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Abstract
In the era of autonomous robots, multi-targets search methods inspired researchers to develop adapted algorithms to robot
constraints, and with the rising of Swarm Intelligence approaches, Swarm Robotics became a very popular topic. In this
paper, the problem of searching for an exponentially increasing number of targets in a complex and unknown environment
is addressed. Our main objective is to propose a Robotic target search strategy based on the Elephants Herding Optimization
(EHO) algorithm, namely Robotic-EHO (REHO). The main additions were the collision-free path planning strategy, the
velocity limitation, and the extension to the multi-target version in discrete environments. The proposed method has been
the subject of many experiments, emulating the search of infected individuals by COVID-19 in a context of containment
within complex and unknown random environments, as well as in the real case study of the USA. The particularity of these
environments is their increasing targets’ number and the dynamic Containment Rate (CR) that we propose. The experimental
results show that REHO reacts much better in high CR, early start search mission, and where the robots’ speed is higher than
the virus spread speed.
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1 Introduction

After the appearance of the SARS in 2002, A(H1N1) in
2009, MERS in 2012, and Ebola in 2014, viruses continue
to emerge and spread in 2019 with the new SARS-CoV-2
called COVID-19. The latter was declared as a pandemic
by the World Health Organization (WHO) in March 2020.
Subsequently, the focus of recent research has been on mod-
eling approaches to estimate the outbreak growth and the
impact of different individual and governmental measures to
stop the spread of the COVID-19. Almost all studies noticed
the impressive growing number of infected people and agree
on the importance of active surveillance, contact tracing,
containment, quarantine, and early strong social distancing
efforts to stop the transmission of the virus, in addition to the
need for massive screening of potentially infected individu-
als in order to isolate them. This last point can be linked to a
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problem of searching for targets in a complex and unknown
environment, where the targets may be potentially affected
individuals. The searchwill then be guided by contact tracing
methods in a containment context. As reported in [1], in the
Target Detection Problems (TDP) the objective is to find or
detect one or multiple targets in a given environment. They
may be tackled with one or multiple sensors. When mobile
sensors are exploited, it is referred to as a mobile search, the
problem becomes related to path planning. Target search is
known as one of the benchmark problems in SwarmRobotics
(SRs), which are basically Multi-Robots Systems (MRSs)
with some special properties. Mobile robots can operate in
complex and unknown environments by removing the need
for human intervention. They perform tasks that humans can-
not accomplish or are risky for themwith reduced cost by the
application of Swarm Intelligence (SI) algorithms [2,3].

This paper proposes an extension of Elephants Herd-
ing Optimization (EHO) [4,5] to SRs, named as REHO
(Robotic-EHO), taking into account real-robots limits and
an obstacle avoidance strategy. REHO is a Swarm Intel-
ligence approach adapted for dynamic multi-target search
in complex and unknown environments, where dynamicity
is expressed by the variable Containment Rate and target’s
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number growing exponentially. The contributionof this paper
is summarized in two points: first, based on existing static
environments representation for targets’ search problem, we
propose a representation of dynamic environments to rep-
resent the COVID-19 (and other close-contact pathogens)
spread and evolution in the time (days). To our knowledge,
thismodeling for TDPhas never been proposed before. Then,
we propose a Robotic adaptation of EHO algorithm (REHO)
inspired by the herding behavior of elephant groups for the
positionupdate.Acollision free path planning strategy is then
provided for discrete environments (sampling-based). Such
a result is exploited in this work to break the transmission
chain and eradicate the COVID-19 spread.

The remainder of the paper is organized into six sections.
The next Section presents an overview of recent research
efforts related to both of the COVID-19 and Swarm Robotics
approaches of the targets’ detection problem. Section 3 is
devoted to the modeling of the dynamic environment to
mimic the virus spread. Conversion to a target detection prob-
lem is also presented here. In Sect. 4 we introduce our REHO
search approach. Experimental results are presented and ana-
lyzed in Sect. 5. Finally, Sect. 6 concludes the paper.

2 Related work

From the first apparition of the coronavirus disease (COVID-
19) in December 2019 in Wuhan, China, to its global spread
around the world, the number of researchers working on
the subject has widely increased and it continues to attract
attention. Recent studies presented in [6,7] indicate that the
COVID-19 is mainly characterized by three most important
parameters. First, the initial reproductive number or repro-
ductive rate R0, which is a measure of transmission that
provides the number of persons that one infected person con-
taminates per day. The second is the initial number of cases
before starting applying any interventions, and the last one
is the incubation period of the virus.

Several models for the COVID-19 outbreak have been
proposed to estimate the evolution of the virus taking into
account different actions and interventions which aim to stop
its spread. The main key to achieve this is to reduce the effec-
tive reproduction number, Rt to a value under 1 [6]. For that,
the model in [7] considers the individual behavioral reac-
tion and governmental actions, like holiday extension, travel
restriction, hospitalization, and containment. The author in
[8] focusedon the impact of traditional public health outbreak
response tactics: isolation, quarantine, social distancing, and
community containment. Besides, authors in [9] developed
two modeling approaches to infer the growth rate of the out-
break when taking non-pharmaceutical measurements such
as contact tracing, quarantine, and social distancing. In the

article [10] authors used a mathematical model to assess the
virus evolution when applying isolation and contact tracing.

Also, in [11] an epidemiological modeling approach for
COVID-19 that take into account the lockdown measures is
proposed.

All of these researches show that active surveillance, con-
tact tracing, quarantine, and early strong social distancing
efforts are needed to stop transmission of the virus. They all
share two main points that are the big impact of containment
and the importance of contact tracing. As reported in [12],
initial containment measures taken in China proved to reduce
human-to-human transmission successfully, which strength-
ens the forecasting’s validity of the previously cited studies.

However, most of these studies do not take into account
the effective dynamicity of the containment, which is an
extremely important parameter that directly affects the repro-
duction rate Rt .

Authors of [10] also mentioned that the containment is
not enough, due to the long incubation period of the virus,
it is necessary to initiate a contact tracing procedure in addi-
tion to the containment measures. To solve this issue, many
researchers have proposed various methods of contact trac-
ing as mentioned in [13,14]. Currently, after determining the
potentially infected people, few governments take care of
recovering their phone numbers to contact and notify them.
However, this is not sufficient at all, it is necessary to reach
them so that they carry out the PCR1 test, and to support them
in case of proven contamination.

A solution to this problemwould be to carry out a targeted
screening, by considering this task as being a Multi-target
search problem in a complex and unknown environment. In
order to avoid endangeringmore people because of the lackof
staff to face this pandemic, in addition to itsmany advantages,
Multi-Robots Systems are the most suitable for this task.
Numerous researches were undertaken to solve the target
research problem. Due to their efficacy, most of the recent
resolution methods use Swarm Intelligence algorithms as the
cooperative strategy of Swarm Robotics.

On the one hand, we have MSL-PSO (Multi-Swarm PSO
with LS) which is a hybrid of modified Particle Swarm Opti-
mization and Local Search on a Multi-robot Search System
[15], A-RPSO (Adaptive Robotic Particle Swarm Optimiza-
tion) [3] that provides an adaptive inertiaweight to avoid local
optima in addition to the obstacle avoidance strategy of the
RPSO [16], and Multi-swarm hybrid FOA-PSO (MFPSO)
[17] which is a hybrid of PSO and Fruit Fly Optimiza-
tion Algorithm enhanced with a Multi-swarm strategy and
a Multi-Scale Cooperative Mutation used against the limita-
tion of local optima.

We have found that all these PSO-based approaches have
only been applied for the search of a single target where

1 Polymerase Chain Reaction.
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A-RPSO and MFPSO perform well. But when it comes to
multi-target search, they experience a loss in diversity and
suffer from stagnation after having converged on a first target.
Furthermore, these approaches have only been applied in
completely static environments and without providing the
full path from the robot’s initial positions to the target.

On the other hand, we have some approaches that consider
multi-target search. In [18],Multi-Target basedmethods such
as Improved Group Explosion Strategy (IGES) for searching
multiple targets using Swarm Robotics were proposed. In
theMulti-target SearchProblemwithEnvironmentalRestric-
tions in SwarmRobotics [19], three algorithms are compared
(IGES, GES, and RPSO). But, their modeling of the tar-
get search problem is somehow different. In IGES, a target
requires many iterations from a robot to be collected or the
cooperation of multiple individuals for a reduced time.

Also, Shijie Lu andYingguangHao proposed theAO-PSO
(Auxiliary Orientation in Particle Swarm Optimization) [2]
approach, as a Swarm Robotic cooperative for the TDP. But,
AO-PSO uses task assignment and its performance depends
on the communication range. These details take their defini-
tion of TDP a bit away from what we are looking for.

Furthermore, all of the above algorithms still do not
account for the dynamic evolution of targets’ number. Also,
their fitness function only considers the target’s distance
which does not correspond to the problem we are seeking
to solve.

In this study, we tackled the COVID-19 propagation issue
in the TDP’s manner with an original approach based on
metaheuristics. Our approach is compared to the A-RPSO
and MFPSO algorithms, whose application is closest to that
sought, and that have the best performance compared with
other algorithms.

3 Modeling

As referred in [1], target detection problems consist in finding
or detecting a target in a given environment. Depending on
the models, the assumptions and the approaches, it may con-
cern one or multiple targets and may be tackled with one or
multiple sensors, either with mobile sensors where we refer
to it as mobile search, or from fixed static sensors where it
is known as static surveillance. TDP are commonly summa-
rized as an environment with no map, where the unknown
area is unstructured, complex, and possibly dangerous for
humans’ interventions. Targets must be detected and pro-
cessed as quickly as possible, as timely intervention would
result in better performances [20].

The eradication of COVID-19 spread in a context of con-
tainment is a particular TDP. We aim to search and find
infected individuals in a bounded harsh environment and
return a satisfiable path to get them to the hospital in order to

take care of them and stop the pandemic. To formally define
this problem for Swarm Robotics and adapt it to this partic-
ular issue, we made the following assumptions.

3.1 Assumptions about environment

The search environment is a grid with a square shape. As
schematized in Fig. 1, it is a 2D grid-based representation
composed of multiple zones. Each position of coordinate
(x, y) has a unique value, positive values within the range
[0 − 1] to represent Containment Rate (CR), and negative
values (−1) for obstacles. The environment can hold Robots,
Targets, and Obstacles. We only consider Complex environ-
ments, which consist of a high density of obstacles.

A zone is a subarea of the environment where the posi-
tion squares have one same value that corresponds to the local
CR, its values can vary from 0 to 100%. The lower the Con-
tainment Rate, the greater the risk that the area will contain
infected individuals.

A Target represents individuals likely to be infected.
The estimated target positions can be defined by suscepti-
ble infected individuals by Contact Tracing methods, such
as for each confirmed case of COVID-19 a certain number of
potential targets are defined. We assume that a target is con-
sidered as an (x, y) stationary position of the environment.
The number of targets grows depending on the virus spread
speed and their positions are randomly generated.

Obstacles are objects that obstruct the movement of
robots, they block them from positioning themselves there or
cross through. Obstacles are abstracted to rectangular shapes
with variable dimensions (depending on the environment
size), where all the obstacle area takes the value −1. Obsta-
cles positions are randomly generated, they can overlap each
other and form different shapes, but cannot be placed over
the position of a target.

3.2 Assumptions about robots

Swarm robotics is constituted of mobile robots. Each robot is
defined by its position and performance. It occupies a single
position P defined by its coordinates (x, y) of the environ-
ment, abstracted to be a square of one unit side length. We
assume that each robot can locate its own position relative to
the environment in order to update it and share it with other
robots according to the searching strategy.

The performance of each robot is evaluated via the fitness
function. Its values can vary within the range [0 − 1], the
greater is the fitness value, the closer to a target the robot is,
and when it is equal to 1 it means a target is found. Fitness
function depends on both the Containment Rate of each zone
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Fig. 1 Representation of an
environment’s grid with it
different components

and the distance between the robot and a target. It is defined
by Eq. (1).

Fitness(x, y) = 1−Min

⎛
⎝CR(x, y) + 2 ∗ Dist(x,y)

diagSize

3
,
Dist(x, y)

diagSize)

⎞
⎠ (1)

where CR(x,y) is the Containment Rate of the robot’s current
position with CR in the range [0− 1], (xt , yt ) position of the
closest target, diagSize is the length of the environment’s grid
diagonal, and Dist(x,y) is the euclidean distance between a
target and the current robot position, it’s given by Eq. (2).

Dist(x, y) =
√

(x − xt )2 + (y − yt )2 (2)

Since the shape of the environment grids are squares, diag-
Size is equal to

√
2 * Size (environment side length).

Robots are characterized by simple computation capacity,
reduced memory, power limitation, a limited velocity, and
must provide an obstacle avoidance strategy. They totally
ignore targets and obstacles positions. However, they are
fitted with three kinds of sensors. The first one is used to
evaluate the robot’s performance, the second one for obstacle
perception, and the third sensor is the biological COVID-19
test that allows determining if an individual is infected or
not. These sensors have a restricted range of perception: the
radius of fitness and obstacles perception range is set to 10
squares around each robot (see Fig. 1), while the biological
test is limited to the current robot’s position.

3.3 Dynamic environment simulating COVID-19
spread

In a realistic situation, all cities never apply the containment
in the same way. This is what gives rise to the formation
of zones with different rates of containment. Based on this
description, random surfaces (zones) of the environment are
generated and every zone is initialized to a random Contain-
ment Rate value within the range [0 − 1]. Also, the CR is
not fixed for a given zone, it changes over the days. CR can
increase, decrease, or fluctuate in a random way. This Con-
tainment Rate evolution is made via updating the CR interval
boundaries by adding or subtracting 5%of theContainment’s
rate, as shown in Eq. (3).

[Min,Max] :

⎧⎪⎨
⎪⎩

Min = Min + (5 ∗ Day/100); if growing CR

[Min, Max] no change; if random CR

Max = Max − (5 ∗ Day/100); if diminishing CR

(3)

The impact of the Containment Rate (CR) on the Repro-
duction rate (Rday) for any day d, in a given zone z, can be
expressed with Eq. (4).

Rd,z = R0 ∗ (1 − CRd,z) (4)

where R0 is the estimated Reproduction rate without con-
tainment and CRd,z is the Containment Rate of the zone z in
the day d. Thus, R is inversely proportional to CR.

R, in turn, impacts the number of COVID-19 new cases,
so the number of targets is updated by Eq. (5).

#Targetd = Rd ∗ #Targetd−1 (5)
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Fig. 2 Containment rate impact on the number of new cases [21]

where #Targetd and #Targetd−1 are, respectively, the cur-
rent and previous number of targets and Rd the current
Reproduction rate.

By logical deduction, CR impacts the evolution of the
number of new cases. As shown in Fig. 2 the greater is the
ContainmentRate, the slower the virus evolves, and the fewer
individuals are infected.

According to this, the search space is constantly growing
in an exponential way, at each instant d for each target the
size of the search space is equal to Size2. So, the size of the
search space for all targets at instant d is Size2 * #Targetd .
If we use Eq. (5) to calculate the size of the search space at
successive times, we find Eq. (6).

t = 0 : Size2 ∗ #Target0

t = 1 : Size2 ∗ #Target1 = Size2 ∗ (R1 ∗ #Target0)

t = 2 : Size2 ∗ (R2 ∗ #Target1) = Size2 ∗ (R2 ∗ (R1 ∗ #Target0))

...

t = d − 1 : Size2 ∗ (Rd−1 ∗ #Targetd−2)

= Size2 ∗ (Rd−1 ∗ (Rd−2...R2 ∗ (R1 ∗ #Target0)..))

t = d : Size2 ∗ (Rd ∗ #Targetd−1)

= Size2 ∗ (Rd ∗ (Rd−1 ∗ (Rd−2...R2 ∗ (R1 ∗ #Target0)..)))

(6)

Then, according toEq. (4),weknow that Rt depends on the
initial R0. Ifwe consider theworst case of 0%ofContainment
Rate, we obtain: R0 = R1 = R2 = · · · = Rd−1 = Rd . And
when we replace them in Eq. (6) it will turn into Eq. (7).

Size2 ∗ Rd
0 ∗ #Target0 (7)

Here we conclude that the complexity in the worst case for
this problem is exponential2 and is given by Eq. (8).

complexity(d) = Size2 ∗ Rd
0 ∗ #Target0 = O(Rd

0 ) (8)

3.4 A real case study: the case of the USA

In order to convert a real case study to a TDP, we need
detailed data with positions of new COVID-19 cases, so we
choose the data provided by the USA in [22]. This Dataset is
updated every daywith the newly registered cases and deaths,
each line has the form <DATE, COUNTRY, STATE, FIPS,
CASES, DEATHS>. In this study, we only need three of
these information that are <DATE, FIPS, CASES>, where
DATE is the date of registering the newcases. FIPS is the Fed-
eral Information Processing Standards, it represents a unique
state-country codification, and CASES is the number of new
cases registered in the dayDATE. Inwhat followwe excluded
three countries namely: Alaska, Hawaii and Puerto Rico in
order towork on a continuous search area. Below is presented
an analysis of the concerned data.

Figure 3 illustrates boxplots of the daily new cases in the
USA from the first COVID-19 case on 2020-01-21 to 2020-
04-05. It shows that the median daily new cases (represented
by a red line) is 11.5 and the mean (represented by a red
point) is 4424.18. On most days the US registered between
0 and 1657.75 new cases, but there are some days where the
number of new cases reached 34,742 new cases.

From the left boxplot of Fig. 3, we can notice that the
outliers represent all the days where more than 4144.37 new
cases have been registered. But, this threshold depends on the
date we picked the data because this dataset is continuously
updated. For these reasons, we decided to work with this
dataset without replacing the outliers.

As shown in Fig. 4, the USA experienced an irregular
increase of new cases of COVID-19 during the first 40 days.
Then, the number of infected individuals has rapidly grown
to hit amaximum of 34,742 new cases on 2020-04-04 and the
total number of cases reached 336,238 cases on 2020-04-05.

We used a second dataset [23] to get the coordinate posi-
tions of every new case location. From the many available
information in this dataset,weonlykept<COUNTRY_FIPS,
LAT, LNG>, where COUNTRY_FIPS corresponds to the
FIPS of the first dataset, LAT and LNG are the latitude
and longitude coordinates, respectively. Based on these
two datasets, we obtained the needed information, such as
<DATE, LAT, LNG, CASES>, for each new case and of
each new day, we now have its real geographic position on
the USA territorial.

Figure 5 depicts the geographical distribution of the Coro-
navirus cases in theUSA territorial. The cases are represented

2 when the value of R0 is > 1.
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Fig. 3 Boxplot of new
COVID-19 cases in the USA
(Left: with visible outliers.
Right: with hidden outliers)

Fig. 4 Evolution of new and total Coronavirus cases per day in the USA

basedon their coordinates on2020-03-05, 2020-03-10, 2020-
03-15, and 2020-03-20. We can remark the rapid evolution
of the virus spread especially from 2020-03-01 to 2020-03-
15 and then from 2020-03-15 to 2020-03-20. The number of
cases in each city is somehow clustered and represented by a
single point, and the color of each point indicates the number
of cases in the concerned city.

In order to work on a more realistic situation, we opted
for declustering the COVID-19 cases. Every single point that
represents a certain number of cases in a specified day and
city is flared into several points (targets). As shown in Fig.
6, from a single point we first define a radius of 20 squares
around that initial point. Then, we randomly represent as
many cases as necessary inside that radius.

Normalization of the coordinate positions to fit into a
5000 × 5000 squares representation requires the following
steps. First, we get the USA Latitude [25, 50] and Longi-
tude [−125,−65], to adapt them in a square environment.
We choose the largest interval from the two (Longitude in
this case) and define the representable USA surface in a grid

with a square shape, with upper and lower positive values
[MinLat, MaxLat] = [23, 88] and [MinLng, MaxLgn] = [55,
115]. Then, we define our target height and width bound-
aries as [min, max] = [0, 5000]. Finally, to get normalized
coordinate according to our environment representation and
axis orientation, we used Eq. (9) to define targets and borders
positions.

⎧⎪⎪⎨
⎪⎪⎩

NormalizedLat = (90 − originalLat − MinLat) ∗ (max − min)

(MaxLat − MinLat) + min

NormalizedLng = (180 + originalLng − MinLng) ∗ (max − min)

(MaxLng − MinLng) + min

(9)

where 90 value refers to latitude max value that varies from
0◦ at the equator to 90◦ at the poles (−90◦ at the south pole
and 90◦ at the north pole). And 180 refers to the longitude
max value, which varies from 0◦ on the Greenwich meridian
to 180◦ (−180◦ in the west and +180◦ in the east).
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Fig. 5 Geographic distribution of Coronavirus cases in the USA at different times

Finally, Fig. 7 depicts the result3 obtained from this con-
version. The black rectangles are obstacles. The red circles
represent some targets, and the blue ones illustrate robots
with their range of perception. Also, the blue line is a robot’s
path solutions liking between a founded target and their clan’s
start position, which is colored in green. The environment on
the Left represents a randomly generated environment with
a 5000 × 5000 squares size, in which dashed green rectan-
gles are used to represent zones with different Containment
Rate. It should be noted that the zones are created one after
the other. So, the CR of the most recent zone overwrites the
small area where there is overlap. The environment on the
right illustrates the real case study, the USA territorial is rep-
resented surrounded by obstacles to limit the search area.

4 Robotic EHO (REHO) for eradicating
COVID-19

4.1 Original EHO algorithm

Elephants Herding Optimization (EHO) [4,5] is a Swarm
Intelligence based method inspired by the herding behavior

3 The target and robot circles are enlarged to be more perceptible in the
figure.

Fig. 6 Declustering of the represented Coronavirus cases in the USA

of elephants and proposed to solve optimization problems. In
nature, elephants are social animals that live in groups, each
group is composed of several clanswhere each clan live under
the leadership of a matriarch. Females live in family groups,
while male elephants leave their group once they grow up.
In EHO approach, the elephant population is composed of
some clans, and each clan has a fixed number of elephants.
A certain number of male elephants will leave their family
group at each generation. Elephants of a clan live together
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Fig. 7 Left: Random dataset.
Right: USA data representation
for the TDP

under the leadership of a matriarch. The matriarch of each
clan is considered as the fittest elephant of its clan and the
male elephants as the worst ones.

The EHO algorithm follows the below few steps:
Step 1 Initialize the generation counter t = 1; initialize
the population; the empirical parameters: α, β, #Clans,
#Elephants, and MaxGen.
Step 2 Sort all the elephants according to their fitness.
Step 3Clan updating operator using Eq. (10) for all elephants
in each clan.

Xnew,i, j = Xc,i + α ∗ (Xbest,i − Xi, j ) ∗ r (10)

And for the fittest elephants (the matriarch) using Eqs. (11)
and (12).

Xbest,i = β ∗ Xcenter,i (11)

Xcenter,i = 1

#Elephants
∗

∑
Xi, j (12)

Step 4 Separating operator to the worst elephant in each clan
using Eq. (13).

XWorst,i = Xmin + (Xmax − Xmin) ∗ rand (13)

Step 5Evaluate the newpositions of the population; t = t+1.
Step 6 If t == MaxGen, return the best solution, else go to
Step 2.
where:
α: the influence rate of the matriarch on elephants [0, 1].
β: the influence rate of the clan’s gravity center on the matri-
arch [0, 1].
#Clans, #Elephants: respectively, the number of clans and
number of elephants per clan.
MaxGen: the maximum generation.
Ci : the i th clan and Xcenter,i : the gravity center of clan Ci .

Xi, j ,Xnew,i, j : respectively, the actual and newly updated
positions for elephant j in clan Ci .
Xbest,i ,Xworst,i : respectively, the best and the worst elephant
in clan Ci .
Xmax ,Xmin: respectively, the upper and lower bound of the
position of elephant individual.
rand, r: random numbers between 0 and 1.

4.2 Proposed REHO algorithm

Robotics Elephant Herding Optimization (REHO) is an
adapted version of the EHO Swarm intelligence-based
approach on a Multi-Robot System, which become a Swarm
Robotics approach. The main difference between REHO and
EHO resides in the implementation of real-world scenarios
with MRSs characteristics, where robots must have a range
of perception and a maximum velocity limit, in addition to
providing an obstacle avoidance and path planning strategies.

In this paper, we propose the REHO method for the par-
ticular targets’ search problem. It consists of a number of
#Clans clans (or groups) and each clan has #Elephants
robots (elephants). These robots cooperate in the search space
(environment) in the targets’ search task. A target has a posi-
tion (x, y) represented as a vector of 2 values. The objective of
theREHOalgorithm is tofindpositions of all targets (infected
people) and return a short, safe and satisfying path from every
target’s position to the start position of clans (hospitals).

Robots’ organization and positions initialization Clan
positions are randomly initialized in the environment, it rep-
resents the start point of the clan which can be a hospital or
a suitable place to receive infected individuals. Then, robots
of the same clan are initialized in a region within a radius of
20 squares around the clan position.
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Robots’ positions update The method of calculating new
robot positions in REHO is similar to that of EHO, it is
computationally simple (only simple basic arithmetic oper-
ations), it needs a very small memory, and a reduced need
for communication between robots. The positions being on
2 Dimensions, the equations are applied on the two compo-
nents (respectively, x-coordinate and y-coordinate) of each
position. Each robot calculates its next position by Eq. (14),
which is originally based on Eq. (10):

{
xnew,i, j = xc,i + α ∗ (xbest,i − xi, j ) ∗ r

ynew,i, j = yc,i + α ∗ (ybest,i − yi, j ) ∗ r
(14)

Similarly to Eq. (11), the fittest robot of each clan estimates
its future position with Eq. (15).

⎧⎪⎪⎨
⎪⎪⎩

xbest,i, j = β

#Elephants
∗

∑
xi, j

ybest,i, j = β

#Elephants
∗

∑
yi, j

(15)

Also, in this TDP, the lower bound of position is (0, 0) and the
upper one depends on the environment side length (namely:
Size), i.e. the position (Size-1, Size-1). Thus, as in Eq. (13),
the robot with the worst fitness calculates its next position
within Eq. (16).

{
xworst,i = (Size − 1) ∗ rand

yworst,i = (Size − 1) ∗ rand
(16)

Once new positions of robots are calculated, the robot nav-
igation method (path planning method) is invoked in order
to build a short and obstacle-free (safe) path from the actual
robot position (xi, j , yi, j ) to the new one (xnew,i, j , ynew,i, j ).
If the velocity between the two positions is greater than
the robots’ maximum velocity, the destination position is
updated to satisfy this constraint. The evaluation of the new
robots’ positions take into account all the positions included
in their range of perception.

Stop conditions To terminate the targets’ search mission,
there are three termination conditions:

• Maximum number of iterations reached: robots’ battery
capacity.

• Maximum number of new targets reached: abort the mis-
sion.

• All targets are found: success of the mission.

Algorithm The main steps of REHO are described in Algo-
rithm 1, where #Clans * #Elephants is the population size.
Fitness(xi, j , yi, j ) is the fitness function of the j th robot
of the i th clan. MaxTargets is the estimated limit of targets’
number that can be handled by the robots, and MaxVelocity
is the maximum robots’ velocity (the distance that a robot
can cross in one iteration).

Input: MaxGen, #Clans, #Elephants, α, β, #Target0,
MaxTargets, MaxVelocity.

Output: PathList : List of paths from each target to robot’s start
position.

begin
Initialization
Initialize the generation counter t ← 0;
Initialize the target counter n ← 0;
Initialize the Clans’ positions;
Generate the robot’s positions (xi, j , yi, j )0
while t < MaxGen and n < #Targett do

for i ← 1 to #Clans do
Sort all the elephants according to their fitness.
for j ← 1 to #Elephants do

Calculate new elephant position
(xnew,i, j , ynew,i, j )t using Eq. (14), (15) and (16)
if velocity > MaxVelocity then

adjustVelocity ();
robot Path Planning from (xi, j , yi, j )t to
(xnew,i, j , ynew,i, j )t ;
Evaluate the new position (xnew,i, j , ynew,i, j )t ;
if Fitness(xnew,i, j , ynew,i, j )t == 1 then

n ← n + 1;
PathList [n] ← get Path from (xi, j , yi, j )0 to
(xnew,i, j , ynew,i, j )t ;

Update Containment Rate CTt of Environment;
Update #Targett+1 using Eq. (5);
if #Targett+1 > MaxTargets then

abortMission ();
(xi, j , yi, j )t+1 ← (xnew,i, j , ynew,i, j )t ;
t ← t + 1;

Return (PathList)

Algorithm 1: REHO for the TDP

4.3 Robots collision-free path planning

Basically, collision-free path planning means: (1) avoid col-
lisions between obstacles and the robots, and (2) optimize
the path according to predefined constraints like path length
or smoothness [24]. Mobile robots gradually build the path
between their current positions and their destination posi-
tions.

The literature shows a variety of approaches of obstacles
avoidance strategies to solve the collision issue. Khatib was
the first to propose a potential fieldmethod based on attractive
force towards the goal and repulsive force of obstacles [25],
Lumelsky and Stepanov presented two algorithms namely
Bug1 andBug2 exploiting touch sensors [26]. In [27] authors
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proposed an obstacle avoidancemethod calledDynamicWin-
dow that estimates the adapted linear and angular speed in
the local view of the robot. The suggested method in [28]
is a simple fuzzy logic controller approach that determines
the robot’s collision-free path. Input Space Sampling-based
(ISS) planning for obstacle avoidance was first presented by
the authors in [29], subsequently it was widely used and
tested on real mobile robots [30,31].

Due to the proven efficacy, safety, rapidity, and adaptabil-
ity of the Sampling-based method on autonomous mobile
robots, we choose to adapt it for our robot path planning.
Since we are dealing with discrete environments, we need to
define the following concepts:

Direction The local space of a robot is divided into four
zones of 90◦, being North–East, North–West, South–East,
and South–West. The robot’s view field is an angle of 90◦
chosen according to the destination position Pdest relative to
its current position Pcur.

Accessible positions Robot view is limited by the sensor’s
range of perception, thus accessible positions are the ones
included within this range in the robot view’s direction.

Admissible paths A path is admissible when it is obstacles-
free, for that we exploited Bresenham’s algorithm [32] to
extract successive positions of a straight line and check if it
contains obstacles. In principle, the path is constructed as a
set of k waypoints and can be denoted as Path = wp1,wp2,
…wpk , where wp1 is equal to Pcur and wpk to an admissible
intermediate position Pt .

Optimal admissible path The criteria to choose the best
path from the admissible ones is by calculating the distance
remaining between an intermediate position Pt and the des-
tination position Pdest, using the Euclidean distance.

Accordingly, the collision-free path planning algorithm
can be resumed in Algorithm 2.

5 Experimental results and discussion

In order to validate the effectiveness and efficiency of our
proposed REHO approach, we conduct a series of experi-
ments. In these experiments we are dealing with complex
environments with multiple targets and the maximum veloc-
ity of robots is set to 500. The three termination conditions
of the search mission are:

Input: Pcur : robot’s initial position, Pdest : robot’s destination
position.

Output: GlobalPath : path from initial position to destination.
begin

Initialization
Initialize the step counter t ← 0;
Initialize the intermediate position of the tth step Pt ← Pcur ;
Initialize the robot’s perception range R;

while Pt <> Pdest and t < MaxT do

D ← Determine the direction to take;
Positions ← get accessible positions in direction D
within range R;
SubPaths ← get admissible paths from Pt to Positions;
OptimalSubPath ← get optimal admissible path from
SubPaths;
GlobalPath ← GlobalPath ∪ OptimalSubPath;
Pt+1 ← Last position of OptimalSubPath;
t ← t + 1;

Return GlobalPath

Algorithm 2: Input Space Sampling path planning

1. Maximum number of generations: fail (MaxGen set to
1500 in this study).

2. Number of new targets is too large to be handled: abort
the mission (MaxTargets set to 10,000 in this study).

3. All targets are reached: success.

In this Section, a description of the experiment’s organiza-
tion and the REHO’s and comparative approaches parameter
settings are presented, followed by the experimental results.
These experiments are organized into twomain sub-sections,
the analysis of REHO performances is first presented. Then,
the proposed REHO approach is compared with two other
SI methods, namely A-RPSO and MFPSO. Both experiment
subsections are composed of four parts. Part 1, studies the
impact of the initial reproduction rate R0 of the virus. The
second part studies the influence of the initial number of tar-
gets #Target0 in the environment. Then, part 3 studies the
robots’ speed influence I ter Day on the searchmission. Each
of these three parts is experienced under three scenarios of
the Containment Rate evolution, which are: growing Con-
tainment Rate, randomly changing Containment Rate, and
diminishing Containment Rate. Furthermore, in REHO anal-
ysis robots’ performances are compared in three environment
sizes. Small environments with 500 × 500 squares, medium
environments with 2500 × 2500 squares, and large environ-
ments of 5000 × 5000 squares. Finally, part 4 concerns an
experiment on real data of COVID-19 provided by the USA.
For each run, the number of iterations, the execution time
(in seconds), and the success rate, which is the percentage
of targets found, are recorded from what are calculated the
mean and standard deviation (mean ± std).

123



Progress in Artificial Intelligence (2021) 10:391–416 401

5.1 Settings

Following the parameters tuning of the REHO approach that
we obtained, its parameter values are set as: the factors α =
0.5, β = 0.6, the number of clans #Clans = 5, and the number
of robots in each clan #Elephants = 4. Which corresponds
to a population size of 5×4 = 20 robots. For the comparative
methods, A-RPSO parameters are adapted from [3] with c1
= 2, the initial inertia weight (Wini) = 1, α = 0.5, β = 0.7,
and the number of robots (N R) = 20 robots. And MFPSO
parameters as given in [17] where c1 = 2, c2 = 2, number of
swarms #Swarms = 5, number of particles in each swarm
#Particles = 4, which makes a population of 20 robots.
Number of fruit flies per particle #Fruit Flies = 10, fruit
flies max velocity = 10, and fruit flies max iterations = 10.

These approaches as many other Swarm Intelligence-
based methods are dependent on certain stochastic distri-

bution. Thus, different runs will generate different results.
In this work, many independent runs of the same dataset are
implemented in order to get themost representative statistical
results.

The dataset environments have been created according to
the environment modeling described in Sect. 3, examples
of test environments are presented in Fig. 7. The REHO
approach, the ISS path planning method, the comparative
approaches (A-RPSO and MFPSO), and the generation of
the environments have all been implemented in Java.

5.2 Analysis of REHO algorithm

5.2.1 Influence of the initial reproduction rate: R0

This part presents the experiment relatives to the initial repro-
duction rate R0 . According to [33], the initial reproduction

Table 1 Average iterations number, average execution time, and success rate in complex environments with different Containment Rate updates
facing the variation of initial reproduction rate (R0) values

R0 Small (500) Medium (2500) Large (5000)

Iter Time Succ Iter Time Succ Iter Time Succ

Growing CR

1.5 12 ± 1.9 0.3 ± 0.1 100 ± 0.0 13 ± 2.0 1.2 ± 0.2 100 ± 0.0 14 ± 3.3 2.4±0.4 100 ±0.0

2 13 ± 2.3 0.3± 0.1 100 ± 0.0 14 ± 2.4 1.3 ± 0.2 100 ± 0.0 17 ± 4.6 2.8 ± 0.8 100 ± 0.0

2.5 13 ± 3.0 0.3 ± 0.1 100 ±0.0 14 ± 2.8 1.3 ± 0.2 100 ± 0.0 18 ± 5.4 2.9 ± 0.8 100 ± 0.0

3 13 ± 3.3 0.3 ± 0.1 100 ± 0.0 14 ± 2.0 1.5 ± 0.3 100 ± 0.0 18 ± 5.1 3.2 ± 1.5 100 ± 0.0

3.5 13 ± 3.3 0.3 ± 0.1 100 ± 0.0 16 ± 3.1 1.6 ± 0.4 100 ± 0.0 21 ± 8.0 4.0 ± 2.1 100 ± 0.0

4 14 ± 3.4 0.3 ± 0.1 100 ± 0.0 17 ± 3.8 1.6 ± 0.6 100 ± 0.0 22 ± 7.0 4.1 ± 2.9 100 ± 0.0

4.5 15 ± 3.7 0.3 ± 0.1 100 ± 0.0 18 ± 4.0 1.6 ± 0.5 100 ± 0.0 25 ± 7.7 4.1 ± 2.8 100 ± 0.0

5 18 ± 7.3 0.5 ± 0.5 100 ± 0.0 21 ± 6.0 1.9 ± 1.2 100 ± 0.0 44 ± 63.0 11.4 ± 31.1 100 ± 0.0

Random CR

1.5 14 ± 3.1 0.3 ± 0.1 100 ± 0.0 17 ± 4.7 1.3 ± 0.2 100 ± 0.0 16 ± 5.8 2.5 ± 0.7 100 ± 0.0

2 13 ± 3.2 0.3 ± 0.1 100 ± 0.0 16 ± 4.0 1.3 ± 0.3 100 ± 0.0 17 ± 4.7 2.8 ± 0.8 100 ± 0.0

2.5 15 ± 4.5 0.3± 0.1 100 ± 0.0 17 ± 4.2 1.5 ± 0.3 100 ± 0.0 19 ± 4.2 3.1 ± 0.7 100 ± 0.0

3 15 ± 4.5 0.3 ± 0.1 100 ± 0.0 19 ± 5.1 1.7 ± 0.5 100 ± 0.0 19 ± 6.7 3.4 ± 1.7 100 ± 0.0

3.5 16 ± 5.2 0.5 ± 1.1 100 ± 0.0 21 ± 6.8 1.9 ± 0.8 100 ± 0.0 60 ± 230.8 6.0 ± 10.7 97 ± 0.1

4 17 ± 4.5 0.4 ± 0.1 100 ± 0.0 111 ± 351.0 4.7 ± 9.7 94 ± 0.2 287 ± 568.2 10.9 ± 18.5 87 ± 0.3

4.5 77 ± 290.6 0.6 ± 1.1 96 ± 0.2 201 ± 480.0 6.7 ± 11.5 88 ± 0.3 465 ± 677.4 20.3 ± 24.8 70 ± 0.4

5 195 ± 482.0 1.0 ± 1.8 88 ± 0.3 497 ± 688.4 12.1 ± 13.8 69 ± 0.5 659 ± 732.4 23.3 ± 24.1 60 ± 0.5

Diminishing CR

1.5 17 ± 6.5 0.3 ± 0.1 100 ± 0.0 24 ± 12.7 1.7 ± 0.6 100 ± 0.0 92 ± 290.4 7.3 ± 17.9 96 ± 0.2

2 57 ± 217.0 0.6 ± 1.4 98 ± 0.1 85 ± 289.2 3.3 ± 7.7 96 ± 0.2 175 ± 442.1 9.7 ± 17.4 90 ± 0.3

2.5 52 ± 207.2 0.5 ± 0.9 98 ± 0.1 298 ± 563.7 8.2 ± 12.3 82 ± 0.4 675 ± 731.5 26.1 ± 25.7 57 ± 0.5

3 317 ± 591.4 1.4 ± 2.0 80 ± 0.4 793 ± 736.1 14.8 ± 12.3 49 ± 0.5 939 ± 716.6 29.6 ± 20.9 39 ± 0.5

3.5 407 ± 647.7 1.6 ± 2.0 74 ± 0.4 882 ± 726.7 19.4 ± 14.9 43 ± 0.5 1086 ± 663.2 31.0 ± 17.8 29 ± 0.4

4 612 ± 725.1 2.0 ± 2.0 60 ± 0.5 1088 ± 660.8 17.9 ± 10.0 29 ± 0.4 1235 ± 565.3 31.8 ± 13.4 19 ± 0.4

4.5 851 ± 732.0 2.5 ± 1.9 45 ± 0.5 1265 ± 538.1 18.5 ± 7.2 17 ± 0.4 1442 ± 285.5 34.9 ± 6.9 5 ± 0.2

5 878 ± 730.6 2.5 ± 1.8 42 ± 0.5 1322 ± 482.2 17.8 ± 6.3 13 ± 0.3 1441 ± 291.5 33.0 ± 7.0 5 ± 0.2
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rate R0 depends on several parameters and varies according
to the countries, it can reach up to a value of 5.03 ∼ 5. Also
the value of R0 becomes significant when it is > 1, this is
why we are going to carry out our experiments by varying
the value of R0 considering the following set {1.5, 2, 2.5, 3,
3.5, 4, 4.5, 5 }, in order to test our REHO limits. Then, the
robots’ speed needs to be fixed, we choose a slow speed to
effectively study the influence of R0 on the search mission,
so we put IterDay equal to 5, and we set the initial number
of targets to 50 targets. We experimented this parameter with
a 50 times execution for every value of R0 . Thereby, we
performed 400 executions to study the impact of this param-
eter on the robots’ search for each environment size and each
Containment Rate evolution. The obtained results for the dif-
ferent behavior types of the Containment Rate are shown in
Table 1.

First, we will discuss the numerical results obtained when
the environment’s Containment Rate is growing. It can be
observed in Table 1 that 100% of the targets are reached
no matter the reproduction rate R0 and the environment

Fig. 8 Comparing the success rate in different environment sizes with
increasing R0 in a random CR update

Fig. 9 Comparing the iterations number in different environment sizes
with increasing R0 in a random CR update

Fig. 10 Comparing the success rate in different environment sizes with
increasing R0 in a diminishing CR

Fig. 11 Comparing the iterations number in different environment sizes
with increasing R0 in a diminishing CR

size. These outcomes can be directly linked to the environ-
ment growing CR that slows the virus spread and therefore
facilitate the robots’ search mission. The average number of
iteration smoothly increases with the increasing value of R0

, it reaches 18 iterations for the maximum R0 value in small
environments, whereas in medium and large environments it
performs 20 and 43 iterations, respectively. The average exe-
cution time follows the same soft increase with a maximum
of 0.45 s in small environments, 1.93 and 11.39 s in medium
and large ones, respectively.

Wenowpass to the randomupdateContainmentRate envi-
ronments, the visual representation of the average success
rate and iterations evolution are represented in Figs. 8 and 9.
It can be observed that for all environment sizes, the success
rate starts decreasing and the iteration number visibly rising
at a certain R0 value, at 3.5 for the large environments, and
at 4 and 4.5 for medium and small ones, respectively. The
average iterations number attains a maximum of 194 itera-
tions in small environments, where it reaches 496 and 659
iterations in medium and large environments, respectively.
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Average execution time also knows a small increase when
dealing with greater R0 values. So, robots start having dif-
ficulties when random CR update is combined with big R0

values. The virus spread becomes somehow faster but not
totally uncontrollable.

For theworst possibleContainmentRate evolution “dimin-
ishing CR”, we got the obtained results presented in Figs. 10
and 11. It appears that the success chances of robots are
widely reduced by the increasing Reproduction rate in a
diminishing Containment Rate because the number of new
targets expands at a high speed. Especially, for medium
and large environments. The robots’ efforts and search time
increase in consequence and tend to 878 iterations for small
environments, and 1321 and 1440 iterations for medium and
large environments, respectively.

Considering the presented results, we remark that the ini-
tial reproduction rate R0 essentially affects the robot search in
lack of containment respect (Random and diminishing CR).
Also, we deduce that the greater the R0, the quicker the virus
spread and increase the number of infected individuals, thus
the smallest is the warranty to eradicate the virus spread.

5.2.2 Influence of the Initial targets’ number: #Target0

In the report [34], the Initial value of R0 is estimated to
[2 − 2.5] in China. According to [21], in the case of sev-
eral European countries, the value of R0 varies between 2.39
and 2.58. Considering these statistics, we set the value of
R0 to 2.5 for the experiments relating to the initial num-
ber of affected individuals and that relative to the speed of
the robots presented in Sect. 5.2.3. We also, fix the Robots’
speed IterDay to 25 iterations per day (25 iters/day), and we
study REHO’s performance in the face of the growing num-
ber of initial number of targets “#Target0”. For that, we
choose the following numbers: {5, 50, 100, 150, 200, 250,
300, 350, 400, 500}. We performed a total of 500 executions
to draw the graphics relative to these experiments, 50 execu-
tions for each value of #Target0, and for each Containment
Rate types update, distributed on 5 different datasets. Table
2 below presents the numerical results of this part.

In Table 2 are shown that for the growing Containment
Rate evolution, REHO provides 100% of success rate, find-
ing all the targets, even with 500 initial targets’ number. This
can be explained by the slowed targets’ number growth due
to the high Containment Rate. However, the average num-
ber of iterations and execution time are growing to reach a
maximum of 90 iterations in 15 s within small environment,
whereas it performs 125 iterations in 108 s and 178 iterations
in 318 s in medium and large environments, respectively, and
this is only related to the search space size.

Now, if we turn to the results obtained in the randomly
updated Containment Rate. We found that as illustrated in
Figs. 12 and 13, the success rate is only affected when start-

Fig. 12 Comparing the success rate in different environment sizes with
increasing #Target0 in a random CR update

Fig. 13 Comparing the iterations number in different environment sizes
with increasing #Target0 in a random CR update

ingwith a large amount of initial targets. i.e., from400 targets
in large environment and 500 targets in small and medium
ones. Whereas, the average number of iterations and execu-
tion time growth more significantly than in the previous part
(growing CR). It executes a maximum of 170 iterations in
22 s within small environments, and around 1157 iterations
in 230 s and 1466 iterations in 458 s when dealing with 500
initial targets’ number, in medium and large environments,
respectively. These outcomes are justified by the additional
efforts that robots have to accomplish to stop the spread of
the virus in a bigger search space with average containment
respect.

Lastly, Figs. 14 and 15 show the success rate and average
iterations number achieved by the Swarm of Robots, during
the search mission in a diminishing Containment Rate. We
notice that small environments encounter some difficulties
when the initial number of targets is set to 500, while in
medium and large ones it starts when dealing with 350 and
300 initial number of targets, respectively. These difficulties
are expressed by the decreasing success rate at finding all
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Fig. 14 Comparing the success rate in different environment sizes with
increasing #Target0 in a diminishing CR

Fig. 15 Comparing the iterations number in different environment sizes
with increasing #Target0 in a diminishing CR

the targets to 68%, 21% and 7% in small, medium and large
environments, respectively, and the increasing efforts made
by executing up to 631 iterations in 32 s, 1313 iterations in
165 s and 1500 iterations in 247 s within small, medium and
large environments, respectively.

Another important observation can bemade by comparing
the average execution time between Random CR and dimin-
ishing CR. Such as in this diminishing CR search seems to
take less time, the reason is that the decrease of the CR with
big initial targets’ number generates such a large growth in
the number of targets that robots are forced to abort the search
mission.

To summarize, the initial number of targets #Target0
affect the Target search mission of the swarm of robots, but
only reduce its efficacy in the worst scenario. In other words,
if this robotic approach is used too late, the virus already
infected too many individuals, and the containment still not
well applied (random and diminishing CR), the proposed
REHO approach has more difficulties in achieving its mis-
sion.

5.2.3 Influence of the robots’ speed: IterDay

Robot’s speed represents the speed of robots in terms of iter-
ations per day. Every single robot accomplishes a number of
IterDay iterations in 1 day, and every IterDay (i.e. every day)
the effective reproduction rate Rday is updated according to
the Containment Rate of its zone. To study the impact of this
parameter on the REHO approach, we have to fix the other
parameters such as the initial targets’ number (#Target0) to
50 targets, and the initial reproduction rate (R0) to 2.5. The
values of IterDay that we selected are the following: 1, 2, 5,
10, 15, 20, 25, 30, 35, 40. As for the study of the impact of
#Target0 parameter, for the IterDay parameter, we achieved
500 executions to obtain the results presented in Table 3.

As seen in the first third of Table 3, our REHO approach
manages to reach all of the targets when the Containment
Rate is increasing (success rate equal to 100%). However,
we notice that with very slow robots’ speed, it takes more
effort and more time to finish the search mission. Such as
when it is at 1 iteration/day REHO executes 49 iterations in
17 s in small environments. While, it takes 53 iterations in
35 s and 107 iterations in 177 s within medium and large
environments, respectively.

Considering the second third of Table 3, we are able to
drawFigs. 16 and 17 that are concerning the randomContain-
ment Rate update. As we can see, when robots accomplish
less than 5 iterations per day, they are too slow and almost
automatically lead to failing at the search mission no matter
the environment size. Contrariwise, from a speed of 5 itera-
tions per day and more, robots become sufficiently rapid to
find out all the targets with very few efforts, and in a very
reasonable time.

Finally, we are going to discuss the achieved results when
the Containment Rate diminishes every day until it attains
0%, where the effective reproduction rate Rday becomes
equal to the initial one R0 = 2.5. These results are graph-
ically exposed in Figs. 18 and 19 below. In a similar way
to the previously examined results, robots are not able to
finish the search mission with a speed of fewer than 5 itera-
tions per day. However, when the Containment Rate is going
down, robots still cannot warranty 100% of success rate until
their speed attains 10 iterations per day and more. Also, the
iterations number and execution time decrease with the rais-
ing robots’ speed. It registers 12 iterations in less than 1 s in
small environments, and an average of 21 iterations in 1 s and
14 iterations in 2 s within medium and large environments,
respectively.

The discussed experiments about the robots’ speed Iter-
Day show that the robots’ speed has to be adapted to the
virus spread speed. As we saw, when containment measures
are not respected the virus spread more quickly and leads to
more and more infected individuals that robots are not able
to handle with a slow action speed.
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Fig. 16 Comparing the success rate in different environment sizes with
increasing robots’ speed (IterDay) in a random CR updating

Fig. 17 Comparing the iterations number in different environment sizes
with increasing robots’ speed (IterDay) in a random CR updating

Fig. 18 Comparing the success rate in different environment sizes with
increasing robots’ speed (IterDay) in a diminishing CR

Fig. 19 Comparing the iterations number in different environment sizes
with increasing robots’ speed (IterDay) in a diminishing CR

5.2.4 Results of the real case study

In this part, we aim to test our REHO search approach on real
data. The idea is to investigate the relation between the search
start day at time (day) d + k and the REHO performances,
corresponding to a time lag of k days. We choose a k = 5
days. First COVID-19 case in the USA have been registered
on 21/01/2020, in Table 4 are presented the results of the
REHO targets’ search with the different search start days.
For each search mission, we update the number of targets
and assign them to their real position on the USA Map in
each IterDay (i.e., day), for that we also test three robots’
speed with IterDay equal to 10, 50 and 100 iterations per
day.

From Fig. 20, It can be observed that the REHO search
approachmakes a 100%success ratewhen interveningbefore
2020-03-01 nomatter its robots’ speed.However, from2020-
03-01, low-speed robots face difficulties to reach all the
targets and do not exceed 9% , after what it abort the search
mission.Medium andHigh-speed robots are not able to reach
100% of the targets when starting the search mission from
2020-03-05, they get 21% and 37%, respectively.

Figure 21 shows that the REHO approach provides very
few efforts (less than 12 iterations in less than 4 s) when
early starting the search mission. Unlike the late search start
where robots become unable to succeed in the mission. In
other words, the later the research is launched, the less the
mission is likely to succeed.

We notice that the USA data used here did not apply
the containment at all, but even with that fact, the REHO
approach was able to accomplish some successful simulated
missions.
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Fig. 20 Comparing the success rate with different search start days and
different robots’ speed

5.3 Comparison with other swarm intelligence
algorithms

In order to situate our proposed REHO approach relative to
the existing methods, we compared it with two recent SI
based algorithms from the state-of-the-art that are A-RPSO
[3] and MFPSO [17]. These two approaches have initially
been developed for the static TDP, here we adapted them for
the proposed dynamic target search problem modeling. In
what follow are presented the comparative results of these
approaches in environments’ size of 2500 × 2500 squares.

5.3.1 Influence of the initial reproduction rate: R0

This part presents comparative experiments relative to the
initial reproduction rate R0 within three kinds of Contain-
ment Rate’s evolution types: growing CR, random CR, and
diminishing CR. Each experiment is repeated 50 times. The
robots’ speed (I ter Day) is fixed to 5 iterations/day, and we
set the initial number of targets (#Target0) to 50 targets.
Also, the size of the search environment in all experiments
of this section is set to 2500 × 2500 squares. The obtained
results are shown in Table 5.

As seen in Figs. 22 and 23, when increasing the ini-
tial reproduction rate R0 in a growing CR, the proposed
approach has significant performance compared to A-RPSO
and MFPSO. More precisely, Fig. 22 shows the higher suc-
cess rates of REHO compared with other approaches, such
as REHO achieve 100% success rate even with small R0 val-
ues, while the success rate of A-RPSO and MFPSO decease
from 17% to less than 1% and from 98 to 15%, respectively.
Furthermore, from Fig. 23 we can observe that the proposed
approach performs far fewer iterations compared with A-
RPSO and MFPSO.
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Fig. 21 Comparing the iterations number with different start search
days and different robots’ speed

From Figs. 24 and 25 we can see the important advantage
of REHOoverA-RPSO andMFPSO in randomContainment
Rate. Figure 24 points out that with the increase of R0, the
success rate of the proposed approach decline from 100 to
69%. Compared with A-RPSO andMFPSOwhich both have
less than 1% of success rates for all the tested R0 values.
Additionally, Fig. 25 shows the disparity between the number
of iterations of REHO (less than 500 iterations) compared
with the other methods that reach the maximum iterations
number.

The last 8 rows of Table 5 show that in a diminishing CR
the results of the experiments are close to the one obtained
in a Random CR, the proposed search algorithm is the only
one to get successful search missions even with the drop of
its success rate from 100 to 13% and the raise of its iterations
number from 24 to 1322 iterations when increasing R0.

Table 5 Average iterations number, average execution time, and success rate of the compared algorithms in complex environments with different
Containment Rate updates facing the variation of initial reproduction rate (R0) values

R0 A-RPSO [3] MFPSO [17] REHO

Iter Time Succ Iter Time Succ Iter Time Succ

Growing CR

1.5 1500 ± 0.0 10.5 ± 2.1 17 ± 0.1 1428 ± 126.2 6.1 ± 1.8 98 ± 0.0 13 ± 2.0 1.2 ± 0.2 100 ± 0.0

2 1500 ± 0.0 16.5 ± 3.0 11 ± 0.0 1498 ± 13.7 11.6 ± 4.1 92 ± 0.1 14 ± 2.4 1.3 ± 0.2 100 ± 0.0

2.5 1500 ± 0.0 20.8 ± 2.0 8 ± 0.0 1500 ± 0.0 18.8 ± 5.5 82 ± 0.1 14 ± 2.8 1.3 ± 0.2 100 ± 0.0

3 1500 ± 0.0 22.1 ± 1.0 4 ± 0.0 1500 ± 0.0 26.0 ± 4.4 63 ± 0.1 14 ± 2.0 1.5 ± 0.3 100 ± 0.0

3.5 1500 ± 0.0 22.0 ± 0.5 2 ± 0.0 1500 ± 0.0 29.1 ± 1.0 43 ± 0.1 16 ± 3.1 1.6 ± 0.4 100 ± 0.0

4 1500 ± 0.0 22.2 ± 2.5 1 ± 0.0 1500 ± 0.0 29.4 ± 0.5 28 ± 0.1 17 ± 3.8 1.6 ± 0.6 100 ± 0.0

4.5 1500 ± 0.0 21.3 ± 0.1 1 ± 0.0 1500 ± 0.0 29.8 ± 0.6 20 ± 0.1 18 ± 4.0 1.6 ± 0.5 100 ± 0.0

5 1500 ± 0.0 21.3 ± 0.0 0 ± 0.0 1500 ± 0.0 29.7 ± 0.4 15 ± 0.1 21 ± 6.0 1.9 ± 1.2 100 ± 0.0

Random CR

1.5 1500 ± 0.0 0.7 ± 0.0 0 ± 0.0 1500 ± 0.0 1.0 ± 0.1 0 ± 0.0 17 ± 4.7 1.3 ± 0.2 100 ± 0.0

2 1500 ± 0.0 0.5 ± 0.0 0 ± 0.0 1500 ± 0.0 0.8 ± 0.0 0 ± 0.0 16 ± 4.0 1.3 ± 0.3 100 ± 0.0

2.5 1500 ± 0.0 0.5 ± 0.0 0 ± 0.0 1500 ± 0.0 0.7 ± 0.0 0 ± 0.0 17 ± 4.2 1.5 ± 0.3 100 ± 0.0

3 1500 ± 0.0 0.4 ± 0.0 0 ± 0.0 1500 ± 0.0 0.6 ± 0.0 0 ± 0.0 19 ± 5.1 1.7 ± 0.5 100 ± 0.0

3.5 1500 ± 0.0 0.4 ± 0.0 0 ± 0.0 1500 ± 0.0 0.5 ± 0.0 0 ± 0.0 21 ± 6.8 1.9 ± 0.8 100 ± 0.0

4 1500 ± 0.0 0.4 ± 0.0 0 ± 0.0 1500 ± 0.0 0.5 ± 0.0 0 ± 0.0 111 ± 351.0 4.7 ± 9.7 94 ± 0.2

4.5 1500 ± 0.0 0.3 ± 0.0 0 ± 0.0 1500 ± 0.0 0.4 ± 0.0 0 ± 0.0 201 ± 480.0 6.7 ± 11.5 88 ± 0.3

5 1500 ± 0.0 0.3 ± 0.0 0 ± 0.0 1500 ± 0.0 0.4 ± 0.0 0 ± 0.0 497 ± 688.4 12.1 ± 13.8 69 ± 0.5

Diminishing CR

1.5 1500 ± 0.0 0.5 ± 0.0 0 ± 0.0 1500 ± 0.0 0.6 ± 0.0 0 ± 0.0 24 ± 12.7 1.7 ± 0.6 100 ± 0.0

2 1500 ± 0.0 0.3 ± 0.0 0 ± 0.0 1500 ± 0.0 0.5 ± 0.0 0 ± 0.0 85 ± 289.2 3.3 ± 7.7 96 ± 0.2

2.5 1500 ± 0.0 0.3 ± 0.0 0 ± 0.0 1500 ± 0.0 0.4 ± 0.0 0 ± 0.0 298 ± 563.7 8.2 ± 12.3 82 ± 0.4

3 1500 ± 0.0 0.3 ± 0.0 0 ± 0.0 1500 ± 0.0 0.4 ± 0.0 0 ± 0.0 793 ± 736.1 14.8 ± 12.3 49 ± 0.5

3.5 1500 ± 0.0 0.2 ± 0.0 0 ± 0.0 1500 ± 0.0 0.3 ± 0.0 0 ± 0.0 882 ± 726.7 19.4 ± 14.9 43 ± 0.5

4 1500 ± 0.0 0.2 ± 0.0 0 ± 0.0 1500 ± 0.0 0.3 ± 0.0 0 ± 0.0 1088 ± 660.8 17.9 ± 10.0 29 ± 0.4

4.5 1500 ± 0.0 0.2 ± 0.0 0 ± 0.0 1500 ± 0.0 0.3 ± 0.0 0 ± 0.0 1265 ± 538.1 18.5 ± 7.2 17 ± 0.4

5 1500 ± 0.0 0.2 ± 0.0 0 ± 0.0 1500 ± 0.0 0.3 ± 0.0 0 ± 0.0 1322 ± 482.2 17.8 ± 6.3 13 ± 0.3
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Fig. 22 Comparing the success rate of different approaches with an
increasing R0 in a Growing CR

Fig. 23 Comparing the iterations number of different approaches with
an increasing R0 in a Growing CR

Fig. 24 Comparing the success rate of different approaches with an
increasing R0 in a Random CR

Fig. 25 Comparing the iterations number of different approaches with
an increasing R0 in a Random CR

From the comparative results on the initial reproduction
rate R0 just presented, we clearly remark that the proposed
REHO outperforms the other methods in either growing,
random or diminishing CR. This can be explained by the
multi-clans structure of REHO and the separating operator
that enhance the exploration phase and prevent from falling
in local optima. For these reasons, REHO has a better abil-
ity to find much more targets before their number grows too
rapidly and becomes out of control.

5.3.2 Influence of the initial targets’ number: #Target0

In this Section, the influence of the initial target’s number
#Target0 on the three compared methods is addressed. The
experiments are carried for three Containment Rate types:
growing, random and diminishing CR. Each experiment is
repeated 50 times in environments of size 2500 × 2500
squares. The other parameters are fixed with an initial repro-
duction rate (R0) set to 2.5 and a robots’ speed (I ter Day)
of 25 iterations per day. The comparative results of REHO,
A-RPSO, and MFPSO are exhibited in Table 6.

Figures 26 and 27 are the graphical representation of the
comparative results of REHO, A-RPSO, and MFPSO algo-
rithms in a growingCR.We can noticeREHO’s superiority in
success rate and iterations number. The proposed approach
reaches a 100% of success rate in less than 109 iterations.
Compared to A-RPSO success rate that decreases from 64%
to less than 1%with from1388 to 1500 iterations, and the suc-
cess rate of MFPSO decrease from 99 to 10% with between
659 and 1500 iterations.

Figures 28 and 29 compare the success rate and average
iterations number in random Containment Rate for REHO,
A-RPSO, and MFPSO algorithms. We notice that A-RPSO
and MFPSO fail at the search mission even with few initial
numbers of targets, while REHO attains 100% of success
rate in less than 106 iterations. Except when #Target0 =
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Fig. 26 Comparing the success rate of different approaches with an
increasing #Target0 in a Growing CR

Fig. 27 Comparing the iterations number of different approaches with
an increasing #Target0 in a Growing CR

500, it achieves 37% of success rate with an average of 1158
iterations.

In the part that concern diminishing CR of Table 6 are pre-
sented the experimental results of the proposed method and
the two compared algorithms. As for random CR, A-RPSO
and MFPSO abort the mission after less than 2s because of
the height and rapid inflation of targets’ number. Whereas,
REHO success rate is somehow inversely proportional to the
#Target0 values such as with the increase of initial targets’
number, its success rate decrease from 100 to 21%with from
3 to 1313 iterations.

To sum up these experiments, we remark that contrary to
the proposed REHO, the tested A-RPSO and MFPSO are
totally inefficient in the worst scenario (random and dimin-
ishing CR). But, even when the containment is well applied
(growing CR), REHO has significantly better performance
than others. This is due to the multi-swarms strategy of
REHO and its separating operator that increase considerably
the covered search space and the number of targets that can
be handled in the less possible time.

Fig. 28 Comparing the success rate of different approaches with an
increasing #Target0 in a Random CR

Fig. 29 Comparing the iterations number of different approaches with
an increasing #Target0 in a Random CR

5.3.3 Influence of the robots’ speed: IterDay

This part is devoted to the study of the impact of the robots’
speed on the different compared approaches. Table 7 reports
the experimental results obtained in environments with a
growing, random, and diminishingCR.The represented aver-
age success rate, average iterations number, and average
execution time are the results of 50 executions per environ-
ment, within 2500×2500 squares environments’ sizes. Also,
the initial reproduction rate R0 is set to 2.5, and the initial
number of targets #Target0 is fixed to 50 targets.

Figure 30 shows that increasing the robots’ speed in
a growing CR doesn’t especially affect the search per-
formances of the tested approaches. For example, REHO
records the best success rate (100%) independently of
I ter Day values. While A-RPSO and MFPSO achieve
around 12% and 83% success rates, respectively. However,
from Fig. 31 we can observe that REHO has superiority in
iterations number. With the increase of the robots’ speed,
robots search and find the targets faster.
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Table 7 Average iterations number, average execution time, and success rate of the compared algorithms in complex environments with different
Containment Rate updates facing the variation of robots’ speed (iter/day)

I ter Day A-RPSO [3] MFPSO [17] REHO

Iter Time Succ Iter Time Succ Iter Time Succ

Growing CR

1 1500 ± 0.0 20.8 ± 2.1 12 ± 0.1 1500 ± 3.5 17.8 ± 5.2 83 ± 0.1 54 ± 18.6 35.3 ± 20.7 100 ± 0.0

5 1500 ± 0.0 20.8 ± 1.8 13 ± 0.1 1498 ± 8.9 16.8 ± 5.4 84 ± 0.1 33 ± 12.7 11.1 ± 11.5 100 ± 0.0

10 1500 ± 0.0 20.4 ± 2.8 13 ± 0.1 1500 ± 0.0 18.9 ± 5.3 80 ± 0.1 20 ± 6.4 1.8 ± 0.7 100 ± 0.0

20 1500 ± 0.0 19.6 ± 2.8 12 ± 0.1 1500 ± 0.0 17.7 ± 5.0 82 ± 0.1 16 ± 5.3 1.3 ± 0.2 100 ± 0.0

35 1500 ± 0.0 19.6 ± 2.5 11 ± 0.1 1492 ± 50.3 16.7 ± 5.5 83 ± 0.1 14 ± 4.3 1.2 ± 0.2 100 ± 0.0

50 1500 ± 0.0 19.5 ± 2.3 10 ± 0.1 1500 ± 0.0 16.7 ± 4.4 83 ± 0.1 15 ± 3.7 1.2 ± 0.2 100 ± 0.0

100 1500 ± 0.0 18.9 ± 2.7 13 ± 0.1 1499 ± 3.9 16.9 ± 4.8 83 ± 0.1 14 ± 2.9 1.3 ± 0.2 100 ± 0.0

150 1500 ± 0.0 19.2 ± 2.8 13 ± 0.1 1495 ± 36.0 16.4 ± 4.9 83 ± 0.1 15 ± 3.6 1.3 ± 0.2 100 ± 0.0

200 1500 ± 0.0 18.6 ± 2.6 13 ± 0.1 1500 ± 0.0 15.3 ± 5.2 85 ± 0.1 14 ± 3.5 1.3 ± 0.2 100 ± 0.0

300 1500 ± 0.0 18.3 ± 2.9 13 ± 0.1 1498 ± 14.6 15.2 ± 5.3 83 ± 0.1 15 ± 5.7 1.2 ± 0.2 100 ± 0.0

Random CR

1 1500 ± 0.0 0.1 ± 0.0 0 ± 0.0 1500 ± 0.0 0.1 ± 0.0 0 ± 0.0 1500 ± 0.0 6.6 ± 0.6 0 ± 0.0

5 1500 ± 0.0 0.2 ± 0.0 0 ± 0.0 1500 ± 0.0 0.3 ± 0.0 0 ± 0.0 1500 ± 0.0 14.1 ± 1.2 1 ± 0.0

10 1500 ± 0.0 0.5 ± 0.0 0 ± 0.0 1500 ± 0.0 0.6 ± 0.0 0 ± 0.0 21 ± 6.3 2.0 ± 0.9 100 ± 0.0

20 1500 ± 0.0 1.0 ± 0.0 0 ± 0.0 1500 ± 0.0 1.3 ± 0.1 0 ± 0.0 18 ± 4.7 1.4 ± 0.3 100 ± 0.0

35 1500 ± 0.0 1.4 ± 0.1 0 ± 0.0 1500 ± 0.0 1.9 ± 0.1 0 ± 0.0 18 ± 6.3 1.4 ± 0.3 100 ± 0.0

50 1500 ± 0.0 1.9 ± 0.1 0 ± 0.0 1500 ± 0.0 2.6 ± 0.0 0 ± 0.0 19 ± 7.4 1.4 ± 0.3 100 ± 0.0

100 1500 ± 0.0 2.4 ± 0.1 0 ± 0.0 1500 ± 0.0 3.2 ± 0.1 0 ± 0.0 20 ± 7.6 1.4 ± 0.3 100 ± 0.0

150 1500 ± 0.0 2.8 ± 0.2 0 ± 0.0 1500 ± 0.0 3.8 ± 0.1 0 ± 0.0 22 ± 9.0 1.4 ± 0.3 100 ± 0.0

200 1500 ± 0.0 3.3 ± 0.2 0± 0.0 1500 ± 0.0 4.5 ± 0.1 0 ± 0.0 21 ± 9.6 1.4 ± 0.3 100 ± 0.0

300 1500 ±0.0 3.8±0.2 0±0.0 1500 ± 0.0 5.1± 0.2 0 ± 0.0 22 ± 11.0 1.4± 0.3 100 ± 0.0

Diminishing CR

1 1500 ± 0.0 0.1 ± 0.0 0 ± 0.0 1500 ± 0.0 0.1 ± 0.0 0 ± 0.0 1500 ± 0.0 4.7 ± 0.4 0 ± 0.0

5 1500 ± 0.0 0.1 ± 0.0 0 ± 0.0 1500 ± 0.0 0.2 ± 0.0 0 ± 0.0 1500 ± 0.0 9.4 ± 0.9 0 ± 0.0

10 1500 ± 0.0 0.3 ± 0.0 0 ± 0.0 1500 ± 0.0 0.4 ± 0.0 0 ± 0.0 265 ± 539.2 7.3 ± 11.9 84 ± 0.4

20 1500 ± 0.0 0.6 ± 0.0 0 ± 0.0 1500 ± 0.0 0.8 ± 0.0 0 ± 0.0 28 ± 21.7 1.8 ± 0.9 100 ± 0.0

35 1500 ± 0.0 0.9 ± 0.0 0 ± 0.0 1500 ± 0.0 1.1 ± 0.0 0 ± 0.0 24 ± 13.7 1.6 ± 0.4 100 ± 0.0

50 1500 ± 0.0 1.1 ± 0.0 0 ± 0.0 1500 ± 0.0 1.5 ± 0.0 0 ± 0.0 23 ± 11.6 1.5 ± 0.3 100 ± 0.0

100 1500 ± 0.0 1.4 ± 0.0 0 ± 0.0 1500 ± 0.0 1.9 ± 0.1 0 ± 0.0 25 ± 16.4 1.6 ± 0.4 100 ± 0.0

150 1500 ± 0.0 1.7 ± 0.0 0 ± 0.0 1500 ±0.0 2.4 ± 0.4 0 ± 0.0 21 ± 12.2 1.5± 0.4 100 ± 0.0

200 1500 ± 0.0 2.0 ± 0.0 0 ± 0.0 1500 ± 0.0 2.9 ± 0.2 0 ± 0.0 24 ± 14.3 1.6 ± 0.4 100 ± 0.0

300 1500 ± 0.0 2.3 ± 0.1 0 ± 0.0 1500 ± 0.0 3.4 ± 0.3 0 ± 0.0 21 ± 9.5 1.5 ± 0.3 100 ± 0.0

Figures 32 and 33 illustrate the average success rates and
average number of iterations of the compared methods in a
randomCR.We can see A-RPSO andMFPSO failure at their
search mission no matter how fast their robots are, targets
proliferate faster. Whereas, The proposed method provides
much better performance and higher efficiencywith a robots’
speed of 5 iterations/day and more, reaching a 100% success
rate in less than 22 iterations.

In the last third of Table 7 are summarized the experiments
of A-RPSO, MFPSO, and REHO in a diminishing CR. The
results are not different from those presented in a random

CR. REHO starts getting successful searchmissions when its
robots’ speed reaches 10 iterations/day. Compared to other
methods are forced to abort the mission due to the number
of targets which has grown uncontrollably.

According to the presented results, we remark that REHO
provides the best results in the three Containment Rate’s evo-
lution types. These results are mostly due to the sub-swarms
structure of the robots combined with the efficient path plan-
ning strategy that minimize and optimize the robots’ efforts
event in the worst scenarios.
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Fig. 30 Comparing the success rate of different approaches with an
increasing robots’ speed (I ter Day) in a Growing CR

Fig. 31 Comparing the iterations number of different approaches with
an increasing robots’ speed (I ter Day) in a Growing CR

Fig. 32 Comparing the success rate of different approaches with an
increasing robots’ speed (I ter Day) in a Random CR

Fig. 33 Comparing the iterations number of different approaches with
an increasing robots’ speed (I ter Day) in a Random CR

5.3.4 Results of the real case study

This section concerns the comparison of A-RPSO and
MFPSOalgorithmswith theproposedREHOsearch approach
on real data. Table 8 presents the results of the three compared
approaches with different search start days. For each search
mission, we update the number of targets and assign them to
their real position on the USA Map in each day (I ter Day),
for that we fixed the robots’ speed I ter Day to 50 iterations
per day.

Figures 34 and 35 show that REHO provides better results
than A-RPSO and MFPSO. The later the search mission
starts, the less efficient and effective the search approaches
are. For example, the proposed REHO has a 100% success
rate in less than 3 iterations until 2020-03-01 where it falls to
21% in 1500 iterations. Compared to MFPSO’s success rate
that decreases from 100% in 214 iterations on 2020-01-21 to
less than 1% in 1500 iterations on 2020-03-05. Whereas, A-
RPSO algorithm is not able to lead to any successful search
mission.

6 Conclusion and future work

In this research, we proposed a Robotic Elephant Herding
Optimization algorithm for the target searching problem in
complex and unknown environments. The original EHO is
modified by adapting it to the robotic field, introducing a
collision-free path planning strategy, and the robots’ lim-
itations and constraints on a searching algorithm. Then, a
dynamic environment with exponential targets emergence
is presented to emulate the COVID-19 spread or any other
close-contact pathogens.

To verify the performance of the proposed algorithm, sev-
eral experiments were performed in simulated environments.
Considering our results, REHO significantly outperforms
other approaches like A-RPSO and MFPSO. The proposed
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Table 8 Average iterations number, average execution time, and success rate of the compared algorithms in USA simulation with different search
start days

Day A-RPSO [3] MFPSO [17] REHO

Iter Time Succ Iter Time Succ Iter Time Succ

2020-01-21 1500 ± 0.0 1.5 ± 0.1 0 ± 0.0 214 ± 276.1 0.2 ± 0.3 100 ± 0.0 1 ± 0.0 0.0 ± 0.0 100 ± 0.0

2020-01-26 1500 ± 0.0 2.0 ± 0.0 0 ± 0.0 561 ± 339.0 0.7 ± 0.4 100 ± 0.0 3 ± 0.8 0.1 ± 0.0 100 ± 0.0

2020-01-31 1500 ± 0.0 2.9 ± 0.0 0 ± 0.0 643 ± 359.1 0.8 ± 0.6 96 ± 0.1 3 ± 0.5 0.1 ± 0.0 100 ± 0.0

2020-02-05 1500 ± 0.0 5.1 ± 0.0 0 ± 0.0 948 ± 491.9 2.2 ± 1.7 69 ± 0.3 5 ± 1.1 0.2 ± 0.0 100 ± 0.0

2020-02-10 1500 ± 0.0 8.4 ± 0.0 0 ± 0.0 1261 ± 442.8 7.0 ± 3.5 31 ± 0.4 5 ± 2.6 0.2 ± 0.1 100 ± 0.0

2020-02-15 1500 ± 0.0 11.7 ± 0.1 0 ± 0.0 1458 ± 225.3 13.3 ± 2.4 7 ± 0.2 5 ± 0.8 0.2 ± 0.0 100 ± 0.0

2020-02-20 1500 ± 0.0 14.1 ± 0.1 0 ± 0.0 1500 ± 0.0 17.5 ± 0.2 1 ± 0.0 8 ± 2.4 0.4 ± 0.1 100 ± 0.0

2020-02-25 1500 ± 0.0 13.5 ± 0.0 0 ± 0.0 1500 ± 0.0 18.2 ± 0.4 1 ± 0.0 9 ± 1.9 1.0 ± 0.1 100 ± 0.0

2020-03-01 1500 ± 0.0 12.4 ± 0.0 0 ± 0.0 1500 ± 0.0 17.2 ± 0.5 1 ± 0.0 18 ± 2.0 3.6 ± 0.3 100 ± 0.0

2020-03-05 1500 ± 0.0 10.7 ± 0.1 0 ± 0.0 1500 ± 0.0 15.2 ± 0.4 0 ± 0.0 1500 ± 0.0 554.5 ± 34.5 21 ± 0.0

Fig. 34 Comparing the success rate of different approaches with dif-
ferent search start days

Fig. 35 Comparing the iterations number of different approaches with
different start search days

approach offers better performances when the containment is
respected and even more when robots have a medium to high
speed by performing sufficient iterations per day. Also, we
observed that the approach provides better outcomes when
starting the search mission early before the number of ini-
tial targets increases dramatically. REHO draws its strengths
from threemain characteristics. First, itsmultiple clans’ com-
position, that allows an advantageous diversity and coverage
of the search space. Second, it separate operator which avoid
falling into a local optimum. Finally, the optimized and rapid
collision-free path planning that build short and safe paths
without slowing down the robots’ search. However, in this
study, a simplified representation is considered for testing
the proposed approach. Therefore, some real-world prob-
lems have not been addressed, such as dynamic obstacles
and a limited range of communication among robots. For
possible future work, we consider improving these topics.
Furthermore, we plan to enhance the proposed COVID-19
spread’s modeling by considering the new epidemiological
models that continue to be daily enriched because of the very
recent nature of this problem. On another side, we also envis-
age addressing other applications destined for autonomous
multi-robots systems.
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