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Electroencephalography (EEG) microstate topologies may serve as building blocks

of functional brain activity in humans. Here, we studied the spatial and temporal

correspondences between simultaneously acquired EEG microstate topologies and

resting state functional MRI (rs-fMRI) intrinsic networks in 14 patients with Alzheimer’s

disease (AD) and 14 healthy age and sex matched controls. We found an

anteriorisation of EEG microstates’ topologies in AD patients compared with controls;

this corresponded with reduced spatial expression of default mode and increased

expression of frontal lobe networks in rs-fMRI. In a hierarchical cluster analysis the time

courses of the EEG microstates were associated with the time courses of spatially

corresponding rs-fMRI networks. We found prevalent negative correlations of time

courses between anterior microstate topologies and posterior rs-fMRI components

as well as between posterior microstate topology and anterior rs-fMRI components.

These negative correlations were significantly more expressed in controls than in AD

patients. In conclusion, our data support the notion that the time courses of EEG

microstates underlie the temporal expression of rs-fMRI networks. Furthermore, our

findings indicate that the anterior-to-posterior connectivity of microstates and rs-fMRI

components may be reduced in AD, indicative of a break-down of long-reaching

intrahemispheric connections.

Keywords: EEG, fMRI, Alzheimer’s disease, brain function, resting state activity

INTRODUCTION

Preclinical findings of synaptic dysfunction from ex vivo studies in rodent brain slices (1–4) and in
vivo studies in animal models of cerebral amyloidosis (5) suggest that Alzheimer’s disease (AD)
pathology affects neuronal function and connectivity. The blood-oxygenation level dependent
(BOLD) signal in functional MRI (fMRI) can be used to assess neuronal functional connectivity
in vivo. Consistent with the preclinical findings on synaptic dysfunction, fMRI studies found
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alterations of intrinsic resting state networks in AD patients
compared with controls. These intrinsic networks reflect
spontaneous fluctuations of the BOLD signal during rest
conditions (6) and correspond to networks of functional
activation during specific task performances (7). Several studies
have reported reduced spatial expression of the so-called default
mode network (DMN) and other resting state networks in
people with AD dementia or amnestic mild cognitive impairment
(MCI), an at-risk stage of AD (8–11).

Resting state EEG is another functional imaging modality
that has widely been used to characterize functional brain
changes in AD (12). EEG studies showed reductions of high
frequency and increase of low frequency power as well as
impaired interhemispheric coherence in AD patients compared
with controls (13, 14). In 1987, Lehmann et al. identified so
called microstates from multichannel EEG recordings: spatially
consistent patterns of scalp potential topographies that remain
stable for about 100 milliseconds before changing into another
topography (15). More recently, the number of underlying
topographies was found to be finite and classes of these
microstates were found to be reproducible across sessions
and subjects (16). Spatial clustering identified four classes of
microstates that accounted for up to 80% of total topographic
variance in resting state EEG; for a contemporary review see (17).
Lehmann has suggested “EEG-defined functional microstates as
basic building blocks of mental processes” (18).

Microstates’ duration, field power and transition probabilities
can be influenced by brain diseases, such as schizophrenia (19),
and frontal lobe dementia (20). In AD patients, the occurrence
and duration of microstate toplogies deviates from healthy
controls (21–26). Most of these studies showed a stronger
expression of anterior vs. posterior microstate topologies in AD
patients compared with controls.

The simultaneous analysis of microstates is particularly
interesting in conjunction with rs-fMRI, because the microstates’
topographymay represent a high temporal resolution correlate of
the intrinsic resting state networks obtained by rs-fMRI (27, 28).
Thus, the simultaneous analysis of EEG microstates with rs-
fMRI may reveal dynamic underpinnings of altered spatial and
temporal expression of intrinsic resting state networks in AD.

In the current study, we used simultaneously acquired EEG
and rs-fMRI data to investigate whether the time courses of EEG
microstate topologies correlated with time courses of spatially
corresponding rs-fMRI networks, and if these correlations
differed between AD patients and controls. More specifically, we
expected that spatial pattern of microstates would correspond
with spatial pattern of rs-fMRI. We anticipated that more frontal
and more posterior activity in EEG would be associated with
more frontal and more posterior activity in rs-fMRI, respectively,
and that these associations would be less pronounced in AD cases
than in controls due to the expected degradation of functional
connectivity in AD.

These analyses from simultaneously acquired EEG and fMRI
data allow direct investigation if pattern of microstates topologies
underlie the temporal expression of resting state fMRI networks,
and provide insight into AD-related differences in coupling
between microstates and rs-fMRI networks. Due to the lack of

previous evidence, our analyses will serve to generate hypotheses
on specific associations of EEG and resting state fMRI in AD
which can be tested in subsequent studies.

METHODS

Participants
We recruited 18 patients with mild AD via the memory
clinic at the Rostock University Medical Center, and 17
cognitively healthy older controls via the Rostock University
Medical Center database. Healthy controls were required to
score within one standard deviation on all subscales of the
Consortium to Establish a Registry for Alzheimer’s Disease
(CERAD) battery (29). Patients were clinically diagnosed
with probable AD dementia according to the NINCDS-
ADRDA and NIA-AA criteria (30). However, one patient
aborted the scan session, three patients were excluded due to
radiological abnormalities, and three women in the control
group had to be randomized out to match the groups
for sex. The final participants were 14 individuals with a
clinical diagnosis of AD dementia and 14 cognitively healthy
older controls, matched for age, sex and education. All
subjects underwent general medical, neurological and psychiatric
assessment. Neuropsychological assessment was conducted using
the CERAD battery. Laboratory analyses and APOE genotype
sequencing were carried out. Participants exhibited no non-AD-
related neurological or radiological abnormalities (e.g., normal
pressure hydrocephalus or extensive microinfarcts, vascular
dementia), and no psychiatric diseases. Eight AD patients
took antidementive medication with cholinesterase inhibitors,
one with Memantine, five took no antidementive medication.
The study was approved by the local ethics committee. All
participants gave written informed consent, and all procedures
were carried out in accordance with the Helsinki declaration in
its present form.

Data Acquisition
Electroencephalography and fMRI data were recorded
simultaneously during 7.5min of resting state (eyes-closed). For
the EEG recording, MRI-comaptible Brain Amp and the software
Brain Vision Recorder 1 (both from Brain Products, Gilching,
Germany) were used. EEG was recorded at 32 electrodes that
were positioned according to the international 10–20-system
(31). The reference electrode was located between Fz and Cz,
the ground electrode at AFz. Impedances of the electrodes of
interest (O1, O2, and Oz) were kept below 8 kΩ , except for one
AD patient (18 kΩ). An additional ECG channel was attached to
detect cardio-ballistic artifacts. EEG data were sampled at 5 kHz.
The EEG amplifier sampling interval was phase-synchronized
to the fMRI main frequency via the Syncbox (Brain Products,
Gilching, Germany) in order to preclude EEG-fMRI-sampling-
jitter artifacts. The EEG amplifier and powerpack were placed at
the head end of the scanner tube and weighted with sand bags to
prevent hardware motion.

Functional magnetic resonance imaging images were acquired
using a 3-Tesla Magnetom Verio scanner (Siemens Healthineers,
Erlangen, Germany) with a T2-weighted echo-planar imaging
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sequence (TR: 2.6 s, TE: 30ms, FOV: 224mm, thickness: 3.5mm,
number of slices: 47, number of volumes: 180). Participants were
instructed to stay awake and keep their eyes closed throughout
the entire fMRI sequence. The EEG signal was visually controlled
for signs of sleep (offline). The anatomical images were recorded
using a T1-weighted MPRAGE sequence (TR: 2.5 s, TE: 4.37ms,
FOV 256mm, thickness: 1mm, number of slices: 192). Foam
wedges were used to stabilize the head.

Data Preprocessing
MRI Data

Functional magnetic resonance imaging data preprocessing
was performed using SPM8 and the VBM8 toolbox (Version
4143) in Matlab 7 (Mathworks, Natick). The first six volumes
were removed to eliminate T1-saturation effects. Slices were
referenced to the middle slice, temporally-speaking. After
realigning the functional images, the anatomical images were
co-registered to the realigned mean functional image. The
structural T1-weighted MPRAGE images were segmented
into gray matter, white matter and cerebrospinal fluid
compartments and warped to standard MNI space, using
the default MNI standard template and the Diffeomorphic
Anatomical Registration Through Exponentiated Lie Algebra
(DARTEL) method (32), implemented in VBM8. The resulting
deformation fields were used to warp the functional images to
standard space.

Rs-fMRI networks were calculated using the FSL melodic
toolbox (Version 5.0.9, FMRIB, Oxford, UK, http://www.
fmrib.ox.ac.uk/fsl/) with a preset number of 30 independent
component analysis (ICA) maps. We applied spatial smoothing
with a 5mm isotropic full-width-at-half-maximum (FWHM)
Gaussian kernel and a high-pass filter with a cut-off period of
128 s. The resulting maps were visually evaluated to identify
the resting-state networks most closely resembling the four
topologies of the microstates. We further derived the subject-
level rsFC z-maps using FSL’s dual regression, which generated
subject-specific versions of the spatial maps and associated time
series. This was realized by a decomposition of each subject’s
4D dataset using the group-spatial-maps to give a set of time
courses, and followed by decomposition of those time courses
and the same 4D dataset to get one subject-specific spatial map
per functional network (33, 34).

EEG Data

EEG data were preprocessed using Brain Vision Analyzer
software (Version 2.0, Brain Products, Gilching, Germany).
Firstly, MRI gradient-artifacts in EEG data were corrected using
the average artifact subtraction method (35) with a sliding
average of 21 baseline-corrected intervals from all channels as
the sliding template to remove from the EEG data. Corrected
EEG data were then down-sampled to 250Hz. ECGpulse artifacts
were removed by constructing an average ECG artifact template
of 21 ECG pulses and subtracting it from the EEG data. Data were
bandpass-filtered between 0.5 and 70Hz including an additional
notch filter at 50Hz. Artifacts caused by eye movement, temporal
electrode noise and residual pulse artifacts were removed using
ICA. In case the electrode noise could not be eliminated by

removing two independent components, the disturbed channel
was removed and interpolated by topographical triangulation.
After ICA, the data were visually inspected for residual artifacts.
No sleep patterns (i.e., K-complexes or sleep spindles) were
present. EEG data from the AD group showed more artifacts
such as eye movement and muscle activation, especially during
the second half of the scan time, possibly constituting a
sign of growing unrest. Two AD subjects showed a shift in
frequency from alpha to theta over time, indicative of declining
vigilance. These vigilance-related artifacts were removed. Data
were bandpass-filtered again between 1 and 30Hz and were
re-referenced to a common reference, obtained by averaging
across all channels. EEG power in Delta (1–3.5Hz), Theta
(3.5–8.2Hz), Alpha (8.2–14Hz) and Beta (14–30Hz) band was
calculated using complex demodulation (36) and pooled across
all channels. Complex demodulation includes firstly the so-called
“demodulation,” i.e., the shifting of the frequency spectrum of the
EEG time series toward the origin by the frequency of interest.
Secondly, all signal parts above the frequency of interest were low
pass-filtered. Let the time-dependent amplitude be A, and phase
P of the periodic signal of interest at f0 and the rest Z(t). Then,
a time series can be determined by X(t) = A(t) cos(2πf0t+P(t))
+ Z(t). Signal shift then means multiplying by exp(–i2πf0t)
resulting in Y(t) = ½ A(t) exp{iP(t)} + ½ A(t) exp(–i4πf0t +
P(t)) + Z(t) exp(–i2πf0t). The low pass filter removes signal at
or above f0 resulting in Y’(t) = ½ A’(t) exp(iP’(t)). From this,
we extracted the power A’=2|Y’|. Complex demodulation has
shown to be the most effective and flexible method for envelope
extraction from real signals (37). The preprocessed multichannel
EEG time courses as well as the pooled EEG power data were
segmented into artifact-free intervals spanning 2 s and exported
for further analysis.

MICROSTATE ANALYSIS

Microstates of EEG data were calculated and their statistical
properties were derived using the Microstate toolbox (38), a
plugin for the EEGLAB toolbox (39). Briefly, microstates analysis
includes firstly the identification of the topographical microstates
prototypes at the peaks of the global field power (GFP, the spatial
standard deviation between the electrodes), called “microstates
segmentation.” Secondly, EEG data were labeled point-by-point
with the class of the prototypes that was most similar. Similarity
decision was based on the global map dissimilarity (40, 41) which
measures the distance between topographies, and is invariant to
the strength of the signals. Signals are calculated as the mean of
the Euclidean distance between prototype and EEG sample, both
normalized with GFP and referenced to average reference. After
this back-fitting procedure, the microstate labels were temporally
smoothed and the microstate statistics were calculated. The
following settings were used: data selection (normalization: no,
minimal peak distance: 10 milliseconds, number of peaks: 2,000,
GFP threshold: 1 standard deviation, segmentation limited to
healthy subjects), and microstate segmentation (normalization:
no, algorithm: modified K-means, optimized iteration scheme).
The modified K-means algorithm (42), used for topographical
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clustering, is invariant to map polarity and therefore will cluster
two proportional but opposite maps together. The number of
microstates for segmentation was selected based on the cross-
validation criterion (CV) (42) which is related to the residual
noise of the labeled EEG data. The clustering with the lowest
CV represents the best solution. In our EEG data, the microstate
clustering with four microstate classes had the lowest CV.
Temporal smoothing of back-fitted labels was based on the
small segment rejection method (38), with minimum microstate
duration of 30ms. This smoothing method changes the label of
the EEG time points to the next most likely microstate class until
theminimummicrostate duration threshold is reached. Details of
these clustering, validation and smoothing methods can be found
in the Microstate toolbox guide (38).

The following microstate features were exported for further
statistical analyses: the number of occurrences of each microstate
class per second, the mean duration of each microstate in
milliseconds, and the microstates’ band power.

STATISTICAL ANALYSIS

Between-group differences in age, education, and Mini Mental
Status Examination (MMSE) scores were determined using
Student’s t-test. Effects on microstates’ occurrences, duration and
band power were determined using mixed measures ANOVA
with the four microstate types as the within-subjects factor
and diagnosis as between-subjects factor (AD vs. controls).
In addition to p-values we estimate the effect sizes with ω

2.
Its interpretation resembles that of partial η

2. However, with
small sample sizes partial η

2 tends to overestimate the variance
explained; ω2 is less biased, i.e., it is always smaller than partial
η
2. Significant effects of diagnosis or diagnosis by microstate type

were followed up using between-groups t-tests, using Cohen’s d
as effect size estimate. These effect sizes may be large (ω2

= 0.14,
Cohen’s d = 0.8), medium (ω2

= 0.06, Cohen’s d = 0.5) or small
(ω2

= 0.1, Cohen’s d= 0.2). These analyses were conducted using
IBM SPSS Statistics version 27.

TABLE 1 | Demographic characteristics.

Sex

distribution f/m

Mean age (SD)

(years)a
Mean education

(SD) (years)b
Mean MMSE

score (SD)c
ApoE4 genotype no

ε4/at least one ε4d

AD patients 4/10 75.3 (5.7) 14.4 (2.7) 24.6 (3.1) 5/9

Controls 4/10 73.4 (3.1) 13.6 (2.8) 28.7 (0.8) 10/4

f/m, female/male.

SD, standard deviation.
aNot significantly different between groups, T = −1.1, 26 df, p = 0.27.
bNot significantly different between groups, T = −0.8, 26 df, p = 0.42.
cSignificantly different between groups, T = −4.8, 26 df, p < 0.001.
dNot significantly different between groups, Chi2 = 3.6, 1 df, p = 0.06.

FIGURE 1 | Occurrences of microstates in AD patients and controls. Boxplot of occurrences of microstates per second averaged across the entire acquisition period

comparing the AD group with the controls. Boxplots show 1st quartile, median, and 3rd quartile as well as mean values (large cross).

Frontiers in Neurology | www.frontiersin.org 4 June 2021 | Volume 12 | Article 637542

https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurology#articles


Teipel et al. Microstates and Resting State Networks

Between-group differences in the spatial expression of rs-
fMRI ICA components were determined using voxel-based
partial least squares (PLS) analysis (43) using the PLS software
(Rotman Research Institute, https://www.rotman-baycrest.on.
ca/index.php?section=84) in Matlab R2013a. This approach
operates on the covariance between brain voxels and allows
the assessment of an integrated network of brain regions that
co-varies with any external measure of choice (44), here the
diagnosis. PLS is a multivariate analysis that operates across the
entire brain and therefore requires no correction for multiple
comparisons across multiple voxels. PLS analysis yields the latent
variable (LV) which identifies a pattern of brain regions that
conjointly covaries with diagnosis. Each voxel of the brain has
a weight on each LV (“salience”). To reduce the number of
models, we determined PLS effects of diagnosis only for the ICA
maps that were visually rated to be spatially most similar to
the corresponding microstate topology. Since we formulated an
a priori assumption on the direction of the expected effect of
diagnosis on each ICA component (more or less expressed in AD
compared with controls, respectively) based on the direction of
the effect of diagnosis on the corresponding microstate topology,
we used a one-sided test, corresponding to a p < 0.1 threshold
based on permutations tests with 500 permutations. We used
bootstrap estimation (with 500 iterations) to determine the
reliability of the saliences for the brain voxels determining each
LV. The bootstrap ratios of salience follow a standard z-score
distribution, where a ratio of > 1.96 corresponds to a p-value of
< 0.05. In contrast to univariate analysis, the permutation tests
and the saliences were determined in one single analytical step,
rendering multiple comparison correction unnecessary.

For the analysis of the time course of rs-fMRI components
and microstate’s expression we used FSLnets (https://fsl.fmrib.
ox.ac.uk/fsl/fslwiki/FSLNets), a collection of Matlab scripts with
an interface to fsl graphical functions and fsl randomize. Using
this toolbox, we produced a full correlation matrix between the
rs-fMRI components that were identified to be spatially similar to
the microstate topographies and these microstate’s time courses.
This matrix then was used for unsupervised clustering of time
courses using an agglomerative hierarchical cluster tree with
Ward’s linkage through the Matlab command “linkage” (https://
de.mathworks.com/help/stats/linkage.html#mw_08b425f7-fc8c-
480a-b618-f768817e8e11).

Finally, we determined between-group differences in the
correlation coefficients after Fisher’s Z transformation using a
linear model, with FDR correction via FSL randomize. We report
FDR-corrected and uncorrected p-values for group differences
in time course correlations, focusing on correlations between
microstates and rs-fMRI components.

RESULTS

Demographic Differences Between AD
Patients and Controls
Group matching for sex, age and education was successful (all
p > 0.2). As expected, AD patients had lower MMSE scores than
controls (see Table 1 for details). One of the 14 AD patient could
not complete the full rs-fMRI scan; consequently this case was
included in the analysis of changes in microstates, but excluded
from all analyses concerning rs-fMRI data.

FIGURE 2 | Theta (2) power within MS classes between diagnostic groups. Boxplot Theta (2) power of microstates averaged across the entire acquisition period

comparing the AD group with the controls. Boxplots show 1st quartile, median, and 3rd quartile as well as mean values (large cross).
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Differences in Microstates’ Occurrences
and Duration Between AD Patients and
Controls
Mixed ANOVA revealed a significant interaction of microstate
class by diagnosis on occurrences [F(3,78) = 3.84, p = 0.013, ω2

= 0.09], but not on duration [F(3,78) = 2.02, p= 0.12, ω2
= 0.02]

of microstates. Post hoc t-tests revealed the interaction to involve
more occurrences of microstate 2 (T = 2.6, df = 26, p = 0.02,
Cohen’s d = −0.98) and fewer occurrences of microstate 3 (T =

−2.5, df= 26, p= 0.02, Cohen’s d= 0.95) in AD cases compared
with controls (see Figure 1).

Differences in Band Power of Microstates
Between AD Patients and Controls
Using mixed ANOVA, we found significant effects of diagnosis
across all microstate classes for delta power [F(1, 26) = 4.1, p =

0.05, ω2
= 0.10] and theta power [F(1, 26) = 6.7, p = 0.02, ω2

=

0.17], but no significant effects of group for alpha or beta power.
Post hoc analyses revealed higher theta power for all microstate
classes in AD patients compared with controls (T > 2.53, 26 df, p
< 0.02 for all comparisons, Cohen’s d < −0.96) (see Figure 2).

Differences of Spatial Expression of
Resting State fMRI Networks Between AD
Patients and Controls
In the first step, we visually identified spatial components
for the melodic analysis of the controls’ resting state fMRI
data that resembled the spatial pattern of the microstate
topologies (see Figure 3). To reduce the number of comparisons,
we compared spatial expression of rs-fMRI components only
for the components that were rated to be most similar to
the corresponding microstate topologies. Based on the group
differences in microstates 2 and 3 (Figure 1), we expected a
higher spatial expression of the ICA component corresponding
to microstate 2 and a lower spatial expression of the ICA
component corresponding to microstate 3. The frontal lobe
network corresponding to microstate 1 was spatially more
expressed in AD cases than in controls, singular value 86.9,
p < 0.10. The temporal lobe component, corresponding to
microstates 2 and 4, was spatially more expressed in AD cases
than in controls at a singular value of 83.5, p < 0.10. The default
mode component, corresponding to microstate 3, was reduced
in AD patients compared with controls, singular value 86.2, p <

0.10. The spatial effects are shown in Figure 4.

Associations Between Time Courses of
Microstates and Time Courses of BOLD
Signal Within Resting State Networks
For these analyses, we used two different approaches to calculate
time courses of the microstates: firstly, numbers of classifications
of a microstate within a TR, and secondly, mean similarity of
the EEG pattern to each of the microstates within a TR. We
determined associations of microstates’ time courses with the
time courses of the nine rs-fMRI components identified by visual
inspection to spatially resemble the microstates’ topography.
Based on the numbers of microstate classifications, hierarchical

FIGURE 3 | Visual match of microstate classes and spatial ICA components

from rs-fMRI. Four microstate topologies and the spatially matching rs-fMRI

components. Numbers in the lower right corner of each rs-fMRI component

represent the position of this component among the 30 components from ICA

analysis. The red box indicates the spatial rs-fMRI components that were

visually rated to most closely resemble the microstate’s topology.

clustering in the combined groups revealed that time course of
microstate 1 clustered with the frontal lobe rs-fMRI network. The
time course of microstate 2 clustered with the time course of a
bilateral medial and lateral temporal network, the time course
of microstate 3 clustered with rs-fMRI components representing
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FIGURE 4 | Differences in spatial expression of spatial ICA components between diagnostic groups. Latent variable representing brain regions where spatial

expression of the respective rs-fMRI component was significantly associated with diagnosis projected on an MRI scan in MNI standard space. Axial sections go left to

right from MNI coordinate z = −30 to z= 34; sections are 8mm apart. Right of image is right of brain, view from superior. Red colored voxels represent a significant

bootstrap ratio of p < 0.05, with an increased expression in (A,C), and a decreased expression in (B), respectively, in AD patients compared with controls. (A) Frontal

lobe network. (B) Default lobe network. (C) Temporal lobe network.

the default mode network and the visual network. Microstate
4 clustered with rs-fMRI components with a bilateral fronto-
parietal and an occipital expression.

Based on the similarity, the clustering was less well-defined.
Microstate 2 clustered with the time course of the bilateral fronto-
parietal network.Microstates 1, 3, and 4 clustered with each other
and only at a higher level with frontal lobe network. All clustering
results can be found in Figure 5.

When we repeated the clustering based on the data of
the healthy controls only, we found similar results. The only
exception was that the similarity time course of microstate 2
clustered with the bilateral medial and lateral temporal lobe
network. Details can be found in Supplementary Figure 1.

Differences of Correlations Between
Microstate Components and rs-fMRI
Networks Between AD Patients and
Controls
Applying an FDR correction, we found no significant differences
between AD patients and controls in between-network
correlations, neither based on number of classification nor
on similarities. Only when using an uncorrected level of
significance of p < 0.05, we found significant increases and
decreases of some correlations as shown in Figure 6.

Based on number of counts, the frontal topology microstate
1 was negatively correlated with the visual network (p < 0.04,
uncorrected), lateral occipital network (p < 0.04, uncorrected),
and posterior default mode network (p < 0.02, uncorrected),
and these negative correlations were stronger in controls than
in AD patients. In addition, the negative association of the right

anterior topology of microstate 4 with the posterior default mode
network was stronger in controls than in AD patients (p <

0.05, uncorrected). In contrast, the association of the posterior
topology of microstate 3 with the posterior default mode network
was positive in controls, but negative in AD patients (p < 0.003,
uncorrected), while the association of microstate 3 with the
frontal lobe network was negative in AD, and almost absent in
controls (p < 0.05, uncorrected) (Figure 6A).

Based on similarities, the connectivity of the left anterior
topology microstate 2 with the visual network was significantly
more negative in controls than in AD patients (p < 0.05,
uncorrected). In contrast, the association of frontal and left
lateral anterior topologies microstate 1 and microstate 2 with
the bilateral temporal network was significantly more positive in
controls than in AD patients (p < 0.03 for both comparisons,
uncorrected). In addition, the association of the right anterior
topology microstate 4 with the anterior salience network was
significantly more negative in AD patients than in controls (p <

0.02, uncorrected) (Figure 6B).

DISCUSSION

Here, we studied spatial and temporal associations of EEG
microstates with resting state fMRI networks in AD patients
and controls. Since 1997, studies have determined microstate
alterations in AD dementia and MCI cases, with sample sizes
ranging between 20 and 30 cases (21–24, 26). A recent study
included almost 200 cases (25). Similar to these previous studies
(21, 22, 24, 25) we found an anteriorisation of microstate
topologies in our AD patients. In addition, we found strong
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FIGURE 5 | Hierarchical classification of rs-fMRI components’ and

microstates’ time courses based on their cross-correlation across individuals.

(Continued)

FIGURE 5 | Cluster dendrograms for the time courses of rs-fMRI components

and the microstates. The lower left triangular matrix indicates the

cross-correlation of time courses, the upper right triangular matrix the partial

correlations of time courses. Clustering was performed across all cases,

including AD patients and controls. (A) Clustering based on number of

assignments of microstates per TR. (B) Clustering based on similarity of EEG

time courses with each microstate per TR.

increases of theta power in AD patients, consistent with previous
observations on slowing down of brain rhythms in AD (45).
Interestingly, the increase of theta power was homogeneously
distributed across the fourmicrostate topologies. This agrees with
findings of a previous study (26) and suggests that the microstate
changes in the theta band reflect an overall slowing of brain
rhythms in AD rather than a topology related effect.

We found that the default mode rs-fMRI network,
corresponding to microstate topology 3, was spatially less
expressed in AD patients than in controls, particularly in
posterior cingulate and temporal lobe regions. This is consistent
with findings in a large range of previous rs-fMRI studies [for a
systematic review see (46)]. In contrast, spatial expression of the
frontal rs-fMRI network, corresponding to microstate topology
1, was increased in mediofrontal and anterior temporal lobe
regions in AD compared to controls. The spatial expression
of the temporal lobe rs-fMRI network, corresponding to the
anterior microstate topologies 2 and 4, was also increased in AD
compared with controls. Increases in these networks agree with
previous findigns on network abnormalities in AD cases (46, 47).
These data suggest that an anteriorisation of the microstate
topology in AD was accompanied by corresponding spatial
expression changes in resting state fMRI networks. In conclusion,
this observation supports the notion that EEG microstates serve
as building blocks of brain functional connectivity.

We followed up on this notion using hierarchical clustering to
associate time courses of microstate occurrences with their most
closely-associated rs-fMRI components. The posteriormicrostate
topology 3 clustered with the default mode rs-fMRI network, and
the frontal topology 1 clustered with the frontal lobe rs- fMRI
network. The clustering of microstate topology time courses with
the time courses of spatially resembling rs-fMRI components
support the notion that microstate topologies with a duration
of on average 100 milliseconds serve as building blocks of the
time courses of resting state networks in rs-fMRI, sampled in
the minutes’ range. The temporal variation of different topologies
allows representing a high number of different brain states
despite a limited number of topologies. Importantly, the focus
on four microstate topologies represents a simplification as other
topologies can be classified as well, even if these account for
lower amounts of variance in the EEG time course. Notably,
hierarchical clustering is a non-supervised exploratory approach
to generate but not to accept hypotheses on associations (48)
so that these findings require independent confirmation. In
conclusion, combined evaluation of rs-fMRI networks with
microstates may allow a more comprehensive characterization of
AD related neuronal connectivity changes combining the spatial
resolution of fMRI with the temporal resolution of EEG
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FIGURE 6 | Between group differences in between-network time course correlations. Matrix of differences in correlations between AD patients and controls in

Fisher-Z-score correlation coefficients between time courses. The lower left triangular matrix highlights correlations that were less negative or more positive in AD

(Continued)
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FIGURE 6 | patients than in controls. The upper right triangular matrix highlights correlations that were more positive or less negative in AD patients than in controls.

For significant correlation differences between microstate and rs-fMRI component time courses, box plots are shown to illustrate the direction of effects. The color bar

indicates uncorrected p-values for between group differences. (A) Between group differences in between-network correlations based on number of assignments of

microstates. (B) Between group differences in between-network correlations based on similarity of EEG time courses with each microstate.

Following this notion, we determined between-group
differences in the strengths of correlations between the time
courses of microstate topologies and rs-fMRI networks. We
found that the degree of association between the anterior
microstate topology 1 and posterior rs-fMRI networks was
more negative in controls than in AD patients. This effect
did not survive FDR correction, suggesting a potential risk of
false-positive findings. If replicated in an independent sample,
however, a possible interpretation would be that negative
time course correlations are less pronounced in AD cases
than in controls. In controls, associations between anterior
microstate topologies and posterior rs-MRI components as
well as between posterior microstate topologies and anterior
rs-MRI components tended to be negative. Negative correlations
between posterior and anterior components of rs-fMRI networks
have been described before with some caveats due to the role
of global signal normalization potentially driving some of these
effects (6). Here, we show that such a negative association may
also be present between microstate time courses and rs-fMRI
components. Previous studies have investigated simultaneous
EEG and rs-fMRI acquisitions in a range of conditions, such
as sickle cell disease (49), posttraumatic stress disorder (50),
narcolepsy (51), and in healthy people (27), but not yet in AD. In
addition, these previous studies have not determined associations
of time courses between EEG and fMRI data so that our findings
expand the current knowledge with regard to the condition (AD)
and the temporal associations investigated. Our data point to a
predominant loss of negative anterior-posterior correlations of
functional brain networks in AD which is reflected not only in
rs-fMRI networks, but also in EEG microstates, and supports
the notion of a predominant degradation of long reaching
intracortical projections in AD.

Our study has several limitations. Firstly, our sample size
is relatively small due to high demands on patient preparation
and compliance for simultaneous acquisition of EEG and re-
fMRI data in people with AD dementia. The presence and size
of the effects found in our small sample suggests that these
effects should readily replicate in independent samples. Such a
replication would add support to the newly-generated hypothesis
that time courses of microstate topologies may specifically
be associated with time courses of spatially corresponding
rs-fMRI components in AD patients and controls. Secondly,
the simultaneous EEG-fMRI acquisition led to reduced EEG
channels (32 channels), limiting the spatial resolution of
our EEG topologies. This simultaneous acquisition of EEG
and fMRI data in AD patients and age-matched controls is,
however, the crucial, original strength of our study which
facilitated direct comparison of the time courses across both
modalities. Thirdly, several of the effects did not survive strict
multiple comparison correction such as the between-group
differences in between-network correlations. But also between

group differences in rs-fMRI network expression would not
have survived Bonferroni correction for three independent
comparisons. The exploratory nature of the analysis and the aim
to generate rather than confirm hypotheses on the association
between microstates and rs-fMRI pattern justify the reporting
and cautious interpretation of findings at only uncorrected levels
of significance. Finally, this analysis is not meant to propose that
simultaneous EEG-rs-fMRI acquisition will be usefully employed
in the diagnostic work up of AD. Rather, the current analysis
served to better understand the temporal components underlying
rs-fMRI networks and their partial break down in AD.

In summary, we found that time courses of EEG microstates
clustered with time courses of spatially corresponding rs-fMRI
networks. This supports the notion that the EEG microstates
may provide the building blocks of the brain activity that is
being sampled by rs-fMRI at a much coarser temporal resolution.
The prevalent negative correlations between anterior/posterior
microstate topology time courses with posterior/anterior rs-
fMRI components replicate earlier findings of anterior-posterior
anti-correlations in rs-fMRI data. Of note, in those instances
where the AD patients differed from the controls in the
degree of association between microstates vs. rs-fMRI networks,
these differences was mostly driven by the loss of negative
associations in the AD patients. This may represent a possible
neurophysiological correlate of the breakdown of long reaching
intra-hemispheric connections in AD reported in earlier rs-fMRI
studies. Our findings serve to generate the hypotheses that EEG
microstates and rs-fMRI activity are correlated and co-occur
in AD patients and cognitively healthy age-matched controls.
Our data encourage the use of simultaneous EEG and rs-fMRI
acquisitions to test the specific spatial associations found in
our data.
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