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Introduction
Epilepsy is a common and chronic neurological diseases (1), classified into several 
groups based on clinical characteristics (2-3). Etiology of epilepsy is not well 
known but genetic (4), physical and metabolic causes have been ascribed so far (5). 
Mutation in some genes encoded voltage-gated Na+ and k+ channel respectively 
plays an important role in molecular pathogenesis of some kinds of epilepsy (6-7). 
Physical causes such as trauma (8-9), stroke (10), infection (11-12) and tumors (9, 
13) are also involved in the etiology of  symptomatic epilepsy. Important metabolic 
causes result in reduction of oxygen supply in blood and (9) mitochondrial disorders 
which can leads to the lack of ATP needs for cellular metabolism (14-15). 
Aknown mechanism involved in pathogenesis of seizure related to nutritional 
status, is the imbalance between free radicals and antioxidant agents. In a study, 
level of zinc (Zn) decreased and level of copper (CU) increased in epileptic 
children before initiation of treatment with AEDs, however, serum level of iron 
was decreased in girls (16). 
Normal dietary intake of some minerals such as Zn, Cu and selenium (Se) needed 
in the normal function of antioxidative system, are essential for normal function 
of neurons and aid to treatment of seizure consecutively (17, 18).
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Relationship between nutrition and epilepsy
1. Nutritional status in epileptic patients
Antiepileptic drugs
AEDsare classified in two categories. One is the liver 
“enzyme-inducing antiepileptic drugs” (EIAED) and 
another is the “non enzyme-inducing antiepileptic 
drugs”(NEIAED). 
Some of AEDs including phenytoin, phenobarbital, 
and carbamazepine that are in EIAED category 
induce catabolism of some nutrients. Some of AEDs 
are in NEIAED category including levetiracetam, 
valproate sodium, topiramate, clobazam, clonazepam, 
ethosuximide, gabapentin, lacosamide, lamotrigine, 
pregabalin, tiagabine vigabatrin and zonisamide have 
not serious effects on nutrients (19-22).
In this article we review studies regarding the effects of 
AEDs on nutrient metabolism in epileptic patients. 

Antiepileptic drugs and nutrient deficiencies
Vitamin deficiency
Epileptic patients, treated with EIAEDs, are at risk for 
bone diseases like osteopenia, osteomalacia, rickets, 
and osteoporosis (23-27). The correlation between 
bone fractures and treatment with EIAEDs is reported 
(28-30). Bone fractures were correlated with the stored 
load of EIAEDs in these patients (31-32). The proposed 
mechanism is that EIAEDs may increase the function of 
the cytochrome p-450 enzymes which induce production 
of inactive form from the active form of vitamin D (vit 
D) (23, 33-35). In this way, absorption of the calcium 
(Ca) from gastrointestinal tract will be reduced. The 
reduction of the serum vit D and Ca absorption stimulate 
the release of parathyroid hormone (PTH) which results 
in higher uptake of Ca from bone (36-39). EIAEDs 
disturb Ca homeostasis and decrease serum level of Ca. 
This result is due to the effect of long-term therapy with 
anticonvulsant drugs on vitamin D metabolism (32, 36, 
38, 40).
Therefore patients on long-term treatment with 
EIAEDs should be followed up for serum vit D level 
and bone mineral density (BMD) (41-43). Ca and vit D 
supplementation may prevent vit D and Ca deficiencies 
and improve BMD in these patients (22, 44-45). 
Long term therapy with EIAEDs also decrease 
concentration of B vitamins including vitamin B1, B2, 

B6, B8 and B9 in epileptic patients and increase the 
aminothiol redox and induce hyper homocysteinemia 
consequently (20, 46-54). EIAEDs reduce serum 
biotin or vit B8 level and increase urinary excretion 
of its metabolites due to rise in biotin catabolism (55-
58). Deficiency of nicotinic acidor vit B3 is induced by 
valproate (59). Serum level of cobalamin or vit B12 was 
lower in patients treated with AEDs (52, 60-61). 
EIAEDs disturb the normal function of folateconjugase in 
intestine. Mentioned enzyme has key role in conversion 
of dietary folatepolyglutamates to folatemonoglutamate 
for better absorption. As a result, EIAEDs reduce folate 
absorption from folatepolyglutamates in foods (62). 
Among NEIAED, valproic acid inhibits glutamate 
formyltransferase enzyme and decrease the formation of 
active metabolite of folic acid that is named folinic acid 
(63). Epileptic women taken these drugs may be in high 
risk to give birth to the neural tube defect (NTD) infants 
because of low folate absorption (63). 
Low folic acid and vitamin B12 level include 
megaloblastic anemia with high mean corpuscular 
volume (MCV) and high plasma total homocysteine 
(Hcy) in these patients (25, 52, 60-61, 64-65). 
Folate and vitamin B12 deficiency may reduce the 
chromosomal stability, synthesis of myelin and 
synthesis of catecholamine, correlated with cognitive 
deficits and congenital malformations in addition 
to anemia and hyperhomocysteinemia (52). Studies 
recommend monitoring serum level of vit B9, vit B12 
and serum Hcy. Supplementation with these vitamins 
improves the mentioned problems. This also can 
prevent epileptic patients from cardiovascular disease 
(52, 64, 66-68). 
EIAEDs increase catabolism of pyridoxine or vitB6 
because of increasing activity of the oxidizing 
enzyme in the liver, inducing vitB6 deficiency and 
polyneuropathy consequently in patients with seizure. 
In addition, EIAEDs reduce the transsulfuration 
pathway which is effective in PLP synthesis (19-20). 
Deficiency of vitB6 decrease the seizure threshold 
(69-70) associated with higher Hcy concentrations 
(71). Pyridoxine supplementation may improve 
seizure threshold and hyperhomocysteinemia in these 
patients (20, 51). Supplementation with B-vitamins 
was recommended to patients on EIAEDs with 
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hyperhomocysteinemia and high aminothiol redox (72).
One of the important antioxidant agents known as a 
neuroprotective factors, is ascorbic acid or vit C. It 
collaborates with vitamin E for decrease oxidative 
stress, lipid peroxidation and strengthens of brain cell 
membranes (73). Furthermore, vit C is considered as 
an antiepileptic agent and a new treatment for seizure 
control due to induction of protective gene expression 
(74-75). Therefore, vit C supplementation may help to 
epileptic patients (76).
EIAEDs with ability of lowering liver retinol (vit A) 
resources may be teratogenic (77). Usage of EIAEDs 
in patients with epilepsy may reduce liver vit A storage 
because of the movement of vit A from liver to the tissues 
or the stimulation of cytochrome p-450, reticulum 
endoplasmic enzymes, and increasing of serum retinol-
binding protein (78). Therefore, EIAEDs and valproate, 
induce the liver enzymes that metabolize retinoic acids 
(RA) and lower the RA level in serum (77). As a result 
sufficient dietary intake of vit A is recommended to these 
patients. 
Neonates from pregnant epileptic mothers on 
anticonvulsant drugs are at higher risk of vitamin K 
deficiency however deficiency of vit K is not common 
in mothers (79). Vitamin K supplementation during 
pregnancy in epileptic mothers that are on EIAEDs will 
not lower the risk of vit K deficiency in neonates, but 
supplementation after birth in infants will be efficient 
(80). 

Mineral deficiency
Reports on the impact of antiepileptic drugs on the 
homeostasis of minerals are little and controversial 
(81-82). EIAEDs effect on Zn and Cu metabolism and 
induce Zn deficiency (75, 83). But in controversy Zn 
serum levels in these patients and healthy people are 
not significantly different (84-87). It was supposed that 
distribution of intracellular Zn was affected by AEDs 
(88). 
CU serum levels increase in epileptic patients because of 
increasing the ceruloplasmin synthesis and CU absorption 
(75, 83, 89). Patients with epilepsy are at risk of selenium 
(Se) and Zn deficiencies that have antioxidant function. 
Valproic acid, phenytoin, and carbamazepine produce 
higher reactive oxygen species (ROS) that use resources 

of Zn and Se but new epileptic drugs (e.g., topiramate 
and zonisamide) have not this effect. Se storage depletion 
may induce hepatotoxicity because of its antioxidant 
effects (53, 81-82). Carbamazepine monotherapy may 
maintain trace element and antioxidants resources 
rather than phenytoin (86). Phenytoin did not alter iron, 
magnesium (Mg) and Zn serum levels (75). 
However, high dietary intake of Zn or uncontrolled 
Zn supplementation can produce toxicity and induce 
some of central nervous system problem such as brain 
ischemia and epilepsy (90). Thus brain Zn homeostasis 
should be maintained for prevention and treatment of 
neurological disorders (91). Zn supplementation has 
no positive effects on BBB integrity and long term Zn 
supplementation has negative effect on Mg and Cu brain 
concentration in epileptic patients (16, 92). Generally, 
monitoring of dietary intake, serum level of nutrients 
and compensation of deficiencies is recommended in 
epileptic patients. 
 
1. Recommended Diets in epileptic patients
Some patients are resistant to antiepilepticdrugs, then 
ketogenic diet can help to control their attacks (93).
- Ketogenic diet 
In patients with uncontrolled attacks, one of the most 
common and well-documented diets used as a treatment 
for drug-resistant epileptic patients is ketogenic diet 
(KD) (94-98). Ketogenic diet is consequential method 
to support of treatment in several types of epilepsy 
like atonic, mixed and myoclonic seizures (98-99). 
Ketogenic diet is supposed as a beneficial choice for 
treatment of patients with intractable seizures, instead 
of neurosurgery option, because of less adverse effects 
(95). Decrease in glucose level and ketosis are significant 
changes occurred during KD therapy. Lowering the 
serum level of glucose is more contributing to the control 
of seizures (100). 
The main mechanism of action in KD is not well known, 
but the high fat, low carbohydrate and enough protein 
content of the diet, lead to rise in plasma ketone bodies 
which play a helpful role in lowering the excitability 
of neurons and modifying seizure threshold. Moreover, 
ketone bodies can alter the amount of fluid, electrolytes 
and lipids intake on the way to help control of seizure 
attacks (95-97, 101-103).
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Ketogenic diet produces some mediators named 
acetoacetate and β-hydroxybutyrate (BHB), or both. 
These metabolites substitute for glucose as the substrate 
for energy producer, like the mechanism seen in long 
term hunger (104-106). Ketogenic diet is administered 
in two forms. One is the classic KD, includes long-
chain triglycerides (LCT) and second is medium-chain 
triglyceride (MCT) KD that contains fatty acids with 
6–12 carbons. MCTs are included more common fatty 
acids, caprylic acid (CA8: 50–75% content), capric acid 
(CA10: 23–45%), caproic acid (CA6: 1–3%) and lauric 
acid (CA12: 1–5%) (94, 107-110). Co-administeration 
of CA8 and CA10, promote the anti-seizure effect of 
MCT ketogenic diet (111). Medium-chain triglycerides 
are more helpful in energy production because of faster 
production of ketone bodies and well-absorbed from 
GI in comparison to LCT in classic KD (99, 107-110, 
112-116).
The classic KD, with 3/1 ratio of fat/carbohydrate and 
MCT ketogenic diet have identical effect on control 
of seizure, but those have different effects on plasma 
lipid levels. Plasma cholesterol level in MCT regimen 
remains normal against the rise of that in the classic KD. 
In addition the amounts of free fatty acids in plasma 
increase on the MCT regimen lesser than classic KD 
(104). Medium-chain triglycerides are more soluble in 
aqueous media in comparison with LCTs. They are in 
free form in circulation and have high affinity to carriers 
which facilitate the transport from blood–brain barrier 
(114, 117-122). 
CA10 is agonist of PPARs which leads to rise of the 
metabolic enzymes in mitochondria of the neuronal cell 
(123). CA8 and CA10 increase the phosphorylation of 
p38 mitogen-activated kinase (MAPK) and extracellular 
signal regulated kinase (ERK) that act as anti-convulsant 
by altering the seizure inducer molecules (124-126). 
Another compound like branched medium chain fatty 
acids are new options to control epilepsy in some cases 
whom medium-chain triglyceride KD (MCTKD) is not 
sustainable (112). Octanoic acid or caprylic acid is one 
of the branched medium chain fatty acids achieved from 
the hydrolysesof coconut oil (110). 
Dravet syndrome (DS) is an infantile onset epileptic 
encephalopathy which is resistant to some antiepileptic 
drugs (127-128). One study compared KD with some 

AEDs used for DS patients. The efficacy of them was the 
same but the KD has lesser side effects (129). Fatty acids 
in KDs are saturated or monounsaturated so may have 
some complications (130). Polyunsaturated fatty acids 
(PUFAs) introduced as another option for aid to treat 
epilepsy. They includes omega-3 with the combination 
of docosahexanoic acid (DHA) and eicosapentaenoic 
acid (EPA) that are in seals and marine fishes, alpha-
linoleic acid (ALA) and in flaxseed, almonds, walnuts, 
as well as omega-6 which composed of linoleic acid 
(LA) and arachidonic acid (AA). Daily intake of 1 
capsule includes of 1080 mg eicosapentaenoic acid 
and docosahexaenoic acid (low dose fish oil) is more 
effective to improve seizures than high dose (131-133). 
Classic KD is based on butter, cream, and olive oil (130). 
KD increase energy and GABA production due to 
changing in tricarboxcylic acid cycle. It also decreases 
production of ROS in brain. Ketogenic diet increases the 
expression of neuronal uncoupling proteins (UCPs) and 
some energy metabolism genes in mitochondria (134-
135).
Ketogenic diet may produce diet limitations and 
deficiencies of some vitamins and minerals corrected 
with administration of vitamin and mineral supplements.  
Supplementation with vit B, vit D, Ca, Sel, Mg, Zn 
and phosphorus has been recommended in KD. In 
this way, one new carbohydrate-free multivitamin and 
mineral named NanoVM (Solace Nutrition, Rockville, 
MD, U.S.A.) have been designed for the KD in child. 
However, the appropriate multivitamin and mineral for 
epileptic patients on KD have already not been studied 
and designed (136-138).  
Some adverse effects of KD are growth (139), 
metabolic, gastrointestinal and urinary problems 
including hypercholesterolemia, hypocalcemia, 
hyperlipidemia (140-141), Secondary hypocarnitinemia 
(142), hypomagnesemia, lowered amino acid levels, 
acidosis (143-145), vomiting, constipation, diarrhea, and 
abdominal pain (145), kidney stone (136). Thus epileptic 
patients on KD should be observed by neurologist and 
dietitian for control of complications and nutritional 
deficiencies (136, 146). 
Few studies have been done on anticonvulsant 
complications of KD. In one study with a large population, 
half of patients improved over the 2 yr therapy, although 
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the observations have some differences with those in 
children. Some complications of KD were thechanges 
of serum level HDL, triglycerideand carnitine in 
children so carnitine supplementation was needed. 
Supplementation with carnitine induce transportation of 
raised free fatty acids into mitochondria and decrease 
serum triglyceride (147). Ketosis alters the electrolyte, 
fluid and lipid concentration balance (95). 

Modified Atkins Diet and Low Glycemic Index 
Diet
Because of KD complications mentioned above, other 
types of diets were recommended in management of 
adolescents, adults (138, 153) and epileptic children 
along with AED (154). These diets were named 
Modified Atkins Diet (MAD) (103, 152) and Low 
Glycemic Index Treatment (LGIT).
MAD is a modification of KD which includes PUFA 
(n-3 and n-6) groups that their protective role against 
seizure without any significant side effects has been 
demonstrated. This diet has been prepared of canola oil 
and diverse menu items such as fish and nuts (103, 130, 
147). The mechanism of action in PUFAs-enriched diets 
is upregulation of some genes involved in mitochondrial 
metabolisms and stabilizing of neuron synapses which 
result in seizure hold up (103). PUFAs-enriched diet 
induces the production of mitochondrial uncoupling 
proteins (148). The agonistic function of ALA on PPARs 
is another mechanism which prevents seizure attacks by 
increasing the seizure thresholds (149). MAD is similar 
to classic KD. In MAD 10 g/d carbohydrate at the start 
of diet is raised to 20 g/d within 3 months although total 
daily intake of proteins, calories, and fluids were not 
decreased (155). 
Within LGIT, 40–60 g/d carbohydrate has been 
recommended. Carbohydrates with low glycemic indices 
are ones that increase blood glucose very low. Thus, 
blood glucose in patients on this diet is stable (152). Low 
Glycemic Index Treatment and Modified Atkins diet 
have well-controlled complications and lesser dietary 
restrictions in adult and children than KD (156-159).
In conclusion, some AEDs can induce nutritional 
deficiencies. Then both nutritional status and serum levels 
of nutrients should be monitored in epileptic patients 
periodically deficiencies must be compensated with 

precise supplements. We recommend to supplementation 
with appropriate amounts of vitamins and minerals 
compound (multivitamin & mineral) included of vitamin 
A, D, E, C, B complex, Ca, Sel and Zn.    
Three alternatives of diets are considered for 
management of attacks in epileptic patients. These diets 
are KD, MAD and LGIT. We assessed these diets and 
recommended KD only in patients with no response to 
AEDs. But MAD and LGIT are appropriate in other 
patients on AEDs because of lower side effects and aid 
to treatment. 
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