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Simple Summary: Increasing evidence has revealed the regulatory roles of long non-coding RNAs
(lncRNAs) in the initiation and progress of oral squamous cell carcinoma (OSCC). As some novel
lncRNA-targeted techniques combined with immune checkpoint therapies have emerged, they
provide a new strategy for OSCC treatment. This review summarizes current knowledge regarding
the involvement of lncRNAs in OSCC along with their possible use as diagnostic and prognostic
biomarker and therapeutic targets.

Abstract: Oral squamous cell carcinoma (OSCC) is a type of malignancy with high mortality, leading
to poor prognosis worldwide. However, the molecular mechanisms underlying OSCC carcinogenesis
have not been fully understood. Recently, the discovery and characterization of long non-coding
RNAs (lncRNAs) have revealed their regulatory importance in OSCC. Abnormal expression of
lncRNAs has been broadly implicated in the initiation and progress of tumors. In this review, we
summarize the functions and molecular mechanisms regarding these lncRNAs in OSCC. In addition,
we highlight the crosstalk between lncRNA and tumor microenvironment (TME), and discuss the
potential applications of lncRNAs as diagnostic and prognostic tools and therapeutic targets in OSCC.
Notably, we also discuss lncRNA-targeted therapeutic techniques including CRISPR-Cas9 as well
as immune checkpoint therapies to target lncRNA and the PD-1/PD-L1 axis. Therefore, this review
presents the future perspectives of lncRNAs in OSCC therapy, but more research is needed to allow
the applications of these findings to the clinic.

Keywords: OSCC; long non-coding RNAs; cancer; tumor microenvironment; biomarkers

1. Introduction

OSCC originates in the surface of oral mucosal epithelium. It is one of the most
commonly diagnosed lethal malignancies with poor prognosis worldwide. According
to the Global Cancer Statistics 2020, about 53,260 new cases and 10,750 deaths of oral
cancer were calculated in the USA, accounting for approximately 4% of all male cancer
cases [1], and the most recent data indicate that the overall cases will rise to 510,948 in
2035 [2]. To date, surgical treatment combined with radiation and chemotherapy remains
the primary approach for management of OSCC [3]. Advancements in treatment strategies
such as drug development and computer-assisted surgery were expected to lead to an
improved survival in OSCC patients. However, OSCC remains an incurable malignance
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and treatment-associated outcomes are still unchanged. In addition, most patients with
OSCC are diagnosed at advanced stages and no early screening strategy has proven to
be effective. Therefore, to further improve efficiency of diagnosis and acquire a better
prognosis, comprehensive investigation aiming to elaborate molecular mechanisms of
OSCC and to discover novel diagnostic tools and precision therapeutic approaches are still
urgently needed.

Long non-coding RNAs (lncRNAs) is a novel class of RNAs with a length longer
than 200 nucleotides. These RNAs cannot encode proteins or peptides [4,5]. In 1989, a
study found that H19 was the first lncRNA that is highly expressed in mouse embryo and
neonatal liver. The mouse H19 gene shared high homology (77%) with human H19 gene,
though the specific function of the gene remains unclear [6]. Therefore, lncRNAs were
mainly considered as “junk transcripts” that do not generate any function for many years.
The functional research of lncRNAs has endured a long history. Luisa et al. confirmed
that the H19 gene acts as a trans regulator gene of the imprinted gene network (IGN)
such as Igf2 and other imprinted genes in the mouse embryo [7]. Up to now, lncRNA
microarray and whole-genome transcriptome have identified more than 50,000 lncRNAs,
some of which have been functionally characterized and revealed tissue-specific expression
patterns [8]. With regard to their biological role in multiple human cancers including OSCC,
many studies have shown that lncRNAs perform modulatory functions that influence cell
biological behaviors, immune response, and transformed phenotype in cells. For example,
lncRNA HOTAIR was reported as an oncogene that was pervasively overexpressed in most
solid cancers including oral cancer and acts to promote OSCC invasion and metastasis [9].
THRIL is an immunoregulatory lncRNA that was shown to regulate the expression of
pro-inflammatory cytokine TNF-α in Kawasaki disease and other immune-related inflam-
matory diseases through interacting with hnRNPL forming an RNA—protein complex to
bind TNF-α promoter [10]. A study reported that the lncRNA loc100506114 contributes
to the functional transformation of fibroblasts to cancer-associated fibroblasts (CAFs) in
OSCC [11]. Moreover, lncRNAs are richly distributed in body fluids including blood,
urine, saliva even exosomes, therefore they could be regarded as a type of non-invasive
biomarker [12]. LncRNAs are functional transcripts that will help to identify various cancer
characteristics and hallmarks, and further become an attractive potential therapeutic target.

In general, precise diagnosis and individual treatment is the ultimate direction in
which we would like to explore, and lncRNAs have significant potential clinical values
for diagnosis and treatment of OSCC. Therefore, this review summarizes the functions
and molecular mechanisms of lncRNA in OSCC. In addition, we highlight the crosstalk
between lncRNA and the tumor microenvironment, and discuss the potential applications
that lncRNAs can serve including diagnostic and prognostic tools as well as therapeutic
targets in OSCC.

2. Roles of LncRNA in OSCC

In the past few decades, due to the emergence of high-throughput sequencing tech-
nologies, exponential growth in the number of lncRNAs with aberrant expression have
been confirmed by RNA-Seq and lncRNA-microarray profiling in various cancers [13].
Fang et al. performed RNA-Seq to profile lncRNA expression in five pairs of OSCC tissues
and adjacent-normal tissues; 2915 lncRNAs were significantly differentially expressed, and
of these lncRNAs, 11 were associated with OSCC metastasis [14]. Based on The Cancer
Genome Atlas (TCGA) database, RNA sequencing analysis of 523 oral cancer samples in
India by Ganesan Arunkumar identified 11 dysregulated lncRNA in OSCC that are closely
related to tobacco chewing/smoking history [15]. Evidence also showed that different
functional studies revealed the role of lncRNAs in oncogenesis, tumor-suppression, and
chemoresistance as well as governing virtually every physiological cell process (Figure 1).
Abnormal lncRNAs are involved in many aspects of cancer cell processes including cell
proliferation, apoptosis, invasion and metastasis [16], epithelial–mesenchymal transition
(EMT), and drug resistance [17]. Moreover, lncRNAs even affect the outcome of patients
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such as lymph node metastasis, distal metastasis, and postoperative recurrence [18]. Thus,
in this part, we summarize the current dysregulated lncRNAs in OSCC and elaborate on
the functions of these lncRNAs in OSCC (Table 1).
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Figure 1. Long non-coding RNA in OSCC beginning from identification to characterization of their functions and relevant
mechanisms. The first step is to acquire samples of primary tumor and normal tissues from OSCC patients, and then
RNA sequencing is applied to screen dysregulated lncRNAs. Furthermore, a series oncogenic and tumor-suppressor
functions in tumor biological behaviors such as cell cycle, metastasis, angiogenesis, apoptosis, and drug resistance were
identified in vitro and in vivo. Mechanistically, lncRNAs regulate OSCC biological behaviors via the following aspects:
(a) Epigenetic regulation. For example, FALEC can recruit polycomb complex EZH2 to specific genomic loci, where they
methylate H3K27me3 to induce chromatin compaction and affect transcriptional activity. (b) Transcription regulation. For
example, NKILA interacts with transcription factors NF-κB to block the action of transcription factors, thus repressing
Twist expression. (c) Signaling pathway regulation. LEF1-AS1 interacts with LATS1 protein to inhibit the Hippo signaling
pathway, resulting in attenuation of YAP1 phosphorylation (d) ceRNA mechanism/miRNA sponge. For example, H19,
acting as a molecular sponge, competitively binds to miR-138, thereby upregulating the level of miR-138 target gene.
(e) mRNA stability. For example, CEBPA-AS1 binding to CEBPA mRNA enhances its stability, leading to a gain of target
transcripts expression.
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Table 1. Summary of dysregulated lncRNAs and related targets in OSCC.

lncRNA Expression Functions Targets References

AC104041.1 ↑ Promotes growth and metastasis Wnt2B/β-catenin signaling [19]

ADAMTS9-AS2 ↑ Promotes proliferation, migration, EMT miR-600/EZH2 [20]

AFAP1-AS1 ↑ Promotes proliferation, migration, invasion miR-145/HOXA1 [21]

ANRIL ↑ Promotes proliferation, drug resistance Midkine/anti-apoptotic
protein Bcl-2 [22]

BANCR ↑ Promotes proliferation, migration, inhibits apoptosis MAPK signaling [23]

BLACAT1 ↑ Promotes proliferation, radioresistance PSEN1 [24]

CASC-15 ↑ Promotes proliferation, invasion, regulate cell cycle miR-124, miR-33a-5p [25–27]

CASC2 ↑ Inhibits proliferation and tumor recurrence miR-21 [28]

CASC-9 ↑ Promotes proliferation, invasion inhibits apoptosis
and autophagy

AKT/mTOR pathway,
miR-423-5p/SOX12 [29,30]

CCAT-1 ↑ Promotes proliferation, invasion, migration, inhibits
apoptosis, regulate cell cycle

miR-181a/Wnt/β-catenin
DDR2/ERK/AKT,
miR155-5p, let7b-5p

[31–33]

CCAT-2 ↑ Promotes proliferation, invasion, inhibits apoptosis Wnt/β-catenin, GSK-3β [34]

CEBPA-AS1 ↑ Promotes tumorigenesis CEBPA/Bcl2 [35]

CILA1 ↑ Promotes EMT, drug resistance Wnt/β-catenin signaling [36]

DLEU1 ↑ Promotes proliferation, invasion,
migration and inhabits apoptosis

miR-149-5p/CDK6
HA-CD44 signaling [37,38]

DNM3OS ↑ Promotes proliferation,
migration, invasion miR-204-5p/HIP1 [14]

ELF3-AS1 ↑ Promotes proliferation Glucose metabolism [39]

FALEC ↓ Inhibit proliferation and migration ECM1/EZH2 [40]

FER1L4 ↑ Enhances growth, migration, invasion miR-133a-5p/Prx1 [41]

FLJ22447 ↑ CAFs activation IL-33 [42]

FOXCUT ↑ Promotes proliferation, migration, and angiogenesis FOXC1 [43]

FOXD2-AS1 ↑ Promotes cell proliferation, migration,
immunity inhibition E2F/G2/M checkpoint [44]

FTH1P3 ↑ Enhances growth mi-224-5p/fizzled 5 [45]

GAS5 ↓ Inhibit proliferation, migration, invasion, EMT
Promotes radioresistance miR21/PTEN/PI3K/Akt [46]

H19 ↑ Promotes proliferation, invasion
miR-138/EZH2/
β-catenin/GSK-3β,
H19/miR-675-5p/PFKFB3

[47,48]

HAS2-AS1 ↑ Induces EMT, invasion HF-1α, NF-κB signaling [49]

HCP5 ↑ Promotes proliferation, invasion, EMT, regulate
cell cycle miR-140-5p/SOX4 [50]

HOTAIR ↑ Promotes proliferation, invasion, EMT, drug resistance,
inhibits apoptosis EZH2/H3K27me3 [9,51]

HOTTIP ↑ Promotes proliferation, invasion, migration miR-124-3p/HMGA2/Wnt/
β-Catenin [52]

HOXA11-AS ↑ Enhances growth, proliferation, drug resistance,
inhibits apoptosis miR-214-3p, PIM1 [53]

LNC-SOX5 ↑ Enhances growth, invasion, migration, inhibits
apoptosis HuR [54]

JPX ↑ Promotes proliferation, invasion, migration miR-944/CDH2 [55]

KCNQ1OT1 ↑ Enhances proliferation, drug resistance miR-211-5p, Ezrin/Fak/Src
miR-124-3p/TRIM14 [56,57]

LBX1-AS1 ↑ Inhibit proliferation and invasion miR-182-5p/FOXO3 [58]

LEF1-AS1 ↑ Promotes proliferation, invasion, inhibits apoptosis,
regulates cell cycle LATS1/YAP1, Hippo signaling [59]
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Table 1. Cont.

lncRNA Expression Functions Targets References

LHFPL3-AS1 ↑ Promotes proliferation, invasion, migration,
chemo-resistance miR-362-5p/CHSY1 [60]

LINC00152 ↑ Enhances growth, proliferation, invasion, migration miR-139-5p [8]

LINC00284 ↑ Promotes proliferation, invasion miR-211-3p/MAFG,
FUS/KAZN [61]

LINC00319 ↑ Promotes proliferation, angiogenesis CCL18, miR-199-5P/FZD4 [62]

LINC00460 ↑ Promotes proliferation, invasion, migration, EMT miR-320b/IGF2BP3 [63,64]

LINC00473 ↑ Inhibit apoptosis Wnt/β-catenin signaling [65]

LINC00511 ↑ Promotes proliferation, invasion miR-765/LAMC2 [66]

LINC00668 ↑ Enhances growth, proliferation miR-297/VEGFA [67]

LINC00673 ↑ Promotes metastasis unclear [68]

LINC00941 ↑ Promotes proliferation and tumor formation CAPRIN2/Wnt/
β-catenin signaling [69]

LINC00958 ↑ Enhances growth, proliferation, regulate cell cycle miR-211-5p/CENPK,
JAK/STAT3 signaling [70]

LINC01133 ↓ Inhibited metastasis GDF15 [71]

LINC01137 ↑ Promotes proliferation, invasion, migration miR-22-3p [72]

LINC01234 ↑ Enhances proliferation,
invasion, Inhibits apoptosis

miR-637/NUPR,
miR-433/PAK4 [73,74]

LINC02195 ↑ Immune regulation MHC I [75]

LINC-ROR ↑ Promotes proliferation miR-145-5p,
c-Myc, Klf4, Oct4, Sox2 [15]

LTSCCAT ↑ Promotes EMT, migration miR-103a-2-5p/SMYD3/Twist1 [76]

MALAT1 ↑ Promotes proliferation, invasion, EMT
SPRR,
miR-125b/STAT3
NF-κB

[77–79]

MEG3 ↓ Inhibits proliferation, invasion, migration,
promotes apoptosis

Wnt/β-catenin signaling
miR-548d-3p/JAK–STAT [80,81]

MIR31HG ↑ Promotes proliferation, invasion, migration and
metabolic regulation HIF1α/p300, MMP1, BMP2, LBH [82,83]

NKILA ↓ inhibit EMT, invasion, migration NF-κB/Twist signaling [84]

OIP5-AS1 ↑ Enhances growth, proliferation, migration, invasion miR-338-3p/NRP1 [85]

p23154 ↑ Promote metastasis miR-378a-3p/ GLUT1 [86]

PCAT-1 ↑ Enhances growth, proliferation, invasion, migration,
inhibits apoptosis

p21, c-MycAKT1-p38
MAPK signaling [87,88]

PLAC2 ↑ Promotes proliferation, invasion H3K27 acetylation,
Wnt/β-catenin signaling [89]

PVT-1 ↑ Promotes proliferation, invasion, migration, drug
resistance, inhabits apoptosis

miR-150-5p/GLUT-1
miR-194-5p/HIF1a [90,91]

RC3H2 ↑ Promotes proliferation and invasion miR-101-3p/EZH2 [92]

SLC16A1-AS1 ↑ Promotes proliferation regulate cell cycle Cyclin D1 [93]

SNHG16 ↑ Promotes proliferation, invasion, inhibits apoptosis c-Myc,
miR-17-5p/CCND1 [94,95]

SNHG3 ↑ Enhances proliferation, migration miR-2682-5p/HOXB8 [96]

TIRY ↑ Induces CAFs EMT, promotes invasion and migration miR-14/Wnt/β-catenin signaling [97]

TUC338 ↑ Enhances proliferation, regulate cell cycle,
inhabits apoptosis Unclear [98]

TUG1 ↑ Promotes proliferation, invasion, inhibits apoptosis Wnt/β-catenin signaling [99]

UCA1 ↑ Enhances growth, proliferation, invasion, migration
drug resistance, inhibits apoptosis

P27, Wnt/β-catenin,
miR-184/miR-184/SF1 [100–102]



Cancers 2021, 13, 5944 6 of 22

2.1. Oncogenic Function of LncRNAs in OSCC

According to previous studies, a majority of dysregulated lncRNAs exhibit a trend of
upregulated expression and function as an oncogene in promoting malignant biological
behaviors in OSCC including cell proliferation, migration, metastasis, and angiogenesis.
However, lncRNAs inhibited apoptosis and the process of the cell cycle. For example, many
lncRNAs such as H19 [47], OIP5-AS1 [85], DNM3OS [14], AFAP1-AS1 [21], ADAMTS9-
AS2 [20], LINC00668 [67], and BANCR [23] were confirmed to be overexpressed in OSCC
cells and promoted tumor development by enhancing the proliferation and migration
in vitro and in vivo. Beyond this, lncRNAs were also involved in the regulation of the
cell cycle and inhibiting apoptosis in OSCC. For example, when the lncRNA LEF1-AS1
was silenced, it caused the arrest of the G0/G1 cell cycle and suppressed cell prolifera-
tion and growth in vitro via inactivation of the Hippo signaling pathway [59]. Further-
more, some certain lncRNAs were verified to promote OSCC invasion, metastasis, and
angiogenesis [62,103]. For example, MALAT-1 is closely related to the growth and metasta-
sis of OSCC cells and through the regulation of target small proline-rich protein (SPRR) in
order to promote distant metastasis [77]. LINC00319 is downstream of Chemokine ligand
18 (CCL18), and overexpression of LINC00319 regulated the expression of VEGFA and
MMP-9 to promote the angiogenic ability of OSCC cells [62]. Similarly, knockdown of
FOXCUT led to the downregulation of angiogenesis factor VEGFA in Tca8113 and SCC9
cells, which indicated the potential function for FOXCUT in angiogenesis of OSCC [43].

2.2. Tumor-Suppressor Function of LncRNAs in OSCC

LncRNA can be used not only as an oncogene to promote the occurrence and develop-
ment of tumors, but also as a suppressing factor to inhibit the growth and metastasis [104].
According to previous studies, lncRNA NKILA has been reported to be a tumor suppressor,
which has been negatively correlated with metastasis and prognosis in breast cancer [105].
Consistent with the results in breast cancer, Huang et al. confirmed that NKILA expression
levels in tongue squamous cell carcinoma (TSCC) was expressed significantly less. High
expression of NKILA represses EMT and migration in Tscca and CAL27 cells via activation
of the NF-κB/Twist signaling pathway to regulate the biological process of TSCC [84].
Growth-arrest-specific transcript 5 (GAS5) is another representative lncRNA that has been
widely reported as a tumor suppressor in many cancers; Zeng et al. also confirmed that
GAS5 functions as a tumor suppressor in OSCC via the miR-21/PTEN axis to inhibit tumor
cell proliferation, migration, invasion, and EMT [46]. Moreover, maternally expressed
gene 3 (MEG3) is an acknowledged tumor suppressor that has widely been investigated
in cancers including OSCC. The overexpression of MEG3 decreases proliferation and mi-
gration of SCC15 while inducing CAL27 apoptosis. Mechanistically, MEG3 could exert
the tumor-suppressor function not only by blocking the WNT/β-catenin signaling path-
way, but also by acting as a miRNA sponge of miR-548d-3p to modulate the JAK–STAT
signaling pathway [80,81]. Furthermore, other lncRNAs such as FALEC was also reported
as a tumor-suppressor with low expression in OSCC, and the overexpression of FALEC
significantly repressed OSCC cell proliferation and migration both in vitro and in vivo,
and this predicts a good prognosis in OSCC patients [40]. Compared to the oncogenic
functions of lncRNAs, the studies of lncRNA action as a tumor suppressor in order to exert
inhibitive functions in OSCC are limited. Therefore, relevant research in OSCC requires
comprehensive investigation.

2.3. OSCC LncRNAs Regulate Chemoresistance and Radiosensitivity

Adjuvant radiation or chemotherapy plus radiation has been the primary approach
for the treatment of OSCC patients depending on the disease stage [3]. Cisplatin (CDDP)
is a platinum-based drug that is commonly used as an efficient adjuvant treatment for
OSCC patients. However, cisplatin-resistance is a headache in chemotherapy, resulting
in tumor relapse and poor prognosis [53]. Emerging evidence showed that lncRNAs may
function as vital regulators of chemoresistance in OSCC [17,106]. For instance, the up-



Cancers 2021, 13, 5944 7 of 22

regulation of HOXA11-AS significantly increased resistance to cisplatin and tumor cell
growth, and the knockdown of HOMA11-AS markedly enhanced CDDP-mediated tumor
inhibition in vivo [53]. Likewise, Lin et al. reported the increased expression of CILA1
in cisplatin-resistant OSCC cells lines, and the silence of CILA1 significantly inhibited
the migration, invasion, and EMT, while increasing the sensitivity to chemotherapy of
these cells [36]. Furthermore, another study shown by Fang et al. indicated that UCA1
increased the proliferation of OSCC cells and induced cisplatin resistance by modulating
the expression of the miR-184 target gene SF1 [101]. Notably, Zhang et al. confirmed that
overexpression of lncRNA ANRIL can be induced by paracrine action of CAF-derived
Midkine, thereby enhancing the proliferation and resistance to cisplatin of tumor cells [22].
Interestingly, Wang et al. confirmed that silencing HOTAIR significantly enhanced sensitiv-
ity to CDDP while inhibiting tumor cell autophagy [51]. Moreover, other lncRNAs such as
KCNQ1OT1 [56,57]. LHFPL3-AS1 [60] and PVT-1 [90] were also reported to be involved in
promoting cisplatin-resistance in OSCC cells.

In addition to chemoresistance, radiosensitivity is another tremendous challenge
among the comprehensive therapies for OSCC. Accumulating evidence also revealed the
crucial roles of lncRNAs in radiotherapy. For example, Gou et al. observed that lncRNA
BLACAT1 was associated with low radiosensitivity and poor outcomes of HNSCC patients,
and they further confirmed that the knockdown of BLACAT1 in SCC25 cells markedly
improved the radiosensitivity by regulating PSEN1 [24]. Likewise, another example is
LINC00473, which is highly expressed in OSCC cells. LINC00473 knockdown in these cells
significantly enhanced the sensitivity of radiotherapy by modulating the Wnt/β-catenin
signaling pathway [65].

3. Molecular Mechanism of LncRNAs in OSCC

In the past few years, research has revealed that lncRNAs could potentially be involved
in the tumorigenesis of cancer, and identifying the molecular mechanisms of lncRNAs
within OSCC is still a challenge. In general, a myriad of studies have confirmed that
lncRNAs exert regulatory functions, mainly via the following mechanisms: (1) epigenetic
regulation; (2) transcriptional regulation; and (3) post-transcriptional regulation [107,108].
Mechanistic studies published to date indicate that the dysregulated lncRNA in OSCC may
exert their biological functions through these molecular mechanisms (Figure 1).

3.1. Epigenetic Regulation

Epigenetic regulation is a complex process, which is mediated by DNA and histone
modifications, and are crucial for transcription machinery during gene expression [107,109].
Recent studies have clearly suggested that epigenetic changes can contribute to the devel-
opment of several human malignancies and that lncRNAs play a vital role in this context.
A battery of lncRNAs have been reported to mediate chromatin remodeling and DNA
modification by acting as a molecular scaffold, thereby regulating the expression of genes
before finally affecting cancer development [110].

A typical example is the association with polycomb repressive complexes 2 (PRC2),
which is composed of EED, SUZ12, and EZH2 [111]. It can catalyze H3K27 trimethylation,
causing chromatin compaction and thereby affecting the transcriptional state. To date,
lncRNA HOTAIR has been shown to promote migration, invasion, and poor survival
in OSCC. HOTAIR could act as a molecular scaffold to recruit EZH2 and H3K27me3,
thereby repressing E-cadherin expression [9]. Another study verified that lncRNA FALEC
could also recruit PRC2 component EZH2, causing H3K27me3 trimethylation and ECM1
silencing, leading to the inhibition of proliferation and migration in OSCC cells [40].
Furthermore, dysregulation of chromatin modification can modulate lncRNA transcription,
cancer initiation, and malignant progression. One recent study indicated that lncRNA
PLAC2 is transcriptionally activated by CBP-mediated H3K27 acetylation at the promoter
region and promoted OSCC progression via activation of the Wnt/β-catenin signaling
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pathway [89]. There are still other patterns of epigenetic modifications mediated by
lncRNAs in OSCC urging further exploration.

3.2. Transcriptional Regulation

In addition to the above features of lncRNA epigenetic regulation, lncRNAs could
also regulate gene expression in a transcription-dependent manner, which leads to cancer
progression [111]. Recent studies indicate that lncRNAs can regulate transcription to recruit
TFs or by directly binding to the gene promoters, thereby regulating different malignant
biologic behaviors of tumors. On one hand, lncRNAs interact with key cancer associated
TFs to regulate the activity of transcription. One study reported that tumor suppressor
lncRNA NKILA hindered OSCC migration and invasion by interacting with NF-κB and
ultimately lowering Twist and E-cadherin [84]. On the other hand, by interacting with DNA-
binding proteins including CTCF, lncRNAs can facilitate their binding and expression at a
targeted gene region. The DNA-binding protein CTCF can mediate chromatin interaction
and DNA looping [112]. This type of mechanism can be observed in LINC00941, which
drives CTCF recruitments to promote CAPRIN2 expression, thereby accelerating cell
proliferation and colony formation in OSCC [69]. However, in recent studies, scholars
have reported that some enhancers can also produce enhancer RNA (eRNA) through
transcription, which can modulate genes that are far away from a specific direction, but
the specific relationship between enhancer genomic loci and gene expression regulation
remains unclear, especially in OSCC; related studies need to be further explored [107].

3.3. Post-Transcriptional Regulation

Emerging reports have indicated that lncRNA functions as a post-transcriptional reg-
ulator in the gene expression process. The mechanisms of lncRNA in post-transcriptional
regulation mainly include the alteration of mRNA splicing, miRNA sponge, mRNA stabil-
ity, protein translation, and RNA editing, even in the regulation of signaling pathways [4].
lncRNA regulated phosphorylation of critical signaling molecules have been reported to
contribute to cancer progression. For instance, lncRNA LEF1-AS1 could interact with the
LATS1 protein, leading to attenuated YAP1 phosphorylation that ultimately promotes cell
proliferation and migration in OSCC. Further studies have demonstrated that depletion
of lncRNA LEF1-AS1 results in upregulation of cytoplasmic YAP1 expression and down-
regulation of the nuclear YAP1 level, suggesting the involvement of lncRNA LEF1-AS1
in the regulation of phosphorylation of the crucial players of the Hippo signaling path-
way [59]. On the other hand, lncRNAs regulate mRNA stability via post-translational
modifications that support cancer development. A recent study showed that LINC00284
facilitates the mRNA stability of KAZN by binding with RBP FUS and promoting cell
proliferation and migration in OSCC [61]. Notably, lncRNA FOXC1 associates and forms a
lncRNA–mRNA duplex with FOXCUT and thereby increases its stability to promote OSCC
cell migration [43]. Likewise, lncRNA CEBPA-AS1 could bind with CEBPA mRNA, thus
leading to OSCC cell proliferation, invasion, and migration [35].

In addition, lncRNA was shown to function as a competing endogenous RNA (ceRNA)
and regulate gene expression at the posttranscriptional level, consequently influencing
cancer progression [113]. In detail, lncRNA could use its miRNA response elements (MREs)
in mRNA binding site as a natural decoy for miRNA and inhibits the ex-pression of miRNA
on the target gene (mRNA) [113–115]. Recently accumulating evidence has confirmed the
role of lncRNA in regulating the pathogenesis of OSCC via miRNA sponge. For example,
lncRNA RC3H2 facilitates OSCC tumor growth and metastasis by acting as a ceRNA for
miRNA-101-3p. Mechanistically, lncRNA RC3H2 can compete with miRNA-101-3p for
binding with the target EZH2 to promote OSCC malignant behavior [92]. Another ceRNA,
lncRNA H19, acts by competitively sponging miR-138 and upregulating vimentin and
N-cadherin expression, leading to EMT in OSCC [47]. Additionally, lncRNA KCNQ1OT1
promotes cisplatin resistance of OSCC by functioning as a molecular sponge for miR-
211-5p to activate Ezrin/Fak/Src signaling [56]. Other lncRNAs such as LTSCCAT [76],
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OIP5-AS1 [85], DNM3OS [14], SNHG16 [95], HOTTIP [52], HCP5 [50], JPX [55], and AFAP1-
AS1 [21] were also reportedly involved in promoting the progression of OSCC via the
ceRNA mechanism. In summary, lncRNAs could act as ceRNAs to sponge various miRNAs
to participate in post-transcription, thus promoting OSCC malignant development.

Collectively, it is important to note that individual lncRNAs could exert their functions
through different modes of post-transcriptional regulation simultaneously. The regulation
of other posttranslational modifications including pre-mRNA alternative splicing by lncR-
NAs has not been substantiated in OSCC. Future work will be aimed at elucidating the
mechanism of action of lncRNAs that use other posttranslational pathways in contributing
to OSCC development.

4. The Crosstalk between LncRNA and Tumor Microenvironment in OSCC

TME is mainly composed of parenchyma cells, immune cells, peripheral extracellular
matrix (ECM) as well as some signal molecules [116]. TME of OSCC is characterized by
hypoxia, chronic inflammation, and immunosuppression. This surrounding environment
is regarded as an intricate physical and biochemical system, which is involved in tumor
onset, progression, metastasis, and influences the prognosis of treatment. In particular,
recent emerging studies have indicated that abnormal expression of certain lncRNAs is
strongly associated with hypoxia, metabolism, immune cells, and CAFs; therefore, these
lncRNAs have a crucial role in TME (Figure 2).

4.1. LncRNA and Hypoxic, Metabolic TME in OSCC

Hypoxia is a common and important feature in the TME and is tightly linked to cancer
development and aggressive phenotypes [117]. Under hypoxic TME, the vital regula-
tor Hypoxia-induced factor-1 alpha (HIF-1α) mediates tumor growth, invasiveness, and
metastasis, contributing to aggressive phenotypes in various cancers including OSCC [82].
Despite hypoxic response signaling having been extensively explored, the involvement of
lncRNAs in the hypoxic response has become a new focus of cancer research. It is well es-
tablished that 56 hypoxia-associated lncRNAs (HALs) have led to cancer progression [117].
HALs have been analyzed in OSCC research and found to be associated with worse out-
come and clinicopathological characteristics [82]. Zhu et al. found that lncHAS2-AS1 was
substantially increased in OSCC. In response to hypoxic conditions, HIF-1α drove the
expression of lncHAS2-AS1, which caused HAS2 accumulation. Moreover, the study also
demonstrated that lncHAS2-AS1 promoted the EMT and invasion potential in OSCC [49].
Notably, expression of HALs also regulate HIF-1α activity. Shih et al. showed that the
expression level of lncHIFCAR is significantly elevated in OSCC, which is associated with
tumor grade as well as poor overall survival and recurrence-free survival. In response to
hypoxic conditions, lncHIFCAR directly binds with HIF-1α and further facilitates HIF-1α
target expression, leading to increased invasion, metastasis, metabolic reprogramming,
and sphere-forming ability in vitro and in vivo [82].

Notably, recent studies have revealed that some lncRNAs were involved in repro-
gramming metabolism, especially modulating glycolysis in OSCC cells, resulting in the
progression of malignant behaviors such as proliferation and metastasis [39,86,118]. A rep-
resentative example is lncRNA-p23154. It enhances metastasis in OSCC through binding
with the promoter region of miR-378a-3p in the nucleus in order to promote glucose trans-
porter 1(GLUT1) expression, leading to enhanced glycolysis [86]. Moreover, ELF3-AS1 is
another typical lncRNA, which is upregulated in OSCC; the silencing or forced expression
of ELF3-AS1 in OSCC cells resulted in the same trend of GLUT1 expression; ELF3-AS1 and
GLUT1 overexpression leads to a significantly increased proliferation rate of OSCC cells
and glucose uptake, which means that upregulation of ELF3-AS1 promotes the prolifera-
tion of OSCC cells, and may positively regulate GLUT1 to affect glucose metabolism [39].
Likewise, Yang et al. reported that H-19 was associated with glycolysis in oral CAFs via the
interaction of H19-derived miR-675-5p binding to PFKFB3, resulting in the proliferation
and migration of OSCC cells [118].
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Figure 2. Roles of lncRNA in OSCC tumor microenvironment. (A) Hypoxic TME. HAS2-AS1 activates NF-κB in response to
HIF-1α induced by microenvironment hypoxia, leading to HAS2 accumulation in CD44, RHAMM depend-way, which
promotes EMT and invasion. (B) Metabolic reprogramming. lncRNA-p23154 promotes GLUT1 expression to enhance
glycolysis via binding with the promoter region of miR-378a-3p, leading to increased metastatic potential. (C) CAF
transformation. loc100506114 promotes functional transformation of NFs to the phenotype of CAFs by forming a feedback
loop with EZH2 to activate CAFs secrete GDF10. (D) Immune regulation. Linc02195 regulates MHC I protein to affect
immunosurveillance by being closely associated with high expression of HLA I gene, and it showed a positive correlation
between increasing number of infiltrating CD8+T and CD4+T cells. (E) Extracellular vesicles. Exosomal-LBX1-AS1 from RBPJ
overexpressed macrophages inhibited the proliferation and invasion of OSCC cells by the miR-182-5p/FOXO3 pathway.



Cancers 2021, 13, 5944 11 of 22

4.2. LncRNA and Cancer-Associated Fibroblasts

CAFs are important and abundant components within TME, which interact closely
with tumor cells by a paracrine mode of action, thus contributing to tumor initiation and
malignant progression [119,120]. It has been reported that lncRNAs are involved in and
sustain this interaction, and this effect on the TME has aroused extensive attention.

Under the action of lncRNA, normal fibroblasts (NFs) were activated and acquired
CAF phenotype, which in turn promotes many aggressive features in cancer including
OSCC. Ding et al. revealed that upregulated FLJ22447 maintains the stromal phenotype
of CAF via IL-33, thus promoting tumor proliferation [42]. Moreover, other examples of
lncRNAs playing a key role in CAFs within OSCC are TIRY and loc100506114, and have
been described as being elevated in CAFs when compared to the adjacent NFs. Two studies
demonstrated that TIRY and loc100506114 participated in the functional transformation of
human NFs to the phenotype of CAFs, which supports tumor cell growth, invasion, and
metastasis [11,97].

Interestingly, CAFs have been reported to induce upregulation of lncRNA in tumor
cells. In this regard, Ding et al. showed that OSCC cells expressed FLJ22447 in an exosomal
manner to activate adjacent NFs, thereby facilitating elevated FLJ22447 to obtain the
phenotype of CAFs, which form a positive feedback loop to promote OSCC development,
which are associated with short survival and poor prognosis in OSCC patients [42]. In
another example, Midkine secreted by CAFs promoted the upregulation of lncRNA ANRIL
in OSCCs. Such lncRNA was reported to enhance cisplatin-based chemoresistance [22].
Additionally, Yang et al. reported lncRNA H19 as potential epithelial–mesenchymal
common targets (EMCTs) and is involved in regulating glycolysis, proliferation, and
migration in oral CAFs via the miR-675-5p/PFKFB3 pathway [118]. Altogether, lncRNA
has been shown to play a role in the crosstalk between CAFs and OSCC cells and may be
regarded as a possible therapeutic target or predictive biomarker.

4.3. LncRNA and Cancer-Associated Immune Cells in OSCC

Infiltrated immune cells such as T cells, tumor-associated macrophages (TAMs), den-
dritic cells (DCs), and natural killer cells (NKs) are also key components of TME [3]. The
reciprocal crosstalk between cancer cells and immune cells shapes the pro-tumorigenic
microenvironment in a way that renders it to escape immune surveillance and suited
for immune tolerance [121]. LncRNAs are reported to participate in various processes of
immune response within TME to promote tumor progression [122]. In OSCC patients,
Feng et al. found that lncRNA SLC16A1-AS1 was positively correlated with resting NK
cells, M1 macrophages, activated mast cells, and activated memory CD4 T cells by bioinfor-
matics analysis, but negatively correlated with plasma cells, T follicular cells, resting mast
cells, and Tregs [93]. Likewise, Li et al. reported that LINC02195 was an immune-related
lncRNA that was upregulated in OSCC cells. A positive correlation can be seen between
increasing number of infiltrating CD8+T, CD4+T cells, and LINC02195 by bioinformation
analysis. In addition, LINC02195 acts as a regulator, which was closely associated with high
expression of the HLA I gene, thereby regulating the MHC I protein to show the potential
function in affecting immunosurveillance [75]. Moreover, the silence of lncRNA TUG1
substantially enhanced NK cells, killing sensitivity in OSCC cells [123]. Notably, lncRNA
LBX1-AS1 was significantly upregulated in the exosomes, which are derived from RBPJ
overexpressed-macrophages in OSCC, and lncRNA LBX-AS1 inhibits tumor growth and
invasion. Furthermore, this effect can be attenuated by lncRNA LBX1-AS1 knockdown [58].
In addition, lncRNAs can impact the function and cytotoxicity of T cells via regulation of
the expression of molecules on the surface of the tumor cells and directly inducing cell
death or enhancing T cell exhaustion in the TME [124]. For example, LNC-SOX5, which is
associated with carcinogenesis of tongue carcinoma, has also been reported to function on
the regulating cytotoxicity of CD8+ T cells in colorectal cancer [54,125], while at present, the
function of LNC-SOX5 in regulating the CD8+ T cell cytotoxicity effect in OSCC remains
unclear. Furthermore, Liu et al. also reported that lncRNA FOXD2-AS1 was involved in
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regulating the proliferation and functions of antigen-presenting cells (APCs) to inhibit the
adaptive immunity in OSCC [44]. The above evidence indicates the significance of lncRNAs
in immunotherapy and it could be the potential immunotherapy target. However, only a
few lncRNAs have been reported in the crosstalk with immune cells in OSCC currently,
and comprehensive study remains deficient.

4.4. Extracellular Vesicles: Exosome-Associated LncRNAs in TME

Exosomes refer specifically to a kind of extracellular vesicle (EV) that is secreted by
most eukaryotic cells [126]. Currently, due to their unique functions in mediating intercellu-
lar communication and activating signaling as extracellular messengers, exosomes as effec-
tive signaling molecules have been broadly investigated in cancers [127,128]. The diverse
cargo in which exosomes carry such as lncRNA are released from exosomes and will dynam-
ically change depending on the cell type. These lncRNAs are involved in regulating tumor
metastasis, angiogenesis, immunosuppression, drug resistance, and metabolism [129,130],
thereby enhancing the interaction between cancer cells and surrounding cells [131]. For
instance, in the studies of OSCC, FLJ22447 and LBX1-AS1 were representative exosome-
associated lncRNAs that were derived from CAFs and macrophages, respectively. Both
of these are strongly associated with OSCC progression, recurrence, and poor progno-
sis [42,58]. Analysis of FLJ22447 derived from CAFs revealed it as a medium in which to
interact with surrounding stromal fibroblasts to exert the modulatory function in activating
CAFs via IL-33, thus inducing the proliferation of OSCC cells [42]. In contrast, combined
analysis of LBX1-AS1, which is secreted from RBPJ overexpressed macrophages in OSCC
patients, the overexpression of exosome-associated lncRNA LBX1-AS1 upregulated tumor
suppressor gene FOXO3 to inhibit the proliferation and invasion of OSCC cells [58]. These
studies suggested that exosomes, especially exosome-associated lncRNA, probably exert
modulation functions in OSCC development and could be a potential biomarker for OSCC
diagnosis and therapy. However, exosome-associated lncRNA has been a novel topic in
recent years. Some lncRNAs such as LINC01133 have been reported to act as a tumor
repressive gene in OSCC cells [71], while LINC01133, derived from exosomes only, have
been reported in pancreatic tumors and bladder urothelial carcinoma [132,133].

Current research has already revealed the roles of exosome-associated lncRNAs from
different cells in OSCC patients. Therefore, exosome-associated lncRNAs might be po-
tential biomarkers for the diagnosis and therapy of OSCC. Furthermore, compared with
conventional targeting vectors, exosomes have lower systemic toxicity and higher stability,
and exhibit nonimmunogenic properties [134]. For this purpose, the introduction of engi-
neered lncRNAs into OSCC cells or tissues might represent a new and efficient approach
for future cancer therapy.

5. Translational Potential of LncRNAs in OSCC

The presence of numerous lncRNAs that may have roles in cancer progression and
outcomes have important clinical implications. On one hand, lncRNAs are stable and
widely distributed in various tissues and body fluids including blood, saliva, and urine,
making them a promising noninvasive biomarker for cancer diagnosis and prognosis [135].
On the other hand, lncRNAs have highly tissue-specific expression patterns and are func-
tionally characterized, which contribute to the hallmarks of cancer [136]. Therefore, they
are potential therapeutic targets. Here, we present the translational potential of lncRNAs
in OSCC (Figure 3).

5.1. LncRNAs as a Novel Diagnostic and Prognostic Tools

Studies have confirmed that body fluids can detect the dysregulated lncRNA from
primary tumors [135]. A representative lncRNA is prostate Cancer Antigen 3(PCA3, also
known as DD3), which is derived from the patient’s urine and is widely applied in the
diagnosis of prostate cancer due to its high specificity and sensitivity [137–139]. With
regard to OSCC, Jia et al. confirmed that the expression profile of plasma lncRNAs in OSCC
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patients are changed by microarray analysis [140], which suggested the potential diagnostic
value of circulating lncRNAs in OSCC. For instance, the level of CASC2 significantly
decreased in the plasma of OSCC patients with local recurrence while it increased in those
without recurrence; receiver operating characteristic curves (ROC) showed a significant
value in detecting the expression of plasma CASC2 for OSCC diagnosis (the area under
the ROC curves (AUC) = 0.8445) [28]. CASC15 is another lncRNA that was upregulated
in the plasma of patients with OSCC, and this feature can also be applied to distinguish
OSCC patients from oral ulcer patients [26]. In parallel, a study by Shao et al. identified
lncAC007271.3, a kind of serum lncRNAs with a high expression level in OSCC patients
when compared to the classic tumor markers SCCA, the ROC curves illustrated that the
level of serum AC007271.3 could effectively discriminate between OSCC patients and
controls (AUC = 0.873; 95% confidence interval (CI), 0.815–0.931; p < 0.001) with high
sensitivity and specificity (77.6% and 84.5%, respectively) [141]. Moreover, a study by
Tang et al. revealed that saliva in its entirety contains detectable amounts of certain
lncRNAs such as HOTAIR and MALAT1 [12]. Interestingly, HOTAIR was differentially
expressed in the saliva of OSCC patients with metastasis compared to those who without
metastasis [12], which indicates the prospect of detecting lncRNAs in saliva to act as a
rapid and noninvasive tool for OSCC diagnosis.

LncRNAs have also been indicated to be closely related to a series of clinic pathologi-
cal parameters such as lymph metastasis and local recurrence in OSCC and may serve as
valuable predictive biomarkers. The expression level of LINC00152 is increased in OSCC
tissues and is positively correlated with cervical lymph node metastasis, higher TNM stage,
and postoperative recurrence [8]. Similarly, other lncRNAs such as H19, CCAT2, and TUG1
have also been reported to have high expression levels in OSCC and are associated with
the TNM stage and pathological grade [34,47,99]. In particular, one study reported that
LINC-RoR was associated with cellular differentiation in OSCC, and was highly expressed
in tumors with undifferentiated pathology and served as a predictor to therapeutic re-
sponse [15]. Furthermore, a study by Jin et al. reported increased TIRY expression in OSCC
tissues. Authors used ROC and diagnostic evaluation tests to reveal that OSCC patients
with different risk of recurrence or metastasis within one year could be distinguished by
TIRY expression (AUC = 0.897), which indicates the potential diagnostic value of TIRY [97].

In addition to the diagnostic potential of lncRNAs, previous studies have already
confirmed that lncRNAs are associated with the survival time of OSCC patients and
regarded as prognostic biomarkers. For example, MALAT1 was highly expressed in OSCC
tissues and Zhou et al. verified that the lower expression of MALAT1 in OSCC patients
had a better survival rate computed by Kaplan–Meier analysis [78]. Likewise, Yao et al.
observed markedly upregulated BANCR expression in OSCC tissues; more importantly,
a multivariate proportional hazards (COX) regression analysis revealed that in addition
to lymph node metastasis, BANCR expression level was independently associated with
poor overall survival (OS) and disease-free survival (DFS), which suggests BANCR was
an independent prognostic factor in OSCC patients [23]. The same as BANCR, Yang et al.
reported that the average OS of OSCC patients with low CASC9 expression was longer
than those with high CASC9 expression by Kaplan-analysis, and COX regression analysis
also revealed that the CASC9 expression level was an independent predictor of the OSCC
prognosis [29]. In addition, similar reports of other lncRNAs such as LINC01234 [73,74],
colon cancer–associated transcript 2 (CCAT2) [87], FOXD2-AS1 [44] and FTH1P3 [45] were
also confirmed to be unregulated in OSCC tissues and associated with low OS, which
indicated the poor prognostic capability.

However, tissue biopsy is still considered the gold standard for cancer diagnosis, even
though it is an invasive procedure. The main advantages of lncRNAs as a biomarker for
cancer diagnosis and prognosis is due to the high stability, high sensitivity, specificity, and
non-invasive nature during body fluid circulation [135]. Due to the features of specificity
in diseases and cell types, it is much easier to detect and make lncRNAs that are suitable
for diagnosis in cancer patients. LncRNAs serve as valuable biomarkers in applications
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such as diagnosis and prognosis and have been shown to have tremendous potential in
the future.
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Figure 3. Potential clinical application of lncRNAs in OSCC. (A). lncRNAs as diagnostic and prognostic biomarkers;
(B) lncRNAs as therapeutic targets based on four main lncRNA-based techniques. (a) MALAT1 silenced by siRNA in
cytoplasm of Tscca and Tca8113 cells cause the inhibition of invasion and migration. (b) ASO. ASO targets FOXD2-AS1 in
the nucleus of CAL27cells, leading to inhibition of tumor growth. (c) shRNA. shRNA targeting lnc-p23154 and transfected
into HSC-3 cells led to the inhibition of tumor metastasis. (d) CRISPR/Cas9 system. Guided by the sgRNA, Cas9 can
specifically knock out the sequence of the XIST gene in SCC9 cells, leading to the tumor suppressor function.

5.2. LncRNAs as Therapeutic Agents or Targets

Given the fact that the expression of lncRNAs is tissue/cell specific, and the carcino-
genic roles of these lncRNAs are diverse, lncRNAs show promise as attractive targets
for drug development and significant implication in clinical application for cancer treat-
ment. Therapeutic approaches that accurately target lncRNAs may exert anti-tumor effects.
Emerging advanced lncRNA-based techniques such as antisense oligonucleotides (ASOs),
small interfering RNAs (siRNAs), short hairpin RNAs (shRNAs), aptamers, and CRISPR-
Cas9, have revealed that targeting specific lncRNAs can effectively inhibit OSCC growth,
migration, and invasion in vitro and in vivo [142].

Conventional tools such as siRNAs and shRNAs have already been extensively em-
ployed to study the mechanisms and therapy of lncRNAs. For example, intratumor delivery
of MALAT1-targeted siRNA substantially inhibits tumor growth in the Tscca xenograft
mouse model [78]. Knockdown of lncRNA LINC00460 by siRNA-based targeting method
siLINC00460 led to inhibition of tumor metastasis in lung metastasis models in OSCC [63].
Furthermore, Wang et al. also demonstrated that tail vein injection of an shRNA specifically
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targeting lnc-p23154 significantly reduced tumor metastasis in the OSCC mouse model [86].
Interestingly, shRNA-mediated knockdown of lncRNA KCNQ1OT1 can increase cisplatin
sensitivity as well as decrease tumor burden in OSCC xenografts, suggesting a novel
potential approach for the reversion of cisplatin resistance in OSCC [56]. However, studies
on siRNA technology specificity have shown off-target effects [143].

ASO techniques are the most powerful approach to target lncRNAs. For example,
ASO-mediated FOXD2-AS1 silence has been shown to inhibit tumor growth in a OSCC
mouse [44]. Furthermore, Li et al. observed that tumor growth and metastasis was signifi-
cantly suppressed after AC104041.1 specific LNA-ASO in patient-derived xenograft (PDX)
models generated from HNSCC patients [19]. However, off-target effects can be observed
when targeting lncRNAs using ASO therapeutics, which can be seen in the generally low
abundance of lncRNAs in vivo [142]. Despite these obstacles, protein-coding genes have
been targeted using ASOs. An ASO targeting STAT3 (AZD9150) was tested for antitu-
mor activity in patients with refractory lymphoma and lung cancer (NCT01563302) [144].
Therefore, the ASO technique of targeting lncRNAs for cancer treatment may be hopeful.
Surprisingly, the CRISPR–Cas9 system has transformed the way lncRNAs are studied and
has offered new opportunities for therapeutic targeting of lncRNAs in cancer research [145].
For instance, Zhang et al. confirmed that genomic deletion of lncRNA XIST using the
CRISPR/Cas9 system reduced the tumor formation in tongue cancer [146]. In parallel,
according to a study by Chang et al., CRISPR/Cas9 targeting MIR31HG markedly pre-
sented a reduction in oncogenicity of OSCC, which shows the potential therapeutic efficacy
by targeting MIR31HG [83]. Thus, CRISPR/Cas9 may open a bright pathway for tumor
therapy for gene-level tumor treatments considering its higher stability and lower off-
target effect. So far, no lncRNA-targeting therapeutics have entered clinical development,
and personalized and targeted therapy based on CRISPR/Cas9 is likely the future of
tumor therapy.

Beyond the above mentioned statements, anti-PD-1/PD-L1 therapy has recently been
approved for use in recurrent and/or metastatic OSCC patients, however, quite a num-
ber of patients are resistant to immune therapy [147]. Therapy targeting these lncRNAs
may regulate the resistance within patients with OSCC to anti-PD-1/PD-L1 immunother-
apy. LncRNA as a potential upstream regulator can target the PD-1/PD-L1 axis, thereby
leading to marked anti-tumor activity [148]. Studies have reported that SNHG20 pro-
motes esophageal squamous cell carcinoma growth and metastasis by activating the
ATM/JAK/PD-L1 pathway [149]. GATA3-AS1 enhances the ubiquitination of PD-L1
by upregulating COPS5, thus promoting the immune escape of breast cancer cells [150].
Remarkably, interventional methods targeting UCA1 and anti-PD-1 treatment enhance
therapy efficacy for bladder cancer [151]. More importantly, Ma and their team reported
IFNα-induced lncMX1–215 markedly suppressed proliferation and metastasis capacity in
OSCC. LncMX1-215 negatively regulated PD-L1 expression to inhibit immune escape [48].
The results can direct us toward a potential chemotherapy regime and suggests that tar-
geting lncRNAs can be used to design more effective immune therapies by targeting
the PD-1/PD-L1 axis. However, comprehensive investigation should further support
the strategy.

6. Perspectives and Conclusions

Despite significant efforts, clinical trials testing novel treatment strategies, person-
alized medicine and non-invasive, specific biomarkers are the final goals to improving
the survival rate of OSCC patients. It is worth noting that outstanding questions and
challenges remain.

First, even though the pro-cancer and anti-cancer roles of lncRNAs are revealed in
OSCC, we need to clarify different expression levels of lncRNAs in OSCC patients with
diverse clinic stages, thereby providing better clues for early diagnosis and discriminating
tumor progression. Second, lncRNA can easily be detected in saliva, particularly in OSCC
metastatic patients. Therefore, lncRNAs derived from saliva that act as the symbolic body



Cancers 2021, 13, 5944 16 of 22

fluid in the oral cavity should be considered for biomarker viability. Third, lncRNAs act
as regulators that are associated with TME of OSCC in diverse aspects such as hypoxic
conditions, metabolic reprogramming, CAFs, immune cells, and exosomes. However, the
explorations of their underlying mechanisms have only begun to scratch the surface and
comprehensive studies are still deficient. Fourth, due to the poor conservation of lncRNAs
in different species [136], whether or not the experimental results obtained from animal
models in vivo can be extended and applied to humans needs further clinical trials to
prove their efficacy. More importantly, due to some of the existing challenges in lncRNA
therapeutics such as the hurdles of specificity, delivery, tolerability, and the unpredictable
off-target effects of lncRNA-based techniques [143], there is still a substantial amount
of information to explore. Potential solutions have been mentioned to improve these
problems such as chemical modification for optimizing hepatotoxicity and off-target effects
of ASOs or instead of stable viral transduction [142,143]. Some substantial progress in
oligonucleotide technique is also being explored such as locked nucleic acids (LNAs) with
better character of stability and low toxicity [13]. Furthermore, the novel gene-editing
technology CRISPR/Cas9 system also showed tremendous potential in clinical application
due to its operability and economical features [145].

Notably, lncRNAs are involved in regulating the PD-1/PD-L1 axis, which plays an
important role in immunotherapy in cancer patients. However, no lncRNA-targeting
therapeutics to modulate the PD-1/PD-L1 axis have entered clinical trials. Therefore, the
detailed mechanisms of lncRNA modulation of the PD-1/PD-L1 axis are still poorly under-
stood in OSCC. Further investigations will help us understand that targeting lncRNAs in
combination with anti-PD-1/PD-L1 may prove to be a broadly applicable new strategy in
tumor immunotherapy.

Taken together, as described in this review, we summarize the functions and potential
molecular mechanisms of dysregulated lncRNAs in OSCC as well as the crosstalk with
the tumor microenvironment. In particular, we emphasized the translational potential of
lncRNAs in the diagnosis and treatment in the future, especially the emerging lncRNA-
targeted therapeutic techniques including CRISPR-Cas9 as well as immune checkpoint
therapies to target lncRNA and the PD-1/PD-L1 axis. Finally, we truly believe that we have
only made the first step toward an in-depth understanding of the functions of lncRNAs in
OSCC and this review presents the future perspectives of lncRNAs in OSCC therapy.
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