. Backpropagation was repeated iteratively 
for images and labels using the abovementioned batch size 

Table 1   Description of the image set in relation to the diagnostic 
classification

Restoration 
status

MIH classifica-
tion

Training sample Test
sample

Sum

No intervention No MIH 627 140 767
Demarcated 

opacity
659 156 815

Enamel break-
down

232 58 290

Atypical restora-
tion

No MIH 59 17 76
Demarcated 

opacity
127 31 158

Enamel break-
down

123 46 169

Sealant No MIH 585 157 742
Demarcated 

opacity
147 34 181

Enamel break-
down

33 10 43

Sum 2596 649 3241
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and parameters. Overfitting was prevented by two meas-
ures: selecting a low learning rate (0.0001) and perform-
ing dropout (at a rate of 0.5) on the final linear layers as a 
regularization technique. CNN training was repeated over 
15 epochs with cross entropy loss as an error function and 
the application of the Adam optimizer (betas 0.9 and 0.999, 
epsilon 1e-8). With an open-source neural network employ-
ing pretrained weights (ResNeXt-101–32 × 8d pretrained on 
ImageNet, Stanford Vision and Learning Laboratory, Stan-
ford University, Palo Alto, CA, USA), CNN training was 
accelerated. Existing learning results regarding the recogni-
tion of basic structures in the existing image set could thus 
be reused and skipped in the initial training. Training was 
performed on a university-based computer with the follow-
ing specifications: RTX A6000 48 GB (Nvidia, Santa Clara, 
CA, USA); i9 10850 K 10 × 3.60 GHz (Intel Corp., Santa 
Clara, CA, USA) and 64 GB RAM [19, 20].

Statistical analysis

The data were analyzed using Python (http://​www.​
python.​org, version 3.8). The overall diagnostic accuracy 
(ACC = (TNs + TPs)/(TNs + TPs + FNs + FPs)) was deter-
mined by calculating the number of true positives (TPs), 
false positives (FPs), true negatives (TNs), and false nega-
tives (FNs). The sensitivity (SE), specificity (SP), positive 
and negative predictive values (PPVs and NPVs, respec-
tively), and the area under the receiver operating charac-
teristic (ROC) curve (AUC) were computed for the chosen 
MIH categorization [31]. Saliency maps were plotted to 
illustrate image areas that were used by the CNN to make 
individual decisions. The saliency maps were calculated by 

back propagating the CNN prediction and visualizing the 
gradient of the input of the resized images [19, 20, 32].

Results

After the deep learning–based CNN was trained, the CNN 
was able to detect MIH and correlated interventions cor-
rectly in eight out of nine MIH categories with a diagnos-
tic accuracy higher than 90% (Table 2). The overall diag-
nostic accuracy was determined at 95.2%. The SE and SP 
amounted to 78.6% and 97.3%, respectively. In detail, the 
accuracy values ranged from 91.5% (enamel breakdown/
no intervention) to 99.1% (enamel breakdown/sealant). The 
lowest diagnostic accuracy of 88.4% was found for demar-
cated opacities with no intervention (Table 2). This was the 
only category—one out of nine—where the target accuracy 
of 90% was not reached (Table 2).

When considering the diagnostic parameters of SE and 
SP in detail (Table 2), it is important to note that SP values 
were found to be consistently high, ranging from 92.9% (no 
intervention/demarcated opacity/) to 100.0% (sealant/enamel 
breakdown) in comparison to the SE. The latter ranged from 
40.0% (enamel breakdown/sealant) to 96.2% (sealant/no 
MIH). The AUC values varied from 0.873 (enamel break-
down/sealant) to 0.994 (sealant/no MIH). With respect to 
the overall high AUC values, no ROC curves were plotted.

The confusion matrix (Fig. 2) illustrates the case distri-
bution in the test set. Here, it also became obvious that the 
majority of diagnostic predictions by the AI-based algorithm 
(test method) were made in accordance with the expert deci-
sion in the test set. However, a distinct number of cases were 

Table 2   Overview of the diagnostic performance of the developed 
convolutional neuronal network (CNN), where the independent test 
set (n = 649 images) was evaluated by the AI-based algorithm for the 
detection of MIH-related enamel disturbances and related interven-

tions. The overall diagnostic accuracy (ACC, including the sensitiv-
ity (SE), the specificity (SP), the negative predictive value (NPV), the 
positive predictive value (PPV) and the area under the receiver oper-
ating characteristic curve (AUC)) was computed

n.c., not calculable

Category True posi-
tives (TPs)

True nega-
tives
(TNs)

False 
positives
(FPs)

False 
negatives
(FNs)

Diagnostic performance

N % N % N % N % ACC​ SE SP PPV NPV AUC​

No intervention No MIH 128 19.7 485 74.7 24 3.7 12 1.9 94.5 91.4 95.3 84.2 97.6 0.985
Demarcated opacity 116 17.9 458 70.6 35 5.4 40 6.1 88.4 74.4 92.9 76.8 92.0 0.922
Enamel breakdown 37 5.7 557 85.9 34 5.2 21 3.2 91.5 63.8 94.3 52.1 96.4 0.901

Atypical restoration No MIH 12 1.9 630 97.1 2 0.3 5 0.7 98.9 70.6 99.7 85.7 99.2 0.987
Demarcated opacity 15 2.3 611 94.1 7 1.1 16 2.5 96.5 48.4 98.9 68.2 97.5 0.953
Enamel breakdown 30 4.6 584 90.0 19 2.9 16 2.5 94.6 65.2 96.9 61.2 97.3 0.938

Sealant No MIH 151 23.3 480 74.0 12 1.9 6 0.8 97.2 96.2 97.6 92.6 98.8 0.994
Demarcated opacity 17 2.6 609 93.9 6 0.9 17 2.6 96.5 50.0 99.0 73.9 97.3 0.916
Enamel breakdown 4 0.6 639 98.5 0 0 6 0.9 99.1 40.0 100.0 100.0 99.1 0.873
∑ 510 8.7 5053 86.5 139 2.4 139 2.4 95.2 78.6 97.3 78.6 97.3 n.c
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not categorized correctly, especially if multiple character-
istics were present on one photograph. In addition to the 
explorative data analysis, exemplary saliency maps (Fig. 3) 
are shown to illustrate areas on each intraoral photograph 
that the CNN used for decision-making.

Discussion

The present diagnostic study demonstrated that an AI-based 
algorithm is able to detect MIH on intraoral photographs 
with a moderately high diagnostic accuracy (Table 2). With 
respect to the fact that accuracy > 90% was achieved in eight 
out of nine categories, the initially formulated hypothesis 
was accepted. When considering the documented accuracy 
and AUC values (Table 2), it could be further concluded 

that on the one hand, the overall diagnostic performance 
appears to be satisfactory but on the other hand, the partially 
low SE and high SP values indicate that the reported data 
need to be interpreted with caution. In detail, SP played a far 
more important role in this image sample probably because 
of the higher number of teeth without MIH. Therefore, the 
diagnostic accuracy is mainly driven by the SP rather than 
the SE and it could be argued that the AI-based algorithm 
is better in scoring sound teeth compared to MIH teeth. In 
this context, the complex clinical appearance of teeth with 
MIH, especially molars, needs to be highlighted. In addi-
tion to the fact that multiple findings can be present in teeth 
with MIH, this information will be further enhanced on 
intraoral photographs, which currently have a good resolu-
tion and can be thoroughly evaluated by the study team. 
Here, several demarcated opacities were found to have more 

Fig. 2   The confusion matrix shows the case distribution between the convolutional neuronal network (CNN, test method) and expert diagnosis 
for MIH assessment in the independent test set (n = 649 images)
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or less extended enamel breakdowns that might be difficult 
to assess and for experienced clinicians to allocate to one of 
the given categories. While the experts allocated teeth with 
strictly small enamel breakdowns to this category, it can be 
taken from the saliency maps (Fig. 3) that the developed 
AI-based algorithm might have some difficulties in making 
such strict decisions as well. The same might be true for 
brighter demarcated opacities or small-sized atypical resto-
rations, where the experts can provide precise assessments. 
To address and overcome this issue, appropriate pixelwise 
annotations must be recognized as a forward-looking meth-
odological approach. But this also require a well-trained and 
well-calibrated annotator team as well as consistent quality 
controls to ensure correct diagnostic decisions. In the present 
study, the reproducibility was found to be in a good to excel-
lent range. Additionally, the independent check of each diag-
nosis by an experienced dentists as well as consensus dis-
cussions and decisions completed the quality management.

Furthermore, the concept of transfer learning must be 
discussed. Contrary to earlier studies of our study group 
where only one diagnostic domain was included, e.g., caries 
[19] and sealant detection [20], the clinical complexity of 
teeth with MIH required the consideration of two domains 
with three diagnostic scores each and ultimately resulted in 

nine categories (Fig. 1). Pertinently, an imbalance of clini-
cal cases is closely linked to the proposed cross-tabulated 
case categorization. Here, a few categories are underrepre-
sented with respect to their rare presence in clinical prac-
tice. Therefore, the clinical variability of MIH characteristics 
as well as the low frequency of some categories probably 
impeded the training of the AI-based algorithm and may 
have lowered its overall diagnostic performance in compari-
son to the previously mentioned studies that used only a few 
diagnostic categories. To overcome this issue, the previously 
mentioned aspects of increasing the image data set and per-
forming pixelwise annotations must be repeated. However, 
when considering the overall diagnostic performance of this 
initially developed AI-based algorithm for MIH categoriza-
tion, the documented results (Table 2 and Fig. 2) should be 
interpreted as encouraging. Nevertheless, consistent future 
research is required.

Since no comparative studies or other AI-based methods 
are available for MIH diagnostics thus far, it is not possible 
to discuss this aspect specifically with respect to the current 
literature. However, it is feasible to consider results from 
other recently published diagnostic studies that used clinical 
photographs for the detection and categorization of dental 
findings. Here, a workgroup [21] published data for plaque 

Fig. 3   Example clinical images and the corresponding test results generated by the AI algorithms. Furthermore, the illustration includes saliency 
maps that depict those image areas (in blue) that the CNN used during the decision-making process
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detection on primary teeth, where an accuracy of 86.0% 
was reached. Noncavitated and cavitated caries lesions were 
detected with accuracies of 92.5% and 93.3%, respectively 
[19]. In other recently published diagnostic studies, white 
spot lesions were registered automatically with 81–84% 
accuracy [26] and caries lesions were classified and located 
with a mean AUC of 85.6% [33]. When also considering 
the available diagnostic performance data for various dental 
findings on different types of X-ray images [10–13, 15, 16, 
18–20, 34, 35], it can be emphasized that the documented 
diagnostic accuracies in this trial are on the same order of 
magnitude compared to those of several other dental reports.

When summarizing the methodological strengths of this 
study project, it can be concluded that it was technically 
feasible to develop CNNs with substantial precision by using 
the described pipeline for software development. There-
fore, it can be predicted that AI-based diagnostics will gain 
increasing attention in dentistry in the near future. However, 
further developments are needed before they can be used in 
a clinical setting [35, 36]. Moreover, it is crucial to assess 
the necessity of numerical extensive and qualitative image 
material to further improve the performance of the devel-
oped CNN for MIH categorization. Simultaneously, less 
frequent diagnostic categories should be included in appro-
priate numbers as well. Independently from this, it should 
further be noted that AI-based algorithms need to be also 
developed for rare developmental disorders, e.g., dentino-
genesis or amelegenesis imperfecta. The chosen methodol-
ogy primarily presents a simple approach to handle dental 
diagnoses and is typically linked with diagnostic accuracy 
values of approximately 90% (Table 2, Fig. 2). Aiming at 
increasing diagnostic performance up to 100%, the meth-
odological requirements for consistent improvement of the 
data set and detailed image annotation by pixelwise label-
ling have been expressed. Another aim might be to perform 
CNN training on high-performance computers to reach a 
higher degree of neuronal connectivity. However, all these 
requirements will necessitate more time and personal and 
computing resources.

Conclusion

It was possible in the present study to automatically catego-
rize clinical photographs from teeth with MIH by using a 
trained deep learning-based CNN with an overall diagnostic 
accuracy of 95.2%. The higher NPV and SP values in com-
parison to PPV and SE indicate that the CNN performed 
better in healthy teeth compared to those with MIH. Future 
improvements are necessary to increase the diagnostic 
performance.
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