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ABSTRACT The Gram-negative pathogen Pseudomonas aeruginosa is a common cause
of pneumonia in hospitalized patients. Its increasing antibiotic resistance and widespread
occurrence present a pressing need for vaccines. We previously showed that a P. aeruginosa
type III secretion system protein, PopB, elicits a strong Th17 response in mice after intra-
nasal (IN) immunization and confers antibody-independent protection against pneumonia
in mice. In the current study, we evaluated the immunogenicity and protective efficacy in
mice of the combination of PopB (purified with its chaperone protein PcrH) and OprF/I,
an outer membrane hybrid fusion protein, compared with immunization with the proteins
individually either by the intranasal (IN) or subcutaneous (SC) routes. Our results show that
after vaccination, a Th17 recall response from splenocytes was detected only in mice vacci-
nated with PopB/PcrH, either alone or in combination with OprF/I. Mice immunized with
the combination of PopB/PcrH and OprF/I had enhanced protection in an acute lethal
P. aeruginosa pneumonia model, regardless of vaccine route, compared with mice vacci-
nated with either alone or adjuvant control. Immunization generated IgG titers against
the vaccine proteins and whole P. aeruginosa cells. Interestingly, none of these antisera
had opsonophagocytic killing activity, but antisera from mice immunized with vaccines
containing OprF/I, had the ability to block IFN-g binding to OprF/I, a known virulence
mechanism. Hence, vaccines combining PopB/PcrH with OprF/I that elicit functional anti-
bodies lead to a broadly and potently protective vaccine against P. aeruginosa pulmonary
infections.
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The Gram-negative bacterium Pseudomonas aeruginosa causes a wide range of clinically
important infections, mostly in hospitalized and immunocompromised patients, especially

those requiring mechanical ventilation, those with burns or combat-related wounds, and in
people with cystic fibrosis (CF). P. aeruginosa is the most common pathogen causing ventila-
tor-associated pneumonia (VAP) worldwide, with a prevalence of 3% to 5% in adults ventilated
for more than 48 h (1). The need for an effective vaccine for P. aeruginosa VAP is made
even more urgent due to COVID-19, where the rate of VAP is strikingly high (2, 3). The
steadily increasing antibiotic resistance encountered in P. aeruginosa clinical isolates (4–6),
coupled with the relative dearth of new antibiotics in the pharmaceutical industry’s pipeline,
also make paramount the need for new approaches to the development of an effective
vaccine.
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Although antibodies to the lipopolysaccharide (LPS) O antigen mediate high-level
immunity to P. aeruginosa infections, vaccine strategies targeting the O antigen have not
been successful to date and are stymied by O antigen variability and impaired immune
responses when O antigens of different serotypes are combined (7–12). More recent P. aeru-
ginosa vaccine strategies showing promise have focused on the outer membrane proteins
OprF, OprI, and a OprF/I fusion protein (specifically OprF190-342-OprI21-83 called VC43, previously
IC43), with and without flagellins (13–18). The OprF/I fusion protein vaccine VC43 remains a
promising candidate as it induces multiple immune effectors in humans, including opsonic
antibodies (18) and antibodies that inhibit IFN-g binding to P. aeruginosa (19) (thereby interfer-
ing with a virulence mechanism [20]), and, via the OprF329-342 epitope, IFN-g1T cell responses
(15). However, despite positive results in a phase II trial demonstrating improved all-cause mor-
tality (21), in a phase III trial targeting VAP prevention, VLA43 failed (22). We speculate that
the failure of the VLA43 trial was related to the absence of an adjuvant and/or the lack of
induction of a Th17 response, which our published (23, 24) studies show is critical for vac-
cine-induced broad protection.

Our previous work has identified PopB, a structural component of the type III secretion
system (T3SS), as a protective T cell antigen that generates a Th17 response when adminis-
tered intranasally with the Th17 adjuvant curdlan (23, 24). The popB gene has been found in
nearly all P. aeruginosa strains (25, 26), and PopB is highly conserved and expressed during
infection (25, 27, 28). A recombinant His-tagged version of PopB is soluble and stable only
when copurified with its chaperone PcrH, so PopB is denoted PopB/PcrH. Our previous work
has found that immunization with PcrH does not elicit a Th17 response and the addition of
PopB is required for full protection (23, 24).

Here, we have studied the immune responses and protective efficacy against pneumonia
in mice after vaccination with PopB/PcrH, OprF/I, or a mixture of both, via the intranasal (IN)
or subcutaneous (SC) immunization routes. We report that the combined vaccine yields the
highest protection regardless of route, likely due to eliciting both Th17 and functional anti-
body responses, particularly antibodies that inhibit the binding of OprF to IFN-g.

RESULTS
Immunization of mice with PopB-containing vaccines elicits a Th17 response,

while OprF/I does not.With the failure of the phase III clinical trial using OprF/I as the
vaccine antigen, novel approaches to vaccinate against P. aeruginosa infections are needed.
Our previous work demonstrate that an effective Th17 response is required for robust pro-
tection against P. aeruginosa infections (23). We hypothesized the OprF/I vaccine used in the
recent clinical trial was unable to induce a Th17 response, and potentially why it failed. To
test this hypothesis, mice were immunized with PopB/PcrH, OprF/I, a combination of PopB/
PcrH and OprF/I, or adjuvant alone. Our previous work with PopB has found that its chap-
eron, PcrH, is needed for effective expression and purification. Both proteins PopB and PcrH
are used in immunization, but only PopB generates a Th17 response, and that response is
protective (23, 24). Intranasal immunization has been previously described to induce Th17
recall responses that can be measured in the spleen (29). We prepared the recombinant fusion
protein consisting of OprF190-342 and OprI21-83 as described for the OprF/I vaccine VLA43 (18).
Mice were immunized IN using the Th17 adjuvant curdlan (30) or SC using aluminum hydrox-
ide (Alum) as adjuvant. Three weeks after the last immunization, splenocytes were isolated
and stimulated with either PopB/PcrH or OprF/I, and IL-17 was measured to quantify the Th17
response elicited by each vaccine. The immunization and challenge schedules are depicted in
Fig. S1. Splenocytes frommice immunized with OprF/I did not produce IL-17 when stimulated
with either OprF/I or PopB/PcrH when immunized via an IN route (Fig. 1A) or a SC route (Fig.
1B) demonstrating OprF/I does not induce a Th17 response in this mouse strain. Splenocytes
isolated from mice immunized with PopB/PcrH, either alone or in combination with OprF/I
produced IL-17 when stimulated with PopB/PcrH (Fig. 1). There were statistically significant (P
value,0.05) increases in amounts of IL-17 produced in splenocytes isolated frommice immu-
nized with the combination of PopB/PcrH and OprF/I compared with mice immunized with
PopB/PcrH alone when immunized via IN or SC routes (;1.6-fold and ;5-fold, respectively)
(Fig. 1) suggesting no evidence of inhibition or anergy when the OprF/I was mixed with PopB/
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PcrH. The increase in IL-17 when immunized with the combination of PopB/PcrH and OprF/I
suggests a potential synergistic effect when the two antigens are used in combination.

Immunization with the combination of PopB/PcrH and OprF/I induces significant
protection against acute P. aeruginosa infection. We next evaluated the protection
provided by PopB/PcrH- and OprF/I-based vaccines against acute P. aeruginosa pneumonia
after intranasal challenge. Three weeks after the final immunization mice were challenged
with a lethal dose (.LD100) of P. aeruginosa strain N13 (2� 106 CFU/mouse), and the survival
was monitored for 6 days. Mice immunized with the combination of PopB/PcrH and OprF/I
showed significant protection against challenge compared with adjuvant alone in both the
IN and SC routes (P values = 0.014 and 0.008, respectively, by log-rank test) (Fig. 2A and B).
Mice immunized either IN or SC with PopB/PcrH or OprF/I alone were not significantly pro-
tected compared with adjuvant alone, demonstrating the combination of vaccine antigens
conferred greater protection than either of the antigens alone. It is worth pointing out a
higher dose of a different P. aeruginosa strain was used in our current study compared to
our previously published findings using PopB/PcrH vaccines, which used the challenge strain
ExoU1 PAO1, a highly virulent engineered strain expressing the ExoU cytotoxin and its chap-
erone by a plasmid (23, 24). We also challenged SC immunized mice with the highly virulent
P. aeruginosa strain ExoU1 PAO1 (8.1 � 105 CFU) and saw similar protection when mice
were immunized with the combination of PopB/PcrH and OprF/I compared with mice
immunized with the adjuvant alone (P value = 0.0002, by log-rank test) (Fig. 2C).

Intranasal and subcutaneous immunization with PopB/PcrH or OprF/I elicit IgG
responses. To better describe the immune response generated by the various vaccines, we
measured the humoral immune responses after immunization. Sera from immunized mice
were collected 3 weeks after the third immunization, and IgG titers specific for PopB, OprF/I,
and whole P. aeruginosa were measured (Fig. 3; Table S1A). As expected, mice generated
IgG responses against the proteins they were immunized against. In IN-immunized mice,
there was no difference in the EC50s of anti-PopB IgG titers in mice immunized with PopB/
PcrH alone compared with a combination of PopB/PcrH and OprF/I, when comparing
the 95% confidence intervals of EC50 determinations. Likewise, there was no difference in
the anti-OprF/I titers in mice immunized with OprF/I alone compared with a combination
of PopB/PcrH and OprF/I. Among SC-immunized mice, there was small, but statistically

FIG 1 Vaccination of mice with PopB/PcrH but not OprF/I generates a Th17-response. Splenocytes from mice
immunized either intranasally (A) or subcutaneously (B) with adjuvant alone (curdlan or Alum), adjuvant 1 30 mg PopB/
PcrH, adjuvant 1 30 mg OprF/I, or adjuvant 1 30 mg PopB/PcrH 1 30 mg OprF/I were isolated 3 weeks after last
immunization and stimulated with either PopB/PcrH, OprF/I or left unstimulated. IL-17 was measured by ELISA after
7 days of stimulation. Bars are the average of triplicate wells seeded with pooled splenocytes from four mice, and
error bars are SDs, and are representative of immunizations, splenocyte isolation, and antigen stimulations conducted
at least two times. * p of 0.0424 (A) or 0.0496 (B), **** denotes P , 0.0001 by one-way ANOVA followed by Šídák's
multiple-comparison test compared with splenocytes stimulated with media only from mice within the same
respective vaccine group or PopB/PcrH-stimulated splenocytes from immunization with PopB/PcrH or OprF/I alone
to immunization with the PopB/PcrH 1 OprF/I combination.
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significant 1.7-fold increase in EC50s of anti-OprF/I IgG titers in mice immunized with the
combination of PopB/PcrH and OprF/I compared with mice immunized with OprF/I alone.
The biological significance of this small difference is unclear. Conversely, the anti-PopB titers
were 10-fold lower in mice immunized with the combination of PopB/PcrH and OprF/I com-
pared with the PopB/PcrH only group. We also measured the IgG titers against whole P. aerugi-
nosa bacterial cells, using strain N13, which was the same strain used in challenge experiments.
In IN-immunized mice, there was a significant;2- or 2.7-fold increase in the EC50s of anti-P. aer-
uginosa IgG titers in mice immunized with the combination of PopB/PcrH and OprF/I compared
with mice immunized with PopB/PcrH or OprF/I alone, respectively. In the SC-immunized mice,
immunization with the combination of PopB/PcrH and OprF/I or OprF/I alone resulted in an
;200-fold significant increase of anti-P. aeruginosa IgG titers than the mice immunized with
PopB/PcrH alone. We also measured the anti-PopB or anti-OprF/I titers of the IgG1 and IgG2c
subclasses. In mice, a strong IgG1 response is associated with a Th2 response while a IgG2c
response is associated with a Th1 response (31). Mice immunized via the SC route had higher
IgG1 titers to both PopB and OprF/I suggesting a Th2 response (Fig. S2; Table S1B).

FIG 2 The combination of PopB/PcrH and OprF/I protects against acute lethal P. aeruginosa pneumonia.
Mice immunized either intranasally (A) or subcutaneously (B and C) with adjuvant alone (curdlan or Alum),
adjuvant 1 30 mg PopB/PcrH, adjuvant 1 30 mg OprF/I, or adjuvant 1 30 mg PopB/PcrH 1 30 mg OprF/I
were intranasally challenged with P. aeruginosa strain N13 (2 � 106 CFU/mouse) (A and B) or P. aeruginosa
strain Exo1 PAO1 (8.1 � 105 CFU) (C) 3 weeks after the last immunization. (C) Disease progression was
monitored over 6 days, * denotes P value, 0.05 by log-rank test compared with adjuvant alone. P = 0.0132
(A); P= 0.0084 (B); P = 0.0002, 0.005, or 0.0091 for mice immunized with PopB/PcrH 1 OprF/I combination
OprF/I alone, or PopB/PcrH alone, respectively (C). n = 11 to 12 mice per group, data are pooled from at
least two independent experiments (A and B) and n = 10 mice per group from one experiment (C).
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Sera frommice immunized with OprF/I inhibit OprF binding to IFN-c. P. aeruginosa
OprF can bind to human IFN-g thereby enhancing virulence (20). Furthermore, anti-OprF/I
antibodies are able to prevent the fusion protein OprF/I from binding to IFN-g in vitro,
which has been suggested as one mechanism that vaccination with OprF/I can prevent
infection (19). Thus, we measured the ability of various sera to block OprF/I binding to
human IFN-g. Sera from mice immunized with OprF/I either alone or with PopB/PcrH had a
statistically significant 25% to 33% reduction in OprF/I binding to IFN-gwhen vaccinated ei-
ther IN or SC (Fig. 4). Sera from mice immunized with adjuvant or PopB/PcrH alone did not
inhibit OprF/I binding to IFN-g. Surprisingly sera from OprF/I-immunized mice did not have
opsonophagocytic killing (OPK) activity (Fig. S3) against target strain PAO1 (serotype O2/
O5) and strain 9882-80 (serotype O11), perhaps due to using a different mouse strain com-
pared with prior published work (32), Our previous results have shown that anti-PopB/PcrH

FIG 3 Vaccination with PopB/PcrH, OprF/I, or both, generate antigen-specific IgG responses that also
recognize whole P. aeruginosa. Mice were immunized either intranasally (A, C, E) or subcutaneously (B, D, F)
with adjuvant alone (curdlan or Alum), adjuvant 1 30 mg PopB/PcrH, adjuvant 1 30 mg OprF/I, or adju-
vant 1 30 mg PopB/PcrH 1 30 mg OprF/I and sera were collected 3 weeks after the last immunization. Anti-
PopB/PcrH (A, B), anti-OprF/I (C, D), and anti-whole P. aeruginosa strain N13 (E, F) IgG titers were measured
using ELISA. Sera from three to four mice per group were pooled and measured in technical duplicates, and
means are plotted with SD as error bars (error bars are smaller than symbol at many points). Data are
representative of at least two independent immunization experiments.
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antibodies do not mediate OPK (23, 24), and the current study confirmed those results (Fig.
S3). Sera from mice immunized with vaccines containing PopB/PcrH and/or OprF/I were
able to bind to whole P. aeruginosa strain PAO1 when measured by ELISA, where sera from
IN-immunized mice showed a lower titer of antibodies against strain PAO1 compared with
strain N13, but sera from SC-immunized mice had similar high titers against strains PAO1
and N13 (Fig. S4; Table S2).

DISCUSSION

An effective vaccine to prevent P. aeruginosa infections remains an unrealized goal
that could prevent a significant amount of morbidity and mortality (8, 12). The failure of recent
clinical trials highlights the need for novel approaches. Our previous work demonstrated that
IL-17 is critical in protection against LPS-heterologous strains of P. aeruginosa after vaccination
with live-attenuated P. aeruginosa vaccines (32) and identified PopB as a protein stimulating
Th17 responses and as a promising vaccine candidate for P. aeruginosa (23). In this study, we
generated a novel vaccine that combined PopB/PcrH along with a recombinant fusion protein
consisting of portions of OprF and OprI and evaluated vaccination via the IN and SC routes in
mice using a combination of the antigens as well as the individual antigens.

We found that immunization with PopB-containing vaccines (either IN or SC) resulted in
a Th17 response (Fig. 1). While OprF/I alone did not induce a Th17 response, there was a sig-
nificant increase in the Th17 response when OprF/I was added to PopB/PcrH suggesting an
adjuvant-like effect of OprF/I. OprI has been identified to function as an adjuvant that indu-
ces a Th2 response via TLR2 and TLR4 (33) and has been included in vaccine formulations
for the prevention of viral and mycobacterial infections (34, 35). It is not known if OprI can
serve as an adjuvant that can induce a Th17 response, or if OprI could be used as an adju-
vant alone. Our ongoing work is investigating these questions. The Th17-responses to PopB
are consistent with findings that both we and other groups have observed when immuniz-
ing with PopB-containing vaccines (23, 24, 36). Th17 responses are essential for host defense
against a number of pathogens, including Salmonella enterica (37), Streptococcus

FIG 4 Sera from mice immunized with OprF/I inhibit binding of OprF/I to human IFN-g. Sera were
collected 3 weeks after the final immunization of mice immunized either intranasally (A) or subcutaneously
(B) with adjuvant alone (curdlan or Alum), adjuvant 1 30 mg PopB/PcrH, adjuvant 1 30 mg OprF/I, or
adjuvant 1 30 mg PopB/PcrH 1 30 mg OprF/I. Pooled sera were diluted 1:2 and assessed for inhibition of
binding of human IFN-g to OprF/I coated on wells of ELISA plates. IFN-g bound to OprF/I was measured
using anti-IFN-g antibodies. The percent inhibition was calculated as the change in the amount of IFN-g
that bound OprF/I in the absence of sera. Sera from three to four mice per group were pooled and
measured in triplicate, and means are plotted with SD as error bars. **** denotes P value ,0.0001 by
one-way ANOVA followed by the Šídák's multiple-comparison test. Data are representative of at least
two independent experiments.
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pneumoniae (38), Klebsiella pneumoniae (39), Staphylococcus aureus (40, 41), Mycobacterium
tuberculosis (42), and Candida albicans (43).

Vaccination with the combination of PopB/PcrH along with OprF/I resulted in significant
protection against a lethal challenge of P. aeruginosa in our murine pneumonia model (Fig. 2).
In the current study, we used a higher dose of P. aeruginosa strain N13, a clinical isolate of
serotype O6 compared with our previous studies where we used P. aeruginosa strain PAO1
(serotype O2/O5) that expresses ExoU from a plasmid (23, 24). Immunization with either
PopB/PcrH or OprF/I alone was not sufficient to protect mice against the lethal challenge
doses used in this study; but the combination vaccine protected mice, whether vaccinated IN
or SC. It is worth pointing out that a different dose of a different P. aeruginosa strain was used
in challenge experiments in the current study compared with our published studies using
PopB-based vaccines (23, 24). Future work is needed to better understand the differences in
protection when challenged with different doses of different strains in addition to different dis-
ease models. Our previous work has identified that the Th17 response is required for broad
serotype-heterologous protection against P. aeruginosa infection (23), and as such, Th17
responses are likely contributing to the protection observed in the current study. The
total amount of protein used in the different vaccine groups varied depending on whether
one or two antigens were used and may have contributed to the differing immune responses
observed between the single and combination antigen vaccinations.

Immunization with PopB/PcrH, OprF/I, or the combination of the two proteins elicited anti-
gen-specific IgG antibody responses. The immunizations also elicited an antibody response
that was able to recognize whole P. aeruginosa coated on ELISA plates. The contributions to
protection of these antibodies remains unclear. Our previous work, and current work with
PopB-based immunization, demonstrate that antibodies generated in response to PopB do
not have OPK activity (Fig. S3) (23, 24). Studies in humans (18), nonhuman primates (44), and
other mouse strains (14) found that immunization with OprF/I generates antibodies with OPK
activity, but we observed no such activity in the current study even though antibodies from
mice immunized with PopB/PcrH and/or OprF/I-containing vaccines were able to bind the tar-
get strain PAO1 by ELISA (Fig. S4). The overall response to the OprF/I was IgG1 biased suggest-
ing a Th2 response, which is also consistent with a previous study (14). We did find that mice
immunized with OprF/I generated antibodies that were able to block the binding of OprF/I to
IFN-g, a host-sensing mechanism shown to enhance the virulence of P. aeruginosa (20). These
antibodies that prevent the OprF-IFN-g interaction are predicted to be one mechanism that
immunization with OprF/I can reduce P. aeruginosa virulence (19).

Based on the failure of the OprF/I vaccine (VLA43) in phase III clinical trials, an effective
vaccine that can prevent P. aeruginosa infections will need to elicit multiple mechanism of
action, with Th17 responses as a critical component. The current work suggests that com-
bining PopB with OprF/I significantly improves protective efficacy against acute lethal pneu-
monia in mice compared with either protein alone, advancing us one step closer to a broadly
and potently protective vaccine for P. aeruginosa.

MATERIALS ANDMETHODS
Generation of protein expression vectors. A gene fragment encoding Escherichia coli-codon-opti-

mized OprF190-342 and OprI21-83 was synthesized with a 5 prime ndeI and a 3 prime xhoI restriction site
(Genescript). This fragment was then cloned into the ndeI and xhoI site of pET24a(1) creating pET24a
(1)-OPRF/I. Insert was confirmed by Sanger sequencing. The pET28b-based PopB/PcrH expressing vector
was previously described (23).

Expression and purification of OprF/I and PopB/PcrH from E. coli. Purification of OprF/I was per-
formed as previously described in patent filings (https://patents.google.com/patent/EP2686339A1/). Briefly, E. coli
BL21(DE3) carrying pET24a(1)-OPRF/I was grown in 2 L of fresh LB media with kanamycin and grown at 37°C.
When an OD600 of 0.8 was reached, the culture was induced with 1 mM IPTG (isopropyl b-d-1-thiogalactopyrano-
side) and incubated for an additional 3.5 h. E. coli cells were then harvested using centrifugation for 10 min at
7,800 g in 4°C. Cells were resuspended in lysis buffer (buffer A) containing 8 M urea, 20 mM Tris-HCl, 100 mM KCl,
200 mM NaCl, and 10 mM imidazole and then sonicated. Lysates of cells were centrifuged at 10,000 g for 30 min
and supernatants were purified through an IMAC column. Column resin was washed with 50 column volumes of
buffer A containing 0.1% Triton X-114 followed by 20 column volumes of buffer A. OprF/I was then eluted in
buffer A containing 250 mM imidazole. Fractions of elution underwent refolding dialysis with urea, endotoxin re-
moval with polylysine resin, and then final dialysis with reoxidation of the purified material using 1 mM dithio-
threitol (DTT). PopB/PcrH was purified as previously described (23).
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Immunization of mice and murine pneumonia model. All animal protocols and procedures were
approved by the Boston Children’s Hospital Institutional Animal Care and Use Committee (assurance number
A3303-01). The specific protocol numbers are 18-01-3617R and 20-12-4326R. All animal protocols are compli-
ant with NIH Office of Laboratory Animal Welfare, Guide for the Care and Use of Laboratory Animals, the U.S.
Animal Welfare Act, and PHS Policy on Humane Care and Use of Laboratory Animals. Friend virus B NIH
Jackson (FVB/N) mice (6 to 8 weeks old, female) were obtained from the Jackson Laboratories and maintained
in-house for both vaccination periods and challenge experiments. All immunization experiments were con-
ducted at least two times. In these experiments;15 mice per group were immunized, three to four mice were
used for splenocyte isolation and serum collection, while the rest of the mice were used in challenge experi-
ments. The immunization and challenge schedule is depicted in Fig. S1.

(i) Vaccine formulation and immunization. SC formulated vaccines contained in 200 mL per dose
of the following: 30 mg of each protein (PopB/PcrH, OprF/I, or both) mixed with Alum (Alhydrogel; aluminum
hydroxide adjuvant 2%, 25 mL, 250 mg/dose; InvivoGen) and suspended in saline with incubated for 1 h at
room temperature with gentle rotation for adsorption prior to vaccination. SC vaccination was conducted
once every 2 weeks for a total of three vaccinations (day 0, 14, and 28) with Alum alone as negative control
(31). Vaccines formulated for IN immunization contained in 30 mL per dose (15 mL per nostril) the following:
30mg of each protein (PopB/PcrH, OprF/I, or both) mixed with curdlan (150mg/dose) (Sigma-Aldrich) and sus-
pended in PBS. Vaccination was conducted once every week for a total of three vaccinations (day 0, 7, and 14)
with curdlan alone as negative control (32).

(ii) Mouse sera collection. Blood samples from mice were collected retro-orbitally 3 weeks after the third
vaccination (i.e., day 35 [for IN] and day 56 [for SC], where day 0 is the first vaccine dose). The sera were separated
using serum separator tubes (BD). Sera were aliquoted and stored at280°C until use.

(iii) Challenge experiments. Mice were challenged with P. aeruginosa using previous published methods
(23, 24). Briefly, P. aeruginosa strain N13 was grown overnight from a frozen stock at 37°C on tryptic soy agar
(TSA) plates. Bacteria scraped from the plate were suspended in 10 mL PBS (Invitrogen) to OD650nm of 0.55, which
corresponds to approximately 109 CFU/mL. P. aeruginosa strain Exo1 PAO1 was grown on TSA plates containing
400mg/mL of carbenicillin and adjusted to an OD650nm of 0.45. Bacterial suspensions were diluted to prepare the
inocula, and bacterial doses were confirmed by serial dilution and plating. Mice were anesthetized with keta-
mine/xylazine, and intranasal inoculation was performed by the administration of 20 mL (2 � 106 CFU/dose) of
the inoculum, applying 10mL into each nare. Mice were monitored for 6 days, and moribund mice were eutha-
nized (31).

Opsonophagocytic killing assays. OPK assays were performed following methods as previously
described (45). While OPK activity below 50% can be statistically significant, OPK activity is generally
only biologically significant when above 50% (24).

Splenocyte isolation and coculture assays for IL-17 secretion. Splenocytes were isolated and
stimulated with vaccine antigens as previously described (23). Briefly, spleens were aseptically removed and
suspended in PBS containing 2% heat-inactivated FCS. Spleens were disaggregated by passing through 100-
micron nylon screens into a petri dish. Erythrocytes were lysed using a Mouse Erythrocyte Lyse Kit (R&D
Systems) per the manufacturer’s protocol. Cells were centrifuged and resuspended in 5 mL cR10 (RPMI with
2 mM glutamine, 1 mM sodium pyruvate, 1� nonessential amino acids solution, 1� penicillin/steptomycin,
55 mM 2-mercaptoethanol, and 10% heat-inactivated FCS, all from Invitrogen), adjusted 1 � 106 cells/mL,
and seeded into 96-well round-bottom polystyrene plates. Cells were stimulated with 1 mg/mL protein for
7 days at 37°C in 5% CO2. Supernatants were collected and assayed for IL-17 by ELISA (R&D Systems).

ELISAs. ELISAs to measure PopB-, OprF/I-, or whole P. aeruginosa-specific IgG titers were performed
with plates (Immulon 4HBX) coated with proteins at 1mg/mL or live bacteria, as previously described (32). P. aeru-
ginosa strain N13 was grown in LB containing 5 mM EGTA to induce the type III secretion system (TTSS) to maxi-
mize PopB expression (46).

OprF/I-IFN-cbinding inhibition assays. Assays for the inhibition of binding of human IFN-g to plate-
bound OprF/I was performed as previously reported (19). Briefly, 100 mL of OprF/I (1 mg/mL) was applied
to the wells of an ELISA plate (Immulon 4HBX) and incubated overnight at 4°C. After washing with PBST,
the plates were blocked with 5% BSA in PBS for 1 h at 37°C. OprF/I-coated plates were then incubated
with 100 mL of 1:2 dilutions of antisera for 2 h at 37°C. After washing, 100 mL of human IFN-g (0.5 mg/mL)
(R & D Systems) was added to the wells and incubated overnight at 4°C. The bound IFN-g was detected
using the detection antibody and substrate system using human IFN-g DuoSet reagents (R & D Systems)
according to the manufacturer’s protocol.

Statistical analyses. All analyses were performed using Prism (GraphPad Software). Survival data
were analyzed with the Kaplan-Meier method and log-rank tests. Parametric data were analyzed by
ANOVA with Šídák's post hoc multiple-comparison test for pairwise comparisons between groups. EC50

was determined by nonlinear regression with 95% confidence intervals based on profile likelihood. We
determined EC50 values to be statistically significant if the 95% CIs did not overlap.
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