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Abstract

ADPKD is marked by gradual renal cyst and kidney enlargement and ultimately renal failure. 

Magnetic resonance-based, height-adjusted total kidney volume (htTKV) over 600 ml/m predicts 

the development of CKD Stage 3 within 8 years in the Consortium for Radiologic Imaging in 

Polycystic Kidney Disease cohort. Here we compared simultaneous ultrasound and magnetic 

resonance imaging to determine if ultrasound and kidney length (KL) predict future CKD Stage 3 

over longer periods of follow-up. A total of 241 ADPKD patients, 15–46 years, with creatinine 

clearance of 70 ml/min and above had iothalamate clearance, magnetic resonance and ultrasound 

evaluations. Participants underwent an average of five repeat clearance measurements over a mean 

follow-up of 9.3 years. Ultrasound and magnetic resonance-based TKV and KL were compared 

using Bland-Altman plots and intra-class correlations. Each measure was tested to predict future 

CKD Stage 3. Relatively strong intra-class correlations between ultrasound and magnetic 

resonance were found for both htTKV and KL (0.81 and 0.85, respectively). Ultrasound and 

magnetic resonance-based htTKV and KL predicted future CKD Stage 3 similarly (AUC of 0.87, 

0.88, 0.87 and 0.88 respectively). An ultrasound kidney length over 16.5 cm and htTKV over 650 

ml/m had the best cut-point for predicting the development of CKD Stage 3. Thus, kidney length 

alone is sufficient to stratify the risk of progression to renal insufficiency early in ADPKD using 

either ultrasound or magnetic resonance imaging.
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Introduction

Autosomal dominant polycystic kidney disease (ADPKD) is the most common hereditary 

kidney disorder and the fourth leading cause of renal failure in the USA accounting for 4.8% 

of the ESRD population1. In ADPKD, cysts develop and subsequently enlarge resulting in 

increased kidney size decades prior to decline in kidney function, with ESRD typically 

occurring in the 6th decade of life2. Recently, renal cyst burden measured as total kidney 

volume (TKV) determined by magnetic resonance imaging (MR) has been shown to be 

accurate, reproducible and able to detect small changes in TKV over a short period of time3. 

TKV independently and strongly predicts the future development of chronic kidney disease 

(CKD) stage 3 within 8 years in ADPKD with a threshold of 1047 mls or 600 ml/m when 

corrected for height (htTKV)3. These data have enabled the design and implementation of 

several randomized clinical trials (RCT) in ADPKD4 and large patient registries show that 

TKV in addition to age and kidney function confidently predict a 30% decline in kidney 

function, doubling of serum creatinine concentration and progression to ESRD3. This 

increasing body of evidence has led to TKV being reviewed by the Food and Drug 

Administration as an enrichment biomarker for inclusion in clinical trials of ADPKD4.

Although highly accurate and reproducible, TKV measurements by MR are time-

consuming, expensive and not available to all patients. MR relies on specific image 

acquisition parameters, patient adherence, and relatively manual and time-intensive image 

analyses done by trained personnel. Alternative approaches to estimate TKV from MR 

images have been developed. In one approach a representative mid-slice surface area is 

multiplied by the slice thickness and the number of slices required to image the entire 

kidney5. Another approach utilizes the ellipsoid formula based on maximum coronal or 

sagittal dimensions for kidney length and axial dimensions for width and depth6. This 

approach has been used successfully with US to follow TKV in patients over extended 

periods (often decades) of time and associates with complications in ADPKD such as 

hypertension and renal disease progression7. However, the accuracy and precision of US are 

insufficiently precise to support its use to measure TKV in interventional clinical trials. 

Kidney length can estimate TKV5 and is easily obtained by US or MR. US is readily 

available in all medical centers, is the most commonly employed imaging modality 

worldwide for diagnosing ADPKD, and is advantageous due to its relatively low cost and 

lack of radiation exposure. Estimation of TKV from kidney length reduces imaging and 

analysis time as well as cost but it is unknown how well kidney length performs in 

predicting the future development of CKD in ADPKD and what the impact of the imaging 

modality chosen (US vs. MRI) has on this prediction model.

In the Consortium for Radiologic Imaging in Polycystic Kidney Disease (CRISP) cohort, US 

and MR measurements were made at the baseline visit and the first year of follow-up. As 

anticipated, MR was more accurate and reproducible than US6. Although US accurately 
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approximated TKV in individuals with relatively small kidneys, the agreement between US 

and TKV declined as kidney size increased with US systematically overestimating TKV6. 

Given the greater variability of US-based TKV measurements and the reduced precision in 

assessing kidney cyst burden, US was deemed inferior for the purposes of imaging 

biomarker development, and was discontinued for the rest of the CRISP follow-up.

To assess whether US-based measurements of TKV or kidney length reliably predict future 

renal insufficiency in ADPKD, we compared the US and MR imaging data collected 

simultaneously during the baseline visit in CRISP participants, similar to previous studies 

evaluating htTKV measurements by MR3. We compared MR and US kidney length and 

determined the accuracy of MR and US-based htTKV and kidney length to predict future 

CKD Stage 3 measured by iothalamate clearance in ADPKD over 13 years of follow-up.

Results

The mean follow-up (i.e. time from baseline to last measured iothalamate clearance) was 9.3 

years (SD 3.3 years) with a median follow-up of 10.8 years. The middle 50% of follow-up 

times was 8.2 to 11.3 years. A total of 202 (83.8%) and 182 (75.5%) had an iothalamate 

clearance measured at a minimum of 6 and 8 years after baseline, respectively. Only 23 

(9.5%) did not have a measurement after 3 years. The mean number of visits per person was 

6.0 (SD=1.6) with a median of 7 visits and middle 50% of 5 to 7 visits. Only 14 people 

(5.8%) had 3 or fewer visits. Baseline distributions are described in Table 1; 88% were 

white, 60% were women, and 10% were black. Average baseline htTKV by MR was 637 ml 

(SD ±371 ml). Average kidney length measured by US and MR for the left kidney was 16.8 

±3.9 cm and 16.3 ±3.5 cm and the right kidney was 16.2±3.9 cm and 15.8 cm±3.2 cm 

respectively. Bland-Altman plots demonstrated high levels of agreement between US and 

MR kidney length (Figures 1a–d) as did the scatter plots (Figures 2a–b). The bias, or mean 

paired difference (± standard deviation) of US – MR measurement was 44.2±127.6 mls for 

right and 44.9±147.4 mls for left kidney htTKV, 0.39±2.08 cm for right and 0.51±2.11 cm 

for left kidney length. These levels of bias were all statistically significant (p<0.01; paired t-

test) indicating that US systematically overestimates kidney size. Intraclass correlations 

(ICC) reflected a relatively strong agreement between the two modalities with intraclass 

correlation coefficient (ICC) for both genders for the right kidney being 0.828 (0.788 to 

0.869) and the left kidney being 0.827 (0.786 to 0.868). The strongest ICC was seen in men 

for the left kidney with an ICC of 0.849 (0.792 to 0.906) (Table 2).

Table 3 shows the classification results for each of the four imaging measures, using both 

the multivariable model (that adjusts for serum creatinine, BUN, urine albumin excretion, 

urine MCP-1, and age) and the results for each individual measurement. Results show that 

all four measurements are similar (Figure 3) in the multivariable model (with the an 

AUROC of 0.87 to 0.88). The unadjusted results were also very similar with an AUROC of 

0.82 and 0.83 for US and MR htTKV and an AUROC of 0.81 and 0.78 for US and MR 

kidney length. The optimal cut points (which best balanced between sensitivity and 

specificity) were 650 and 550 ml for US and MR htTKV (based on intervals of 50 mls) and 

16.5 and 16.0 cm for US and MR kidney length (based on intervals of 0.5 cm), respectively.
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It is worth noting that the imaging measures each led to higher individual classification 

results than the other baseline covariates, when considered individually, which included 

serum creatinine (AUROC=0.75), BUN (AUROC=0.70), urine albumin (AUROC=0.63), 

urine MCP-1 (AUROC=0.74), and age (AUROC=0.71). The NRI and IDI also reflected 

improved classification with imaging measures added to the multivariable model versus the 

model without the imaging measurement (i.e. with the other five covariates). The NRI 

estimates ranged between 0.02 and 0.07, with confidence intervals crossing zero. The IDI 

statistics, all had lower limits to the CI above 0.0 with estimates of 0.03 to 0.05, implying 

that addition of all imaging measurements lead to a similar net gain of 3–5% in the predicted 

probability of Stage 3 CKD.

Discussion

Kidney cyst burden in ADPKD is most accurately reflected by TKV measurements obtained 

using MR in ADPKD. In addition, TKV is currently the strongest available predictor of 

future renal insufficiency in ADPKD. US measurements of TKV have been shown to be 

inferior to MR measurements, typically overestimating true kidney size. As well US 

measures of TKV demonstrate reduced accuracy and reproducibility compared to MR, 

particularly in larger kidneys and are not well suited to tracking disease progression over 

short periods of time6. However, US determinants of TKV are relevant in ADPKD and 

provide a quantitative assessment of cyst burden and associate with renal complications of 

ADPKD including hypertension, gross hematuria, proteinuria and risk for progression to 

ESRD2,7–18. While US may not be accurate enough to assess the impact of therapies on 

renal cyst burden in clinical trials, this study demonstrates that US-based htTKV can be used 

as a tool to predict future loss of kidney function and renal insufficiency and therefore 

patient risk stratification for disease progression. Importantly, kidney length is a standard 

component of every renal evaluation during imaging by US and can easily be performed by 

MR. As well, higher resolution US imaging has been developed which will make these 

measures even more reliable.

Comparisons of US and MR with regard to kidney length and TKV were informative. This 

study shows that US and MR measurements are similar in kidneys of normal to moderate 

size (< 17 cm). The high level of accuracy of US when kidney length is < 17 cm is most 

likely due to the fact that the entire kidney can be obtained in a single view. This kidney 

length is greater than the cut point that provided the best combined sensitivity and 

specificity in AUROC for predicting future renal insufficiency in ADPKD. US had a 

reduced agreement with MR-based TKV, overestimating TKV by 11% and 9% using 

ellipsoid formula and direct methodologies, respectively. When assessing the ability of 

kidney length to predict future CKD stage 3, US and MR kidney length demonstrated robust 

power (AUROC = 0.88 and 0.87 respectively) similar to baseline htTKV by MR and US 

(AUROC = 0.87 and 0.86 respectively), Table 3.

TKV has been established as a strong predictor of renal outcomes and complications in 

ADPKD patients. This prediction is stronger than and replaces PKD1 genotype, proteinuria 

and hypertension status, all known to associate with faster progression to renal failure. MR 

is known to be better than US with regard to accuracy and reproducibility, which is 
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important for monitoring for disease progression over a short period of time as would be the 

case in clinical trials. The agreement between US and MR decreases as kidney size 

increases. US image acquisition is operator-dependent and requires appropriate 

measurement of depth and width for assessment of TKV, unlike kidney length which is 

standard part of each US study. US is readily available and does not have any restrictions in 

terms of metallic clips or other implanted devices. Our study indicates that prediction of 

future CKD requires only a measurement of kidney length for prediction of future CKD 

stage 3 within 8 years and that US and MR are equivalent for this purpose. Using US kidney 

length to predict future CKD stage 3 in ADPKD will reduce costs while providing the 

necessary prognostic information regarding potential outcomes and complications related to 

ADPKD.

Methods

241 ADPKD patients between 15 to 46 years of age with relatively intact kidney function 

with an estimated creatinine clearance of > 70 ml/min using the Cockcroft Gault equation 

participated in the CRISP study. Four centers participated in this study including 1) 

University of Alabama at Birmingham 2) Emory University 3) University of Kansas 

Medical Center and 4) Mayo College of Medicine. The study protocol was approved by the 

steering committee and by the Institutional Review Boards at each participating clinical 

center. The original description of this study is provided in detail19. Briefly, after screening 

and enrollment, CRISP participants underwent a detailed medical history including the year 

and method of diagnosis of ADPKD along with any ADPKD associated complications, prior 

medical conditions, hospitalizations or surgeries. Medication exposures were obtained 

including over-the-counter and prescription medications. At baseline, subjects completed a 

24-hour urine collection for creatinine, albumin and electrolyte excretions. Glomerular 

filtration rate (GFR) was established using non-isotopic iothalamate clearance.

MR and US were obtained during the initial baseline study of CRISP at all 4 participating 

clinical centers. Subjects underwent MR imaging using a standardized protocol approved by 

the Steering Committee and has been published elsewhere19. MR images were obtained at 

each clinical site by a trained imaging specialist with the patient in supine position using a 

dedicated 1.5 T scanner. Images were obtained with a slice thickness of 3 mm and TKV was 

determined by summing cross-sectional area of T1 weighted images. Experienced 

sonographers using 2 to 5 Hz curvilinear phased array probes performed US following MR 

imaging. Kidney length was measured by the sonographer from longitudinal images 

obtained in a sagittal plane6. US based TKV was measured using two different techniques. 

First the ellipsoid formula1 was used to determine TKV. Second, the cross sectional area of 

the kidney was measured in transverse sections at 2 cm intervals. The sum of the cross-

sectional areas was multiplied by 2 to estimate TKV6.

MR-Based Image Analysis

For kidney length, analysts used a semi-automated image analysis program developed and 

implemented in-house. The image analyst scrolled the MR images and identified and 

marked both the upper most and lower most edges of the kidney. The coronal MR images of 
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each kidney were displayed. These edge points were usually determined using two different 

coronal MR slices because the longest length of kidney is on the oblique coronal plane of 

the kidney. Kidney length was automatically calculated from the distance between the upper 

and lower edge points. For MR based TKV measures, detailed information regarding the 

analysis is published elsewhere19.

Statistical Methods

Comparisons between US and MR htTKV and kidney length measures were initially 

performed separately in men and women. The level of agreement between US and MR was 

displayed using Bland-Altman plots and further quantified using intra-class correlations. 

Analyses were performed using US and MR htTKV and kidney length to predict CKD stage 

3 (iothalamate clearance < 60 ml/min); CKD stage for each participant was determined 

based on their last iothalamate clearance measurement over the 13 years of follow-up. The 

prediction models for CKD stage 3 used a logistic model that adjusted for other variables 

including serum creatinine, BUN, urine albumin excretion, urine monocyte chemo-attractant 

protein-1 (MCP-1), and age as reported previously for MR-based htTKV3. Areas under the 

receiver operator characteristic (AUROC) curve were determined across 50 ml volume 

intervals to determine the both sensitivity and specificity for predicting CKD stage 3. Cut-

points leading to the best balance of sensitivity and specificity were reported for each 

measure. Since follow-up times were variable across subjects, a sensitivity analysis was 

conducted as follows: the AUROC analysis was repeated using the following data sets: 1) 

limiting the analysis to all subjects who were followed for at least 6 years, and 2) limiting 

the analysis to all subjects who were followed for at least 12 years. Since results for these 

analyses were similar, we used all follow-up data for the analysis reported here.

Each of the other five covariates (serum creatinine, BUN, urine albumin excretion, urine 

MCP-1, and age) were also assessed for their prognostic ability using an (unadjusted) 

AUROC curve. Finally, US and MR htTKV and kidney length were assessed for their 

additional prognostic ability in the multivariable model above and beyond the prognostic 

ability of the model with all of the other five covariates. This was accomplished using the 

net reclassification index (NRI) and the integrated discrimination improvement (IDI) index. 

The NRI measures the net gain in correct classification of subjects as high versus low risk 

(where we used the median predicted probability of CKD stage 3 as a cut-off); the IDI 

measures the net improvement in the continuous predicted probabilities20. The NRI and IDI 

were calculated using the incrisk function in Stata 12 (which produces a confidence interval 

rather than a p-value).
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Fig 1. 
(a–d): Bland-Altman plots comparing MR and US kidney length for right (a) and left 

kidneys (b) in 234 CRISP participants and in those with kidney length < 17 cm for right (c) 

and left (d) kidneys. 2SD of agreement are provided in shaded interval.
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Fig 2. 
(a–b): Scatterplots of MR and US kidney length for right (a) and left (b) kidneys in 234 

CRISP participants.
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Figure 3. 
ROC curve predicting CKD stage 3a comparing MR and US based length along with MR 

and US based htTKV.
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Table 1

Baseline Characteristics of CRISP participants

Variable Mean ± SD Women
N = 145

Men
N = 96

Age (yrs) 33.8 ± 8.9 34.0 ± 9.0 33.5 ± 8.8

Weight (kg) 77.0 ± 18.4 69.7 ± 15.8 88.1 ± 16.6

BMI (m2) 25.9 ± 5.2 25.5 ± 5.6 26.5 ± 4.7

MR htTKV (ml/m) 637.5 ± 371.8 (N=231) 632.7 ± 360.9 (N=138) 644 ± 389.4 (N=93)

US htTKV (ml/m) 719.6 ± 506.1 (N=231) 694.0 ± 496.3 (N=139) 758.2 ± 520.8 (N=92)

MR TKV (ml) 1093.9 ± 672.0 (N=229) 1031.7 ± 620.9 (N=137) 1186.6 ± 735.5 (N=92)

US TKV (ml) 1247.4 ± 896.7 (N=231) 1151.8 ± 836.0 (N=139) 1391.9 ± 968.2 (N=92)

L US KL (cm) 16.8 ± 3.9 (N=232) 16.4 ± 3.8 (N=139) 17.3 ± 3.9 (N=93)

L MR KL (cm) 16.3 ± 3.4 (N=232) 16.1 ± 3.5 (N=139) 16.6 ± 3.3 (N=93)

R US KL (cm) 16.2 ± 3.9 (N=232) 15.9 ± 3.8 (N=139) 16.5 ± 4.0 (N=93)

R MR KL (cm) 15.8 ± 3.2 (N=232) 15.7 ± 3.3 (N=139) 15.9 ± 3.1 (N=93)

SBP (mm Hg) 125.1 ± 13.6 122.7 ± 14.0 128.5 ± 12.3

DBP (mm Hg) 83.4 ± 10.7 83.2 ± 11.0 83.6 ± 10.4

MAP (mm Hg) 98.2 ± 10.9 97.4 ± 11.5 99.4 ± 9.7

Serum creatinine (mg/dL) GFR (mL/mm/1.73 m2) 1.0 ± 0.2 98.2 ± 24.9 0.9 ± 0.2 99.8 ± 26.6 1.1 ± 0.2 95.8 ± 22.1

Sodium excretion (mEq/day) 185.5 ± 87.2 162.0 ± 74.8 220.9 ± 92.8

Potassium excretion (mEq/day) 56.5 ± 24.7 51.1 ± 21.3 64.7 ± 27.3

Albumin excretion (mg/day) 42.4 ± 60.9 39.4 ± 48.2 47.0 ± 76.2

Total cholesterol (mg/dL) 172.9 ± 37.0 169.2 ± 34.1 178.6 ± 40.6

HDL (mg/dL) 49.2 ± 22.6 51.8 ± 12.5 45.3 ± 31.96

LDL (mg/dL) 102.4 ± 34.3 97.6 ± 28.9 109.8 ± 40.2

Triglycerides (mg/dL) 120.2 ± 95.0 102.4 ± 63.0 147.5 ± 125.0
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Table 2

Interclass correlation coefficients comparing US and MR based measurements of kidney length in CRISP men 

and women at baseline.

Summary of agreement based on intra-class correlations

Gender Side ICC ICC 95% CI

Overall Right 0.82854 0.78816, 0.86893

Left 0.82709 0.78640, 0.86779

Male Right 0.84375 0.78504, 0.90246

Left 0.84892 0.79200, 0.90585

Female Right 0.81864 0.76372, 0.87357

Left 0.81137 0.75446, 0.86827
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Table 3

AUC ROC values for htTKV and Kidney Length (KL) predicting CKD Stage 3 (GFR < 60 ml/min) within 8 

years in CRISP.

Method AUC ROC sensitivity specificity Optimal cut point

htTKV (MR) ml/m (ref 7) 0.84 74.0% 75.0% 600 ml

htTKV (US) ml/m 0.87 79.5% 73.2% 630 ml

KL (MR) cm 0.87 85.4% 92.3% 16.7 cm

KL (US) cm 0.86 82.9% 80.8% 16.8 cm
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