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Abstract

Random fluctuations in temperature and precipitation have substantial impacts on agricul-

tural output. However, the contribution of these changing configurations in weather to total

factor productivity (TFP) growth has not been addressed explicitly in econometric analyses.

Thus, the key objective of this study is to quantify and to investigate the role of changing

weather patterns in explaining yearly fluctuations in TFP. For this purpose, we define TFP to

be a measure of total output divided by a measure of total input. We estimate a stochastic

production frontier model using U.S. state-level agricultural data incorporating growing sea-

son temperature and precipitation, and intra-annual standard deviations of temperature and

precipitation for the period 1960–2004. We use the estimated parameters of the model to

compute a TFP index that has good axiomatic properties. We then decompose TFP growth

in each state into weather effects, technological progress, technical efficiency, and scale-

mix efficiency changes. This approach improves our understanding of the role of different

components of TFP in agricultural productivity growth. We find that annual TFP growth aver-

aged 1.56% between 1960 and 2004. Moreover, we observe substantial heterogeneity in

weather effects across states and over time.

Introduction

According to the United States National Climate Assessment: “Climate change poses a major

challenge to U.S. agriculture because of the critical dependence of the agricultural system on

climate and because of the complex role agriculture plays in rural and national social and eco-

nomic systems” [1]. This challenge is of major concern given the critical role that this country

plays in global food production and world food markets. It is noteworthy that in 2016, the U.S.

generated approximately 35% of global corn supply, 33% of global soybeans and close to 33%

of global dairy products [2]. Thus, understanding how to manage the agricultural sector in the

face of climate change will enable the development of effective strategies aimed at coping with

this challenge.
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The central argument of this study is that climate change alters weather outcomes, and

these outcomes have a direct biophysical effect on agricultural production [3]. Therefore, if

agricultural output is impacted by weather outcomes then, ceteris paribus, total factor produc-

tivity (TFP) will also be affected. Following Dell et al. [4], we use the term climate to refer to

the distribution of outcomes over long intervals (e.g., over several decades), while weather

describes a particular realization from that distribution. Hence, weather variation refers to

shorter-run temporal variation in temperature and precipitation within a given spatial area

[4]. Thus, the key objective of this study is to investigate and to quantify the role of changing

configurations in weather in explaining year-to-year fluctuations in TFP. By exploiting varia-

tions in weather outcomes one can identify their causal effects on agricultural productivity. In

this sense, the maximal possible output in a given year is affected not only by the average tem-

perature and precipitation experienced in that year, but also by within-year variations in tem-

perature and precipitation.

Using data prepared by the Economic Research Service (ERS) of the U.S. Department of

Agriculture for the period 1960–2004, this article estimates a stochastic production frontier

that incorporates input-output data (i.e., total output, land, labor, capital, intermediate materi-

als), weather variables (i.e., growing season temperature and precipitation, and intra-annual

standard deviations of temperature and precipitation) and time-invariant characteristics of

the production environment (e.g., topography). The ERS relied on the U.S. Bureau of Labor

Statistics (BLS) to acquire a portion of the labor data that was used to develop the state-level

agricultural data series. The BLS stopped collecting a key segment of the labor data in 2004.

Subsequently, lacking some complementary or new data, the ERS stopped collection of state-

level data in 2004. Since then, ERS has transitioned to national-level input-output data.

The estimated model is subsequently used to decompose a TFP index into four main com-

ponents: weather effects, which capture fluctuations in TFP due to variations in temperature

and precipitation; technological change, which measures shifts of the production frontier due

to the discovery of new technologies; technical efficiency change, which measures movements

towards or away from the frontier due to the use of different technologies; and scale efficiency

changes, that measure productivity gains linked to economies of scale. Briefly, we find that

annual TFP growth averaged 1.56% between 1960 and 2004. In addition, weather contributed

to a 0.012% decline in annual TFP growth, on average, with considerable heterogeneity over

time and space.

Temperature and precipitation trends across the United States

Analyzing the shifting patterns of temperature and precipitation across the U.S. will enable us

to gain an understanding of the potential effects of weather variability while underscoring the

extent of anomalies and shocks in domestic weather patterns across various states. Estimates

of the evolution of the spatial distribution of the coefficients of variation, calculated by dividing

the year-to-year standard deviations of temperature and precipitation by their respective

means, indicate that between 1960 and 2004, states in the northern part of the country (e.g.,

Idaho, Montana, Wyoming, North Dakota, South Dakota, Iowa, Minnesota, Wisconsin and

Michigan) experienced substantial year-to-year temperature variability compared to the rest of

the United States, as illustrated in Fig 1.

Note that Temperature scales that utilize Celsius and Fahrenheit measures are interval

scales that can take on both positive and negative values. Thus, a measure of coefficient of vari-

ation for temperature where the mean is zero may lead to a value that is undefined. Further-

more, mean values close to zero may cause the coefficient of variation measure to explode.
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Consequently, in order to estimate the coefficient of variation for temperature, we use the Kel-

vin scale, which is a ratio scale that only takes non-negative values.

On the other hand, states in the west and southwest of the United States (e.g., Oregon, Cali-

fornia, Idaho, Nevada, Utah, Arizona, New Mexico), and Kansas and South Dakota in the

Fig 1. Year-to-year temperature coefficient of variation across the United States, 1960–2004.

https://doi.org/10.1371/journal.pone.0192432.g001
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Northern Plains, were characterized by intense year-to-year precipitation variability, com-

pared to the rest of the country, as depicted in Fig 2.

In sum, we observe considerable heterogeneity in the variability of temperature and precipi-

tation across the U.S. over the period 1960–2004. The rest of this study will examine how this

variability has impacted agricultural production patterns across the country.

Fig 2. Year-to-year precipitation coefficient of variation across the United States, 1960–2004.

https://doi.org/10.1371/journal.pone.0192432.g002
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Climatic effects on U.S. agriculture

Early studies in economics focusing on climate change predicted significant mid-continental

warming in the U.S. brought about by increased concentrations of atmospheric CO2 [5,6]. The

seminal paper by Mendelsohn et al. [7] was one of the first to report quantitative estimates of

the economic effects of climate change on U.S. agriculture. In contrast to earlier work, this lat-

ter study presented evidence that climate change might be beneficial to the U.S. farm sector as

a whole. Mendelsohn and colleagues used a hedonic approach that specified land values as a

function of climatic factors, and economic and demographic variables. Their analysis pre-

dicted regional adjustments in crop and livestock production, as well as in resource use in

response to climate change. However, the Mendelsohn and coauthors approach was criticized

in the literature for applying cross-sectional data while implicitly assuming a perfectly elastic

supply of irrigation water [8], and for overstating the potential benefits of warmer weather [9].

Moreover, Kaufman [10] questioned the stability of the regression coefficients reported and

argued that this undermined the credibility of their results.

Several studies have followed in the footsteps of Mendelsohn et al. [7], including Adams

et al. [11], Mendelsohn and Dinar [12], Lobell and Asner [13], Schlenker et al. [14,15],

Deschenes and Greenstone [16], Roberts et al. [17], and Burke and Emerick [18]. Some of

these studies evaluate the responsiveness of profit-maximizing economic agents to changing

configurations in weather; common responses include switching to more drought resistant

crops or the adoption of improved irrigation systems [16]. The results of these studies have

yielded a wide range of predicted impacts on U.S. agriculture. Some studies have predicted

gains in U.S. agriculture due to climate variability [11,16], declining agricultural yields [13,18],

while others anticipate mild impacts [12] or a mixture of results [19]. A key argument is that

U.S. agricultural production will be impacted primarily due to changing configurations of tem-

perature and precipitation, and this will lead directly to modifications in farming patterns and

resource use [7], and a growing reliance on secondary sources for water such as irrigation

[12,14]. The implementation of adaptation strategies can be expected to reduce the long-run

adverse effects stemming from changes in climatic conditions [14].

In contrast to the hedonic studies aforementioned, this study uses a stochastic production

frontier approach to examine the direct impact of changing configurations in weather on agri-

cultural output, and therefore TFP. As noted earlier, isolating the role of changing weather pat-

terns on TFP growth in the U.S. agricultural sector has for the most part been ignored; hence,

this article seeks to address this gap in the literature. The rest of the study is organized as fol-

lows: The next section presents the theoretical foundation that models the production technol-

ogy, as well as the general index that is used to measure and decompose TFP, followed by a

discussion of the data and econometric specification. We then present the results, and finally, a

summary and concluding remarks.

The production technology

This section presents the methodology that is used to characterize the production technology.

This article distinguishes between the production technology and environmental factors that

impact production outcomes. To be specific, a technology is defined as “. . .a technique,

method or system for transforming inputs into outputs” [20]. On the other hand, environmen-

tal factors consist of all exogenous variables that are physically involved in the production

process but that are beyond the control of the firm. In the context of this article, the environ-

mental factors of relevance are weather variables and time-invariant regional features such as

topography. The set of all technologies available in period t is referred to as the period-t tech-

nology set. In addition, the set of all input-output combinations that are feasible using a given
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technology set in a given period in a given environment is referred to as a period-and-environ-

ment-specific production possibilities set. For example, in mathematical terms, the set of

output-input combinations that can be produced using the period-t technology set in environ-

ment z is given as:

TtðzÞ ¼ fðx; qÞ 2 <MþN
þ

: x can produce q in environment z in period tg ð1Þ

Following O’Donnell (2016), we assume the following properties: (1) (x, 0) 2 Tt (z) for any

x 2 R
M
þ

implying that inactivity is possible; (2) the output set Pt (x, z)� {q: (x, q) 2 Tt (z)} is

bounded for all x 2 R
M
þ

; (3) if q> 0, then (0, q) =2 Tt (z), implying that a strictly positive

amount of at least one input is required to produce a positive amount of output; (4) if (x, q) 2

Tt (z) and 0� λ� 1, then (x, λq) 2 Tt (z), implying outputs are weakly disposable; (5) the out-

put set Pt (x, z)� {q: (x, q) 2 Tt (z)} is closed, implying the set of outputs that can be produced

given an input vector contains all the points on its boundary. If these properties are satisfied,

then the period-t technology set can be represented using period-and-environment-specific

distance functions. The period-and-environment-specific output distance function (ODF) and

input distance function (IDF) are defined as Dt
Oðx; q; zÞ ¼ inffr > 0 : ðx; q=rÞ 2 TtðzÞg and

Dt
Iðx; q; zÞ ¼ supfy > 0 : ðx=y; qÞ 2 TtðzÞg. By construction, the ODF is nonnegative and

homogeneous of degree one in outputs. The IDF is nonnegative and homogeneous of degree

one in inputs.

In addition to the properties listed above, we also assume (6) if (x, q) 2 Tt (z) and

0 � ~q � q, then ðx; ~qÞ 2 TtðzÞ, i.e., outputs are strongly disposable. Strong disposability of

outputs implies that it is possible to use the same vector of inputs to produce fewer outputs.

This guarantees that the ODF is non-decreasing in outputs. Finally, we assume (7) if (x, q) 2 Tt

(z) and λ> 0, then (λx, λrq) 2 Tt (z), which implies that the technology set is homogeneous of

degree r. This implies the ODF is homogeneous of degree–r in inputs, the IDF is homogeneous

of degree –1/r in outputs, and � ð1=rÞ ln Dt
Oðx; q; zÞ ¼ ln Dt

Iðx; q; zÞ (e.g., O’Donnell, 2016,

Proposition 3).

An axiomatic approach to TFP decomposition

The TFP index that is used in this article is the general index proposed in O’Donnell [20]. This

is an economic-theoretic index that is proper in the sense that it satisfies several basic axioms,

including monotonicity, linear homogeneity, identity, commensurability, proportionality, and

transitivity. In contrast, the widely used Fisher, Tornqvist, and Malmquist productivity indexes

do not satisfy the transitivity axiom, which is a critical property when making comparisons

across data points [21–28]. The transitivity axiom states that a direct comparison of the TFP of

two decision-making units (DMUs) should yield the same estimate of TFP change as an indi-

rect comparison through a third DMU [29].

The general index of O’Donnell is obtained by dividing a general output quantity index by

a general input quantity index. These indexes are general in the sense that they nest several

other proper indexes as special cases. For example, if there are no environmental variables in

the production process and there is no technical change, then the general output and input

quantity indexes collapse to indexes found in Färe and Primont [30]. Furthermore, like any

proper TFP index, the general TFP index can be decomposed into measures of environmental

change, technological progress, and technical, scale, and mix efficiency changes [20].

Total factor productivity change. We begin this section by introducing i and t subscripts

into the notation so that, for example, qit now denotes the outputs of state i in period t. We

define total factor productivity (TFP) as the ratio of an aggregate output to an aggregate input.
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More formally, the TFP of state i in year t is:

TFPit ¼
Qit

Xit
ð2Þ

where Qit� Q (qit) is an aggregate output, Xit� X (xit) is an aggregate input, and Q(.) and X(.)

are nonnegative, non-decreasing and linearly homogeneous scalar functions. If outputs and

inputs are strongly disposable, as we assume in this paper, then possible aggregator functions

are QðqÞ ¼ D�t
Oð�x; q; �zÞ and XðxÞ ¼ D�t

Iðx; �q; �zÞ, where �x, �q and �z are respectively fixed vectors

of inputs, outputs and environmental variables, and �t is a fixed reference period. The associ-

ated index that compares the TFP of state i in year t with the TFP of state k in year s is the gen-

eral index defined [20] as:

TFPIGksit ¼
D�t
Oð�x; qit; �zÞ

D�s
Oð�x; qks; �zÞ

D�s
Iðxks; �q; �zÞ
D�t
Iðxit; �q; �zÞ

: ð3Þ

Special cases of (3) include the Lowe, geometric Young and Färe-Primont TFP indexes

(TFPIs). The mathematical form of the general TFPI in (3) depends on the mathematical form

of the output and input distance functions. For example, suppose there is only one output and

the log-distance function is given by the following Cobb-Douglas (CD) function:

ln Dt
Oðxit; qit; zitÞ ¼ ln qit � �i �

XH

h¼1

ghdhitt �
XJ

j¼1

rj ln zjit �
XM

m¼1

bm ln xmit ð4Þ

where ϕi is a fixed environmental effect and dhit is a dummy variable that takes the value 1 if

period t is in the h-th quinquennium (and 0 otherwise). In this case, the TFPI defined by

expression (3) takes the form:

TFPIGksit ¼
qit
qks

YM

m¼1

xmks
xmit

� �lm
" #

ð5Þ

where λm = βm/r and r = ∑m βm is the elasticity of scale. Computing this index obviously

involves estimating β1,. . ., βM. In this article, we estimate these parameters using stochastic

frontier analysis (SFA) methods.

Data and econometric specification

The data used consists of indices of farm output and inputs across the 48 contiguous states of

the U.S. and is developed by the Economic Research Service (ERS) of the U.S. Department of

Agriculture [31]. Several authors have used similar data to analyze different productivity issues

[20,27,29,32,33]. The aggregate output index is constructed by the ERS from measures of phys-

ical quantities of livestock, crop and other outputs, and their respective state-level market

prices. The input indices consist of land, labor, capital and intermediate materials, all calcu-

lated by the ERS. Details concerning the construction of the input and output indices are elab-

orated in Ball et al. [27,33,34]. This article utilizes the full data set for the 45-year period

between 1960 and 2004; thus, the total number of observations is 2,160. Table 1 provides a

summary of the descriptive statistics of the variables used in the stochastic production frontier

analysis. The complete dataset used in this analysis is included as S1 File.

The evidence pointing to the importance that changing weather patterns can have on

agricultural production has been building [1,3,4,35,36]. Recent empirical work based on U.S.

agricultural data has generated additional evidence at the farm and county levels [37–40].

Therefore, the ERS data is augmented with state-level averages of temperature and cumulative
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precipitation obtained from the National Centers for Environmental Information (NCEI) of

the National Oceanic and Atmospheric Administration (NOAA). The NCEI collects data on

temperature and precipitation values from approximately 10,000 stations distributed across

the country. We rely on daily estimates of temperature and precipitation derived from the

NCEI to construct state-level average growing season temperature, and cumulative precipita-

tion measures.

Furthermore, the maximal possible output in a given year is affected not only by averages of

growing season temperature and cumulative precipitation, but also by the variations in tem-

perature and precipitation within that season. For example, in any given growing season, tem-

peratures above the norm would be expected to negatively impact farm output. Similarly, if all

the precipitation falls in a few episodes, or not at all, then we would expect an adverse effect on

output compared to a situation where the rain is spread more evenly throughout the growing

season. Thus, in order to capture these shocks and anomalies over the growing season we use

estimates of intra-annual (within-year) standard deviations calculated from average daily tem-

perature and precipitation measures. These are then averaged within each individual State.

This specification is consistent with a number of studies including Mendelsohn et al. [41],

Lobell et al. [13] and Kaminski et al. [42]. Temperature and precipitation measures in the U.S.

are highly seasonal which makes it difficult to identify long-term trends. We therefore adjust

these measures for seasonality using local regression (LOESS) procedures [43] in order to

identify trends over time.

Specification of the stochastic production frontier

The Cobb-Douglas specification is selected over other functional forms (e.g., the translog)

because it enables us to obtain a neat decomposition of the sources of productivity growth as

outlined in Eq (8) below. Our Cobb-Douglas stochastic production frontier model is:

ln qit ¼ �i þ
XH

h¼1
ghdhitt þ

XJ

j¼1
rj ln zjit þ

XM

m¼1
bm ln xmit þ vit � uit ð6Þ

where ϕi is an intercept that varies across each state and is meant to capture unobserved het-

erogeneity (e.g., time-invariant features of the environment, such as topography); dhit are

dummy variables that allow the rate of technical change to vary across quinquennials; x1it,. . .,

xMit are conventional inputs (i.e., land, labor, capital, intermediate inputs); z1it,. . ., zJit are

weather variables broken into two sets comprising growing season averages of temperature

and cumulative precipitation, as well as intra-annual standard deviations of temperature and

precipitation that capture shocks and anomalies in the weather patterns within a given year; vit

Table 1. Descriptive statistics of variables used in the stochastic production frontier model.

Variable Observation Mean Std.Dev Min Max

Output 2160 1.14 1.16 0.01 9.33

Land 2160 2.1 2.23 0.01 15.12

Labor 2160 2.62 2.31 0.02 12.59

Capital 2160 1.87 1.67 0.02 9.41

Intermediate 2160 0.89 0.82 0.01 4.75

Temperature (Fahrenheit) 2160 52 7.63 36.53 72.58

Precipitation (mm) 2160 76.64 31.67 11.37 170.56

Intra-annual Temperature 2160 4.48 2.76 0.99 24.82

Intra-annual Precipitation 2160 33.27 14.51 4.76 88.02

https://doi.org/10.1371/journal.pone.0192432.t001
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is an unobserved variable accounting for functional form errors (e.g., the possibility that the

true production frontier is not CD), measurement errors (e.g., errors in the measurement

of total output), and other sources of statistical noise (e.g., omitted variable errors); and

uit ¼ � lnDt
Oðxit; qit; zitÞ is a nonnegative technical efficiency effect. If there is no statistical

noise (i.e., if vit = 0), then Eq (6) is equivalent to Eq (4). We make the common assumption

that the noise and inefficiency effects are independent random variables with vit � Nð0; s2
vÞ

and uit � Nþð0; s2
uÞ. It is noteworthy to point out that by incorporating state-level fixed effects,

the specification given by Eq (6) has the same statistical structure as the true fixed effects

model of Greene [44,45].

Decomposing TFP change. The stochastic production frontier model given by Eq (6) can

be used to decompose the general index defined by Eq (5). An easy way to do this is to take the

antilogarithm of Eq (6) and write

qit ¼ expð
XH

h¼1
ghdhittÞ expð�iÞ

YJ

j¼1
zjit

rj

h i YM

m¼1
xmit

bm

h i
expð� uitÞ expðvitÞ: ð7Þ

This equation can be used to substitute qit and qks out of Eq (5), resulting in the following

decomposition of TFP change:

TFPIGksit ¼
expð

XH

h¼1
ghdhittÞ

expð
XH

h¼1
ghdkssÞ

2

4

3

5 expð�iÞ
expð�kÞ

YJ

j¼1

zjit
zjks

 !rj
" #

YM

m¼1

xmit
xmks

� �bm � lm
" #

½eðuks� uitÞ�½eðvks� vit Þ� ð8Þ

The first term on the right-hand side is an output-oriented technology index (OTI), i.e., a

measure of technological progress; the second term is an output-oriented environment index

(OEI), i.e., a measure of changes in fixed characteristics of the environment (e.g, topography)

and weather; the third term is an output-oriented scale efficiency index (OSEI) i.e., a measure

of changes in economies of scale (if r = 1, then the technology exhibits constant returns to

scale and this last component drops out); the fourth term is an output-oriented technical effi-

ciency index (OTEI), i.e., a measure of movements towards or away from the frontier; and the

last term is a statistical noise index (SNI) (i.e., a measure of changes in statistical noise). Kneip

and Sickles [46] argue that decomposing TFP change, even with elaborate econometric formu-

lations, is a challenging task and hence some statistical noise is likely to remain.

Results

Prior to discussing our results, we acknowledge possible concerns regarding the potential for

endogeneity in stochastic production frontier models [47–49]. A possible source of endogene-

ity is that input choices may be driven by weather outcomes. Verbeek [50] and O’Donnell [20]

claim that if at least one of the explanatory variables is an I(1) process and the dependent and

explanatory variables are cointegrated, then least squares estimators for the slope parameters

will be super-consistent even if some of the variables are endogenous. We tested for unit roots

using the panel unit root test of Maddala and Wu [51]. Using 4 lags, we failed to reject the null

hypothesis of a unit root at the 5% level of significance for the dependent variable, and the

explanatory variables; land, labor, irrigation, precipitation and temperature. We then con-

ducted a Pedroni [52] test and concluded that the variables are cointegrated. Maximum likeli-

hood estimates of the parameters of the stochastic production frontier model are provided in

Table 2.

The coefficients for land, labor, capital and intermediate materials, interpreted as partial

output elasticities, are nonnegative, which is consistent with our strong disposability assump-

tion. A Wald test for the null hypothesis of constant returns to scale yields a test statistic of 461
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Table 2. Coefficient estimates of stochastic production frontier model.

Variable Coeff. Estimates (Standard Errors)

Land β1 0.1044��� (0.0179)

Labor β2 0.1065��� (0.0096)

Capital β3 0.1018��� (0.0188)

Intermediate β4 0.5628��� (0.0130)

Temperature ρ1 -0.4259��� (0.0940)

Precipitation ρ2 0.0261��� (0.0087)

Intra-annual Temp. ρ3 0.0031 (0.0049)

Intra-annual Prec. ρ4 -0.0131�� (0.0062)

Q1 (1960–64) γ1 0.0094��� (0.0030)

Q2 (1965–69) γ2 0.0072��� (0.0014)

Q3 (1970–74) γ3 0.0082��� (0.0010)

Q4 (1975–79) γ4 0.0082��� (0.0008)

Q5 (1980–84) γ5 0.0094��� (0.0006)

Q6 (1985–89) γ6 0.0118��� (0.0005)

Q7 (1990–94) γ7 0.0126��� (0.0005)

Q8 (1995–99) γ8 0.0118��� (0.0004)

Q9 (2000–04) γ9 0.0119��� (0.0004)

AL ϕ1 1.3977��� (0.4223)

AR ϕ2 1.4512��� (0.4185)

AZ ϕ3 1.5411��� (0.4215)

CA ϕ4 2.0849��� (0.4115)

CO ϕ5 1.2509��� (0.3990)

CT ϕ6 1.1868��� (0.4048)

DE ϕ7 1.3108��� (0.4127)

FL ϕ8 1.9254��� (0.4292)

GA ϕ9 1.6162��� (0.4224)

ID ϕ10 1.4156��� (0.3949)

IL ϕ11 1.6087��� (0.4149)

IN ϕ12 1.4607��� (0.4122)

IA ϕ13 1.6321��� (0.4110)

KS ϕ14 1.4294��� (0.4183)

KY ϕ15 1.4201��� (0.4159)

LA ϕ16 1.2977��� (0.4259)

ME ϕ17 1.1249��� (0.3941)

MD ϕ18 1.2589��� (0.4120)

MA ϕ19 1.2823��� (0.4027)

MI ϕ20 1.3064��� (0.4009)

MN ϕ21 1.4328��� (0.4025)

MS ϕ22 1.4099��� (0.4238)

MO ϕ23 1.3529��� (0.4174)

MT ϕ24 1.0620��� (0.3993)

NE ϕ25 1.4387��� (0.4108)

NV ϕ26 0.9692�� (0.4022)

NH ϕ27 0.9091�� (0.3990)

NJ ϕ28 1.3630��� (0.4106)

NM ϕ29 1.0693��� (0.4123)

NY ϕ30 1.4206��� (0.4015)

(Continued)
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with a p-value of 0.000. We therefore reject the null hypothesis that this model exhibits con-

stant returns to scale. In fact, the sum of the coefficients indicates that the estimated elasticity

of scale is r̂ ¼ 0:8755; revealing decreasing returns to scale. A Wald test to check for the signif-

icance of including all the state-level fixed effects in the model yields a test statistic of 97.51

with a p-value of 0.000. Hence, we conclude that the state-level fixed effects belong in the

model.

The parameter estimates for the weather variables reveal that higher values of growing-sea-

son temperature and precipitation, and the variability of precipitation (i.e., intra-annual pre-

cipitation) have statistically significant impacts on agricultural output. The way to interpret

these parameters is that, ceteris paribus, a one percent increase in average growing season tem-

perature leads to a statistically significant 0.426% reduction in output. Similarly, a one percent

increase in intra-annual standard deviation of precipitation leads to a statistically significant

0.013% decline in agricultural output. Conversely, a one percent increase in precipitation leads

to, ceteris paribus, a 0.026% increase in agricultural output.

Furthermore, instead of using a simple time-trend, which is restrictive because it assumes a

constant rate of technological change across the entire sample period, our model allows the

rate of technological change to vary quinquenially (i.e., every 5 years). The results indicate that

technological change averaged 0.94% per annum between 1960–64, peaked at 1.26% per

annum between 1990–94, before declining to 1.19% per annum over the 2000–04 period.

Table 2. (Continued)

Variable Coeff. Estimates (Standard Errors)

NC ϕ31 1.7082��� (0.4175)

ND ϕ32 1.2398��� (0.4016)

OH ϕ33 1.4287��� (0.4103)

OK ϕ34 1.2885��� (0.4232)

OR ϕ35 1.3408��� (0.3971)

PA ϕ36 1.3711��� (0.4061)

RI ϕ37 1.0647��� (0.4073)

SC ϕ38 1.4017��� (0.4212)

SD ϕ39 1.2609��� (0.4069)

TN ϕ40 1.2689��� (0.4176)

TX ϕ41 1.4454��� (0.4302)

UT ϕ42 1.0856��� (0.4025)

VT ϕ43 1.1180��� (0.3977)

VA ϕ44 1.3207��� (0.4135)

WA ϕ45 1.5696��� (0.3980)

WV ϕ46 0.7804� (0.4088)

WI ϕ47 1.4269��� (0.4025)

WY ϕ48 0.7910�� (0.3966)

Sigma (uit) σuit 0.0823

Sigma (vit) σvit 0.0546

Note:

���, significance at 1%.

��, significance at 5%.

� significance at 10%.

https://doi.org/10.1371/journal.pone.0192432.t002
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Total factor productivity growth

Figs 3–6 illustrate components of the general TFP index (TFPI) for selected states: California,

Iowa, Texas and Florida, between 1960 and 2004. All indexes compare the relevant variable in

a particular year with the value of that variable in Alabama (AL) in 1960. In these figures, the

components of the TFPI are the output-oriented technology index (OTI), output-oriented

environment index (OEI), output-oriented technical efficiency index (OTEI) and output-ori-

ented scale efficiency index (OSEI) in Eq (8).

Figs 3–6 reveal that TFP has been expanding, and that long-term growth in TFP has largely

been driven by technological progress. The prominence of technological progress as a long-

term driver of agricultural productivity is consistent with several other studies [53–57]. Hat-

field et al. [1] posit that in the short-term technological advancements may mitigate a signifi-

cant amount of negative impacts due to unfavorable weather.

Table 3 presents year-to-year TFP growth rates and its components for the U.S. and each of

the 48 contiguous states for the period 1960–2004. The year-to-year TFP growth rate decom-

pose as %ΔTFPI = %ΔOTI + %ΔOTEI + %ΔOSEI + %ΔOEI + %ΔSNI, where the right-hand-

side components are percentage rates of growth in the indexes in Eq (8).

We find that the TFP growth rate averaged 1.56% per annum across the United States. We

also find that technological progress and output-oriented technical efficiency contributed to

an average increase of 1.21% and 0.057% per annum in TFP, whereas environmental effects

and output-oriented scale efficiency contributed to an average decline of 0.012% and 0.085%

per annum in TFP, respectively. The TFP growth rates range from a high of 3.1% per annum

in North Dakota (ND) to a low of 0.35% per annum in Oklahoma (OK). In comparison, Ball

Fig 3. Estimates of TFPI and efficiency components in California, 1960–2004 (cf. AL in 1960).

https://doi.org/10.1371/journal.pone.0192432.g003

A new look at the decomposition of agricultural productivity growth

PLOS ONE | https://doi.org/10.1371/journal.pone.0192432 February 21, 2018 12 / 21

https://doi.org/10.1371/journal.pone.0192432.g003
https://doi.org/10.1371/journal.pone.0192432


et al. [32] found a 1.94% TFP annual growth rate during the period 1948 to 1994 for the U.S.

Findings from Jorgenson et al. [58] reveal a 1.90% TFP growth rate in U.S. agriculture for the

period 1977 to 2000. O’Donnell [59] finds a growth rate of approximately 1.68% for the period

1960–2004. In a recent study, Ball et al. [33] report a 1.74% average growth rate over the period

1960 to 2004. These differences in TFP growth rates are due to differences in the TFP indices.

Moreover, some of the aforementioned studies use indices that are not transitive, and therefore

they are not reliable measures of TFP change. The index used here is transitive, as is the index

used by O’Donnell [59]. The difference between the growth rates reported here and those

reported in O’Donnell [59] is due to the fact that the output and input indices used here are

ratios of weighted geometric averages, whereas the indices in O’Donnell [59] are ratios of

weighted arithmetic averages. It is worth pointing out that our results are the only ones that

unambiguously incorporate weather variation and other agro-ecological conditions, state-level

fixed effects, and quinquennial time-effects in the model and subsequent decomposition of

TFP.

Weather effects. The key research objective of this article is to establish the impact of

weather variation in year-to-year fluctuations in TFP growth in the U.S. The results (see

Table 3) reveal that weather effects, as captured by OEI, on average account for a negligible

0.012% decline in annual TFP growth across the United States. Changes in the OEI over time

within any given state are a measure of the effect of changes in weather in that state. This is

because environmental features captured by the state-level fixed effects are time-invariant.

On the other hand, comparisons of OEI across states in any given period are a measure of

both state-level fixed effects and weather in that period. Based on this, we find evidence of

Fig 4. Estimates of TFPI and efficiency components in Iowa, 1960–2004 (cf. AL in 1960).

https://doi.org/10.1371/journal.pone.0192432.g004
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considerable variation across states as reported in the sixth column of Table 3. In general,

weather effects contributed negatively to TFP growth across the Pacific region, the Southwest,

parts of the Midwest, and the Northeast; while contributing positively in the Northern Plains

and Mountain states as illustrated in Fig 7.

Though the last year of this analysis is 2004, the evidence indicates that weather variability

has continued to increase over the last decade. The third National Climate Assessment report

[1] singles out recent droughts and heavy precipitation as the biggest threats to the U.S. agri-

cultural sector, and notes that crop and livestock productivity will be negatively impacted as

critical temperature and precipitation thresholds are met and exceeded. Malcolm et al. [35]

observe that the U.S. agricultural sector’s adaptive capacity may offset some of the negative

impacts of the changing climate in the short-run, and that warming may be beneficial to agri-

cultural production as a result of a longer growing season, albeit with strong regional differ-

ences. Our general findings are consistent with these reports. It is important to point out that

though some states appear to have experienced positive climatic effects, the IPCC [36] report

argues that any benefits associated with climate change might dissipate as the agricultural sec-

tor’s adaptive capacity is overwhelmed due to critical temperature and precipitation thresholds

being surpassed.

Concluding remarks

This article builds upon previous studies that have analyzed total factor productivity (TFP)

trends in U.S. agriculture [27,29,33]. We extend these recent analyses by explicitly introducing

Fig 5. Estimates of TFPI and efficiency components in Texas, 1960–2004 (cf. AL in 1960).

https://doi.org/10.1371/journal.pone.0192432.g005
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weather variables into a stochastic production frontier model. Consequently, we provide new

results concerning TFP growth in U.S. agriculture in a way that accounts for the effect of

weather variation. Another salient contribution of this paper is the use of the general TFP

index that was proposed in O’Donnell [20], which satisfies a suite of economically relevant axi-

oms from index theory and makes it possible to derive a complete decomposition of TFP

change.

The primary objective of this article is to evaluate the impact of weather variation on TFP

growth. We find that U.S. agricultural TFP growth averaged 1.56% per annum between 1960

and 2004. The key driver behind this TFP growth rate was technological progress, which aver-

aged 1.21% per annum. Moreover, our results reveal that, on average, weather effects were

responsible for a negative, albeit negligible, impact on TFP growth, contributing to a 0.012%

decline in annual TFP change. Notwithstanding, it is important to emphasize the substantial

heterogeneity in the role of weather effects on TFP change across states and over time. The

other components, output-oriented technical efficiency and output-oriented scale efficiency,

contributed 0.057% and -0.085% to per annum TFP growth, respectively. A state-by-state anal-

ysis reveals wide-ranging TFP changes.

The ability to respond appropriately and in a timely fashion to the adverse effects of chang-

ing configurations in weather is expected to have a significant impact on future agricultural

productivity and food security. Hence, decomposing TFP indexes is crucial from a policy per-

spective in order to design appropriate responses. The U.S. Federal and State governments

have instituted multiple policy mechanisms (e.g., price supports, input subsidies, and various

tax schemes) aimed at raising productivity and farm incomes [60,61]. However, as climate

Fig 6. Estimates of TFPI and efficiency components in Florida, 1960–2004 (cf. AL in 1960).

https://doi.org/10.1371/journal.pone.0192432.g006
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Table 3. Average annual growth rates TFP, 1960–2004.

STATE %ΔTFPI %ΔOTI %ΔOTEI %ΔOSEI %ΔOEI %ΔSNI

U.S. 1.557 1.206 0.057 -0.085 -0.012 0.391

AL 1.256 1.206 0.007 -0.228 0.005 0.267

AR 2.003 1.206 0.178 -0.346 -0.089 1.054

AZ 1.479 1.206 0.068 -0.063 -0.070 0.338

CA 1.560 1.206 0.142 -0.255 -0.048 0.515

CO 1.112 1.206 0.014 -0.226 0.053 0.065

CT 1.942 1.206 0.067 0.227 -0.039 0.481

DE 2.115 1.206 0.219 -0.238 -0.021 0.950

FL 1.379 1.206 0.132 -0.234 -0.015 0.290

GA 1.942 1.206 0.169 -0.212 -0.080 0.859

IA 2.035 1.206 0.121 -0.009 -0.021 0.738

ID 1.711 1.206 0.135 -0.246 0.003 0.613

IL 2.515 1.206 0.146 0.017 -0.082 1.228

IN 2.493 1.206 0.157 0.016 0.006 1.109

KS 1.091 1.206 -0.009 -0.275 0.046 0.123

KY 1.102 1.206 -0.075 -0.233 0.028 0.176

LA 1.605 1.206 0.083 -0.163 -0.010 0.489

MA 1.648 1.206 0.021 0.381 -0.065 0.105

MD 1.781 1.206 0.096 -0.062 -0.013 0.555

ME 1.984 1.206 0.087 0.328 -0.036 0.399

MI 1.709 1.206 0.090 -0.052 -0.094 0.559

MN 1.744 1.206 0.066 -0.125 -0.030 0.627

MO 1.705 1.206 0.044 -0.058 0.001 0.512

MS 1.585 1.206 0.042 -0.220 -0.026 0.583

MT 2.257 1.206 0.133 -0.039 0.005 0.952

NC 1.053 1.206 -0.042 -0.366 0.000 0.255

ND 3.100 1.206 0.294 -0.158 0.006 1.753

NE 1.508 1.206 0.079 -0.304 -0.029 0.557

NH 1.914 1.206 0.069 0.382 0.004 0.253

NJ 1.444 1.206 0.017 0.303 0.009 -0.090

NM 1.210 1.206 0.049 -0.300 -0.014 0.270

NV 1.168 1.206 0.034 -0.221 -0.036 0.186

NY 1.151 1.206 -0.020 0.129 0.003 -0.167

OH 1.723 1.206 0.054 -0.019 0.004 0.478

OK 0.353 1.206 -0.107 -0.300 0.014 -0.460

OR 2.278 1.206 0.213 -0.063 -0.004 0.927

PA 1.486 1.206 0.059 -0.053 -0.021 0.296

RI 2.177 1.206 0.092 0.450 -0.004 0.433

SC 1.468 1.206 -0.024 -0.140 0.008 0.418

SD 1.579 1.206 0.061 -0.168 0.024 0.456

TN 0.782 1.206 -0.157 -0.153 0.027 -0.141

TX 0.933 1.206 -0.012 -0.249 -0.028 0.017

UT 1.252 1.206 0.041 -0.121 0.037 0.089

VA 0.988 1.206 -0.060 -0.155 0.018 -0.021

VT 1.306 1.206 -0.017 0.143 -0.026 0.000

WA 1.717 1.206 0.207 -0.249 -0.038 0.592

WI 1.071 1.206 -0.046 -0.033 -0.009 -0.046

WV 0.715 1.206 -0.063 0.037 0.008 -0.473

WY 0.615 1.206 -0.114 -0.159 0.062 -0.380

https://doi.org/10.1371/journal.pone.0192432.t003
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variability becomes an increasing burden [36], future policy interventions should focus on

promoting mitigation and adaptation activities to cope with such challenges. Public support

should be directed to two priority areas. One such area is investments in research and develop-

ment as well as in adaptive measures. This is informed by our results indicating that

Fig 7. Percentage change in weather effects across the United States, 1960–2004.

https://doi.org/10.1371/journal.pone.0192432.g007
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technological change has had a positive effect on agricultural output, as well as being the pri-

mary driver behind TFP growth. We also propose that investments be directed towards man-

agement practices that promote increased farm efficiency. This may take the form of tailored

educational and training programs focusing on best management practices that allow for the

large spatial variation in weather and agro-ecological factors. This latter recommendation

stems from our finding that output-oriented technical efficiency has a substantial impact on

TFP growth.

Finally, future research should adopt a micro-level productivity approach to capture salient

characteristics within individual states, including detailed analysis for different crop and live-

stock systems. Bearing in mind the continuing expansion in satellite and remote sensing capa-

bilities, it should become cost effective to generate localized climatic information that can then

be coupled with micro-level input-output data. This combined information would signifi-

cantly enhance the analysis of the interaction between productivity and changing configura-

tions in weather.

Supporting information

S1 File. Dataset used in estimating stochastic production frontier model and decomposing
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