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Simple Summary: Reactivation of the fetal cardiac gene program, such as those encoding atrial
and brain natriuretic peptides (ANP and BNP, respectively), is a characteristic feature of failing
hearts. We previously revealed that a transcriptional repressor, neuron-restrictive silencer factor
(NRSF), also called repressor element-1-silencing transcription factor (REST), plays a crucial role in
the transcriptional control of ANP, BNP and other fetal cardiac genes through collaboration with
various other transcription factors to maintain physiological cardiac function and electrical stability.
Increased production of ANP and BNP prevents the progression of heart failure, but reactivation
of Gαo and fetal-type cardiac ion channels (T-type Ca2+ and HCN channels) leads to deteriorated
cardiac function and lethal arrhythmias observed in mice with disturbed NRSF function. Epigenetic
regulators with which NRSF forms a complex modify histone acetylation and methylation, thereby
participating in NRSF-mediated transcriptional regulation. Further comprehensive studies will lead
to clarification of the molecular mechanisms underlying the development of cardiac dysfunction and
heart failure.

Abstract: Reactivation of fetal cardiac genes, including those encoding atrial natriuretic peptide
(ANP) and brain natriuretic peptide (BNP), is a key feature of pathological cardiac remodeling and
heart failure. Intensive studies on the regulation of ANP and BNP have revealed the involvement
of numerous transcriptional factors in the regulation of the fetal cardiac gene program. Among
these, we identified that a transcriptional repressor, neuron-restrictive silencer factor (NRSF), also
named repressor element-1-silencing transcription factor (REST), which was initially detected as
a transcriptional repressor of neuron-specific genes in non-neuronal cells, plays a pivotal role in
the transcriptional regulation of ANP, BNP and other fetal cardiac genes. Here we review the
transcriptional regulation of ANP and BNP gene expression and the role of the NRSF repressor
complex in the regulation of cardiac gene expression and the maintenance of cardiac homeostasis.

Keywords: heart failure; natriuretic peptides; transcription factors; epigenetics; epigenome

1. Introduction

Heart failure remains a leading cause of morbidity and mortality worldwide [1,2]. Un-
der conditions of pathological stress or tissue injury, cardiac myocytes develop hypertrophy
as an initially adaptive response. The sustained stress, however, makes the hypertrophy
pathological and provokes pathological cardiac remodeling, which finally causes heart
failure. Increased cell size, increased protein synthesis and sarcomere assembly, and altered
gene expression are characteristic features of cardiomyocyte hypertrophy. Among the
cardiac gene reprogramming during the pathological cardiac remodeling, there is reacti-
vation of “fetal” cardiac genes; such genes encoding atrial natriuretic peptide (ANP) and
brain natriuretic peptide (BNP), fetal isoforms of contractile proteins (skeletal α-actin and
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β-myosin heavy chain), fetal-type cardiac ion channels and some smooth muscle proteins
(smooth muscle α-actin and smooth muscle 22α) are robust markers of cardiac hypertrophy
and pathological cardiac remodeling [3]. Fetal ventricles abundantly express these genes,
but as the heart matures, the expression is decreased. Reactivation of the fetal gene program
plays an important role in the molecular processes underlying pathological cardiac remod-
eling that alters cardiac structure and function besides acting as a marker of pathological
conditions [3]. Indeed, the expression of ANP and BNP in cardiomyocytes is remarkably
increased in failing hearts and the elevation of their plasma levels is widely recognized as a
prognostic marker of disease severity [4,5].

As a means of better understanding the underlying molecular mechanisms of heart
failure, much effort has been made to elucidate the mechanisms regulating expression
of fetal cardiac genes, including NPPA and NPPB, the genes respectively encoding ANP
and BNP. It is now known, for example, that fetal cardiac gene programs are regulated by
numerous transcriptional factors [6]. Among these, we have been studying the role played
by the transcriptional repressor neuron-restrictive silencer factor (NRSF), also named
repressor element-1-silencing transcription factor (REST). Normally, NRSF negatively
regulates the transcription of NPPA and NPPB [7,8]. NRSF also represses expression of
other fetal cardiac genes, including HCN2 and −4 and CACNA1H, which respectively
encode hyperpolarization-activated cyclic nucleotide-gated (HCN) channels and the T-type
Ca2+ channel. By forming a complex with several corepressors, NRSF is involved in various
molecular pathways that affect the expression of fetal cardiac genes. Consistent with these
findings, cardiac-specific inactivation of NRSF by overexpression of a dominant-negative
mutant of NRSF (dnNRSF), driven by the cardiac-specific α-MHC promoter (dnNRSF-Tg
mice) or cardiac-specific NRSF knockout (NRSF cKO), induces reactivation of fetal cardiac
gene expression in the ventricle. Moreover, both dnNRSF-Tg and NRSF cKO mice show
deteriorated cardiac function with dilation of the left ventricle and sudden death due to
ventricular arrhythmias, indicating that NRSF maintains cardiac integrity by governing
the cardiac gene program [9,10]. In this review article, we describe the transcriptional
regulation of ANP and BNP mediated through NRSF and other transcriptional factors and
the role played by the NRSF repressor complex in maintaining normal cardiac homeostasis.

2. Transcriptional Regulation of ANP and BNP in the Heart

ANP and BNP are cardiac-derived peptide hormones that comprise the natriuretic
peptide system [11,12]. These two peptides have similar structures, but are synthesized at
different sites. ANP is usually synthesized in the atria, while BNP is synthesized mainly
in the ventricles [12]. They are cardiac differentiation markers, and their expression is
tightly regulated in a spatiotemporal manner during cardiac development. In fact, the
analysis of ANP and BNP promoters and their activity made a tremendous contribution to
our current understanding of the transcriptional regulation during cardiac development.
As for the postnatal period, the expression of ANP and BNP is elevated in the ventricle
in various pathological states of the heart, and plasma concentrations of ANP and BNP
are remarkably increased in heart failure patients [4]. In fact, plasma concentrations of
ANP and BNP are measured clinically to diagnose heart failure, assess prognosis and
determine therapeutic strategies [13]. Therefore, the molecular pathways underlying the
reactivation of NPPA and NPPB are thought to be closely related to adaptive or maladaptive
signaling pathways evoked by pathological stimuli in the heart. Because of the important
role played by ANP and BNP in cardiac physiology and pathology, many studies have
been carried out to investigate the molecular mechanisms involved in the regulation of
NPPA and NPPB during cardiac development and disease progression. The regulation
of NPPA during embryonic development was one of the subjects of early in situ gene
expression studies [14]. Those studies showed that NPPA expression in the embryonic
mouse heart is finely controlled; it is strongly expressed in the atria, while ventricular
expression is restricted to the outer “working” myocardium of the left and right ventricles.
Later, during embryonic development, strong NPPA expression is maintained in the atria,
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while its ventricular expression becomes limited to the trabeculae. Thus, NPPA shows a
dynamic expression pattern during embryonic development that is highly restricted to the
heart. Research into molecular mechanisms underlying the atrial-specific expression of
NPPA has promoted the search for cardiac transcription factors, and the ANP promoter has
been extensively analyzed by using molecular biological methods.

The proximal part of the 5′ flanking region (5′-FR) of NPPA has been shown to be
sufficient to recapitulate the spatiotemporal expression of the endogenous gene and to
contain sequences crucial for the regulation of NPPA expression [15,16]. Expression of
a reporter gene driven by the NPPA proximal 5′-FR from atrial or ventricular cardiac
myocytes obtained at various developmental stages revealed the regions that mediate
the proper spatial and temporal expression of the ANP promoter [17,18]. In regard to
that point, the NPPA proximal 5′-FR contains three T-box binding elements (TBE), two
GATA sites, two CArG boxes, two NK-homeobox binding elements (NKE), an A/T-rich
element and a phenylephrine-responsive element (PERE), to which the transcriptional
factors Tbx5, GATA4/6, SRF, NKX2.5, MEF2C and Zfp260 have all been shown to
bind [19,20] and to contribute singly or cooperatively to the basal and inducible activation
of ANP promoter in cardiac myocytes [20–26]. Furthermore, those sequences have been
highly conserved in evolutionarily diverse organisms [27]. However, there are some
differences in the expression pattern between the proximal 5′-FR of NPPA and the intact
endogenous NPPA, suggesting that regions outside of the proximal 5′-FR region also
have a regulatory capacity [19,28]. Investigation of the NPPA locus in mouse disclosed
that distal regulatory elements are also necessary for fine-tuned regulation of NPPA
expression during embryonic development [28]. It is reported that the neuron-restrictive
silencer element (NRSE), glucocorticoid responsive element (GRE) and hypoxia-response
element (HRE), all of which are located outside the proximal promoter, are also involved
in the induction of NPPA transcription [29,30].

Similarly, the proximal region of the human BNP promoter is sufficient to medi-
ate ventricle-specific NPPB expression [31,32]. NPPB contains an AT-rich region in its
3′-untranslated region (UTR), which makes the gene unstable, indicating that BNP ex-
pression is also regulated post-transcriptionally [33]. Indeed, NPPB has a shorter half-life
than NPPA. Moreover, the region extending from −127 to −40 of the human NPPB 5′-FR
is found to be necessary for cardiac-specific expression by deletion analysis [32]. This
human BNP promoter proximal region contains potential GATA, CArG, AP-1/CRE-like
and M-CAT elements, which are conserved among humans, mice and rats [32,34–36]. All of
these elements have been shown to control the cardiac selectivity of gene expression [35–40]
and to mediate both basal and inducible expression of NPPB [35,36,39–41]. Other sites in
the distal regions of human NPPB 5′-FR, such as NRSE, NF-AT binding sites, SSREs and
TRE, have also been found to play important roles in the inducible activation of the human
BNP promoter [42–45].

NPPA is located within an insulated chromatin structure called the topologically
associating domain (TAD), and NPPB and several other genes are located in its vicinity.
As TADs generally create a local gene-regulatory environment, it is likely that the specific
elements that regulate NPPA are situated within this TAD. Further investigation of the
NPPB-NPPA genomic cluster in mice unraveled the specific elements required for cardiac
expression of the two genes and demonstrated that physical contact between the genes
and their regulatory elements was likely an important component of their co-regulatory
expression [46]. For instance, the BNP promoter was shown to be required for stress-
induced expression of NPPA [46].

Pathological stress including mechanical stress on the heart increases ANP and BNP
expression and secretion in both ventricular and atrial myocytes [47–49]. During that
process, a variety of neurohumoral factors, cytokines and growth factors are induced and
cooperatively affect ANP and BNP expression by mediation through various signaling
pathways [50]. We previously identified that Rho- and actin-treadmill-dependent nuclear
accumulation of myocardin-related transcription factor A (MRTF-A), a coactivator of SRF,
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contributes to the transduction of mechanical stress to the transcriptional activation of Nppb
via SRF-responsive element [36].

3. NRSF Is a Transcriptional Repressor of Fetal Cardiac Genes, including NPPA
and NPPB

The neuron-restrictive silencer element (NRSE), which is also named as repressor
element 1 (RE-1), has been identified as a negatively acting DNA regulatory element that
represses neuronal gene expression in non-neuronal cells and in undifferentiated neuronal
cells [51,52]. NRSF, also known as REST, has been identified as a protein that binds to
NRSE [53]. NRSF is one of the zinc finger transcriptional factor family members and is
globally expressed in most non-neuronal tissues, including the heart [52]. Subsequently, it
was shown that NRSF also suppresses non-neuronal genes containing NRSE, implying that
NRSF is a transcriptional regulator of both neuronal and non-neuronal genes containing
NRSE in non-neuronal tissues [54]. As described above, the activity of the 5′-FR of human
NPPA is strongly suppressed by a fragment containing the 3′-UTR of the gene. The 3′-UTR
of NPPA contains a conserved sequence similar to NRSE. When the NRSE-like sequence is
mutated in the human NPPA 3′-UTR, the repressor activity is completely lost. Mutant NRSE
also reduces the response of ANP promoter activity to endothelin-1 through the constitutive
activation in cultured ventricular myocytes. This indicates that the hypertrophic stimulus-
inducible ANP expression in cardiac myocytes is likely attributed to attenuation of NRSE-
mediated repression, at least in part [7].

We also found that the 5′-FR of NPPB contains a cis-acting negative regulatory ele-
ment, which has 90% homology to the consensus sequence of NRSE. This element, called
the fibronectin-inducible element, is well conserved among species and mediates the in-
crease in BNP promoter activity by fibronectin in cardiomyocytes. We demonstrated that
the element binds NRSF, and its mutation significantly increases human BNP promoter ac-
tivity. These results indicate that NRSF represses transcription of Nppa as well as Nppb [8].
Indeed, infection of recombinant adenovirus expressing dnNRSF results in an increase
of both Nppa and Nppb expression in cultured ventricular myocytes [9]. Both Nppa and
Nppb expression in ventricles of dnNRSF-Tg are also increased. Adenovirus-mediated
expression of dnNRSF in cardiomyocytes prevents hypertrophic stimulation-induced
increases in ANP and BNP expression. Furthermore, pressure-load-induced increases
in ANP and BNP expression, which are normally seen in wild-type mice, are markedly
suppressed in the ventricles of dnNRSF-Tg mice. On the other hand, forced recruitment
of NRSF to the ANP promoter in ventricular myocytes represses basal promoter activity,
but enhances inducible activity in response to endothelin-1 [7]. Collectively, removal of
NRSF-mediated repression likely contributes to the inducible ANP and BNP expression
in response to pathological stimuli.

The skeletal α-actin gene is expressed in the fetal ventricle, but its expression level
in the ventricle declines after birth and is reactivated only when exposed to pathological
stress [9]. 3′-UTR of the skeletal α-actin gene also contains NRSE [55]. This implies
that NRSF participates in the maintenance of normal cardiac structure and function by
regulating the expression of multiple fetal cardiac genes (Figure 1). As well as NPPA and
NPPB, skeletal α-actin gene expression is significantly elevated in the ventricle of dnNRSF-
Tg mice. Intriguingly, dnNRSF-Tg mice exhibit reduced cardiac contractility with left
ventricular dilatation, ventricular arrhythmias and early lethality. These indicate that NRSF
plays an essential role in maintaining normal myocardial integrity through regulation of
the cardiac gene program. Moreover, genetic deletion of guanylyl cyclase-A (GC-A), a
common receptor for ANP and BNP, by crossing with GC-A knock out mice, exacerbates
the pathological cardiac remodeling observed in dnNRSF-Tg mice, demonstrating that the
cardiac dysfunction and lethal arrhythmia observed in dnNRSF-Tg mice are not caused
by the increased expression of ANP or BNP [56]. Taking the involvement of NRSF in
the reactivation of the fetal cardiac gene program into account, further investigation of
the molecular mechanisms by which dnNRSF-Tg mice exhibit cardiac dysfunction and
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ventricular arrhythmias may bring about the discovery of novel molecular mechanisms
underlying the progression to pathological cardiac remodeling and heart failure.
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Figure 1. NRSF maintains normal cardiac function and electrical stability by regulating the cardiac
gene program with other transcription factors. Whereas ANP and BNP protect against heart failure
development, reactivation of Gαo and fetal-type cardiac ion channels, such as T-type Ca2+ and HCN
channels, leads to cardiac dysfunction and ventricular arrhythmia in dnNRSF-Tg mice and NRSF
cKO mice. HCN, hyperpolarization-activated cyclic nucleotide; NFAT, nuclear factor of T cells; MEF2,
myocytes enhancer factor 2; SRF, serum response factor; NRSF, neuron-restrictive silencer factor;
REST, repressor element-1 silencing factor.

4. NRSF Regulates Fetal Cardiac Ion Channels and Maintains Electrical Stability in
the Heart

Electrical instability caused by alterations in ion channel activity is likely responsible
for the malignant ventricular arrhythmias and sudden arrhythmic death observed in
dnNRSF-Tg mice [57]. It has been demonstrated that two types of fetal cardiac ion channel,
T-type Ca2+ and HCN channels, are potentially responsible for the increased incidence
of arrhythmias in dnNRSF-Tg mice (Figure 1). T-type Ca2+ channel is one of the well-
studied ion channels in fetal myocardium [58]. Voltage-gated Ca2+ channels are the main
sources of Ca2+ influx in excitable cells and are classified into several types: L-(long-lasting),
T-(transient), N-(neuronal), P/Q-(Purkinje) and R-(residual-drug-resistant). Among these
types of Ca2+ channels, cardiac myocytes express only L- and T-type channels. In mature
cardiomyocytes, L-type Ca2+ channels are the major subtype and play an important role
in excitation-contraction coupling [59]. Conversely, T-type Ca2+ channels are abundantly
expressed in the embryonic ventricle, but their ventricular expression is suppressed during
the maturation of the heart, so that their expression is restricted to the conduction system
in the adult ventricle [60,61]. However, they are reactivated in hypertrophied and failing
ventricles [62]. There are two α1 subunits of T-type Ca2+ channel expressed in the heart, α1G
(CACNA1G) and α1H (CACNA1H) [58]. CACNA1H contains an NRSE-like sequence within
its first intron. This NRSE-like sequence has 93% homology to the NRSE consensus sequence
and is well preserved among different mammalian species, including humans. NRSF
binds to that sequence, which indicates NRSF-mediated negative regulation of CACNA1H
expression in cardiac ventricular myocytes [9]. Consistent with this notion, CACNA1H
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expression and T-type Ca2+ currents are increased in ventricles of dnNRSF-Tg mice. This
suggests that the NRSF-NRSE system is involved in the increased cardiac expression of
T-type Ca2+ channels observed under pathological conditions. Pharmacological inhibition
of T-type Ca2+ currents by efonidipine or R(−)-isomer efonidipine significantly prolongs
lifespan among dnNRSF-Tg mice and mice with acute myocardial infarction by suppressing
electrical abnormalities in ventricular myocytes and consequently ventricular arrhythmias.
Although further investigation is necessary, this suggests inhibition of T-type Ca2+ channels
could be a clinically useful approach to prevent malignant arrhythmias in heart failure
patients [63].

The HCN ion channel family (HCN1-4) carries the If current in the heart [64,65]. In
the adult mammalian heart, HCN channels are predominantly expressed in the conduction
system, especially in the sinus node, where HCN4 controls cardiac rhythmicity as the major
isoform [65]. In ventricular myocytes, HCN2 is expressed as the major isoform, though
expression level of HCN channels in the healthy adult ventricular myocardium is generally
much lower than that in the conduction system. Indeed, If currents are rarely detectable in
normal ventricular myocytes [65].

During the developmental process, HCN channels are highly expressed in the ven-
tricular myocardium of the fetus, but their expression gradually decreases after birth and
becomes almost exclusively restricted to the conduction system in the adult heart [66]. How-
ever, HCN channels, especially HCN2 and HCN4, are re-induced in hypertrophied and
failing hearts in both rodents and humans, which leads to an increase in If currents [67,68].
The transcriptional activator MEF-2 activates HCN4 promoter activity in cardiomyocytes
through its binding sequence located in the first intron of the HCN4 gene [69]. Increased
HCN2 and HCN4 expression are also observed in dnNRSF-Tg hearts. HCN4 contains a
conserved NRSE-like sequence within its first intron [9]. In neonatal rat ventricular my-
ocytes, a part of the first intron of HCN4 gene containing NRSE-like sequence significantly
suppresses the activity of HCN4 promoter in an NRSF-dependent fashion [70]. In addition,
during cardiac development, the NRSF expression profile was inversely correlated with the
HCN4 expression profile, suggesting that NRSF regulates HCN expression in the develop-
mental stage. Moreover, the NRSE-like sequence seems to be important for the reactivation
of HCN4 induced by hypertrophic stimuli [9,70]. Thus, NRSF appears to regulate both
basal and inducible expression of the HCN2 and HCN4 genes in ventricular myocytes.

To clarify the role of reactivated HCN channels in the increased arrythmicity associ-
ated with heart failure, dnNRSF-Tg mice were treated with ivabradine, a specific HCN
channel blocker [71]. Ivabradine given orally at doses as low as 7 mg/kg/day significantly
prolonged the life span and reduced incidences of malignant arrhythmias without affecting
heart rate and cardiac function or structure. Likewise, in ventricular myocytes isolated
from dnNRSF-Tg mice, ivabradine suppressed ventricular arrhythmias by inhibiting patho-
logically increased automaticity. Reciprocally, cardiac-specific overexpression of HCN2
channels increases susceptibility to arrhythmias induced by β-adrenergic stimulation in
mice. These results indicate that increased HCN channel expression in dnNRSF-Tg ven-
tricles likely contributes to increased arrhythmogenicity. From a clinical point of view, it
is noteworthy that HCN2 and HCN4 gene expression is increased in hypertrophied and
failing human ventricles. The SHIFT study revealed that the beneficial effect of ivabra-
dine in heart failure patients is correlated with heart rate reduction, although there is
still a possibility that ivabradine may exert cardioprotective effects independent of heart
rates [72,73].

5. NRSF Maintains Ca2+ Homeostasis and Systolic Function in the Heart

Progressive impairment in cardiac function and dilatation of cardiac chambers are
observed in both dnNRSF-Tg mice and NRSF cKO mice; this indicates the essential role
played by NRSF in maintaining cardiac integrity. Analysis comparing the gene expression
profiles of ventricles between dnNRSF-Tg mice and NRSF cKO mice showed that gene
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expression of Gnao1, which encodes Gαo, was increased in both types of mouse, while
expression of Gnai2, which encodes Gαi2, was unchanged.

Gαo and Gαi2 belong to the Gαi/o family of heterotrimeric GTP-binding proteins
(G proteins). Heterotrimeric G proteins fall into four major families: Gαs, Gαi/o, Gαq and
Gα12/13 [74–76]. Though Gαi/o activity is reported to be increased in the failing human
heart [77,78], its pathophysiological role in failing ventricles remains poorly understood.
Within the normal heart, Gαi2 is the dominant subtype, whereas Gαo is about half the
abundance of Gαi2 [78–81]. The role played by Gαi2 in pathological cardiac remodeling
remains controversial [79,82–84], and little is known about the function of Gαo in the
pathophysiology of heart failure. We found that Gαo is transcriptionally regulated by
NRSF [10]. Furthermore, genetic reduction of Gαo by mating with Gnao1 knockout mice
prevents the progression of pathological cardiac remodeling and cardiac dysfunction in
dnNRSF-Tg mice and NRSF cKO mice (Figure 1). Similarly, in two other models of heart
failure, mice with chronic pressure overload induced by transverse aortic constriction [85]
and mice carrying a cardiac troponin T mutation [86], both show attenuated heart failure
progression under conditions where Gαo is genetically reduced. We also demonstrated that
increased expression of Gαo in the heart causes cardiac dysfunction. Mechanistically, Gαo
increases surface sarcolemmal L-type Ca2+ channel activity in ventricular cardiomyocytes,
which, in turn, activates pathological Ca2+ signaling such as CaMKII activation, thereby
impairing SR function and leading to pathological cardiac remodeling [10]. Single-cell
RNA sequence data from human ventricular myocytes, which are publicly available, show
higher expression of Gnao1 and other NRSF target genes, including NPPA, ACTA1 and
CACNA1H, in dilated cardiomyopathy patients than in healthy control subjects [87]. These
findings demonstrate that the NRSF-GNAO1 transcriptional pathway may broadly underlie
the development of human heart failure, implying that selective inhibition of Gαo could be
a novel and effective strategy for heart failure.

6. Epigenetic Regulators Associated with NRSF

A number of studies performed in non-cardiac cells have revealed that NRSF forms
a complex with corepressors to repress transcription (Figure 2). NRSF has two repressor
domains at the N- and C-terminal ends, respectively. The N-terminal repressor domain
interacts with the mSin3A and mSin3B complexes that associate with histone deacetylases
(HDAC) [7,88,89]. On the other hand, the C-terminal repressor domain interacts with
the corepressor CoREST, which forms a complex with HDACs, the histone demethylase
LSD1 and the ATP-dependent chromatin remodeling enzyme BRG1 [88]. The C-terminal
repressor domain of NRSF also interacts with the histone methylase G9a independently of
CoREST [90]. HDACs remove acetyl groups from histone tails, resulting in transcriptional
repression by chromatin compaction [91]. LSD1 demethylates mono- and dimethylated
H3 lysines K4 and K9, thereby repressing gene expression [92]. G9a monomethylates and
dimethylates histone H3K9 (H3K9me1 and H3K9me2) and, to a lesser extent, H3K27 [93].
In cardiomyocytes, NRSF forms a complex with Class I HDACs and the Class IIa HDACs,
HDAC4 and HDAC5, and suppresses NPPA and NPPB expression by modifying histone
acetylation [7,89]. Class I HDACs are relatively ubiquitously expressed, while Class IIa
HDACs, including HDAC4, HDAC5, HDAC7 and HDAC9, are expressed in a tissue-
specific manner, most abundantly in heart, brain and skeletal muscle. In the heart, Class
IIa HDACs have been reported to act as a signal-responsive suppressor of cardiac hy-
pertrophy [94]. Phosphorylation at two conserved sites by Ca2+/calmodulin-dependent
kinase and/or protein kinase D induced by hypertrophic stimuli causes nuclear export
of Class IIa HDACs, resulting in the attenuation of NRSF-mediated repression of the
fetal gene program during cardiac remodeling [89]. These findings suggest that NRSF
needs association with epigenetic machinery at least in part for regulation of cardiac
gene expression.
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The actions of HDACs have been studied in a variety of heart failure models. In
a mouse model of chronic pressure overload induced by transverse aortic constriction,
treatment with a pan-HDAC inhibitor (HDACi) blunted the hypertrophic response and
slowed the progression toward heart failure [95,96]. Cardiac fibrotic markers were also
reduced in the ventricle, and HDACi application reduced collagen production in isolated
cardiac fibroblasts [96]. HDACi treatment also ameliorated established hypertrophy [95].
Similar cardioprotective effects were produced through cardiomyocyte-specific deletion
of Class I HDACs (HDAC1 and HDAC2) [97,98]. On the other hand, cardiomyocyte-
specific deletions of Class II HDACs promoted hypertrophic responses [99]. In addition,
administration of a clinical-stage HDACi (givinostat) improved cardiac function in two
diastolic dysfunction models; the Dahl salt-sensitive hypertensive rat and normotensive
diastolic dysfunction mice induced by aging [100]. The HDACi-mediated improvement
seen with these models appears to be unrelated to blood pressure, cardiac hypertro-
phy, changes in the isoform of expressed cardiac sarcomeric proteins, or regulation of
gene transcription. Instead, the improvement correlates with enhanced relaxation of
myocardial fibers mediated by direct deacetylation of sarcomeric proteins [100]. In a
recent study using a feline model of diastolic dysfunction and heart failure induced
by pressure overload, another HDACi (vorinostat) had a similar effect on relaxation
properties of isolated myocardial fibers [101]. Moreover, vorinostat ameliorated cardiac
hypertrophy and cardiac fibrosis in a manner similar to that seen in mouse models of
pressure-overload-induced hypertrophy [96,101]. Suppression of HDACs appears to
reduce cardiac hypertrophy, protect against oxidative damage, reduce inflammation,
inhibit fibrosis and modulate the composition extracellular matrix [97,102]. However,
taking into consideration that cardiac-specific deletion of HDAC1 and HDAC2 results in
neonatal death, with arrhythmia and dilated cardiomyopathy [91], more precise studies
will be needed before establishment of a clinical application.

The role of LSD1 has also been studied in various heart failure models. LSD1 deletion
in cardiac myofibroblasts attenuates the remodeling induced by transverse aortic constric-
tion, whereas LSD1 deletion in cardiomyocytes triggers mild cardiac hypertrophy and
dysfunction [103]. Knockdown of LSD1 prevents cardiac fibroblast activation by inhibiting
the TGFβ pathway, as evidenced by downregulation of Ang-II-induced TGFβ1 expression
and Smad2/3, p38, ERK and JNK phosphorylation. On the other hand, LSD1 deletion from
cardiomyocytes downregulated CoREST and NRSF accompanied with reactivation of ANP
and BNP. LSD1 seems to maintain the integrity of the CoREST complex, so that deletion
of LSD1 causes downregulation of CoREST protein [104]. CoREST reduction triggers a
decrease in the level of LSD1 and de-repression of NRSF-responsive gene expression [105].
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How LSD1 deletion downregulates NRSF in cardiomyocytes and how LSD1 affects the
TGFβ pathway in cardiac fibroblasts remain unknown, however.

G9a forms a heteromeric complex with GLP (G9a-like protein, also known as EHMT1
or KMT1D), another enzyme catalyzing the methylation at H3K9 in vivo [106]. Genetic
analysis showed that, in vivo, the histone methyl-transferase activity of G9a is more im-
portant than that of GLP and that neither can compensate for the loss of the activity of the
other [107]. G9a and GLP are essential for normal development, and KO mice deficient
in either gene die in utero (at E9.5) due to severe growth defects [106]. H3K9me2 accu-
mulates during cardiac development and keeps adult cardiomyocytes locked into their
terminally differentiated state in which the fetal gene program is suppressed. However,
pathological hypertrophic stimuli increase expression of miR-217, which downregulates
G9a/GLP and leads to a reduction in H3K9me2. This decrease in H3K9me2 causes
cardiomyocytes to be in a less differentiated state and de-represses the fetal gene pro-
gram [108]. It remains unclear whether the effects of G9a described above are mediated
by NRSF, however.

All these studies demonstrate that alterations in histone acetylation and/or histone H3
lysine methylation play an important role in the regulation of cardiac genes mediated by
NRSF [109]. We anticipate that further studies into how each component of the epigenetic
regulators contributes to the regulation of the cardiac gene program via NRSF and cardiac
homeostasis will lead to a better understanding of the molecular mechanisms underlying
the pathological cardiac remodeling and heart failure.
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