
viruses

Article

Semipersistently Transmitted, Phloem Limited Plant Viruses
Are Inoculated during the First Subphase of Intracellular Stylet
Penetrations in Phloem Cells
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Abstract: The green peach aphid Myzus persicae Sulzer is the main vector of the semipersistently
transmitted and phloem-limited Beet yellows virus (BYV, Closterovirus). Studies monitoring the
M. persicae probing behavior by using the Electrical penetration graphs (EPG) technique revealed
that inoculation of BYV occurs during unique brief intracellular punctures (phloem-pds) produced
in companion and/or sieve element cells. Intracellular stylet punctures (or pds) are subdivided in
three subphases (II-1, II-2 and II-3), which have been related to the delivery or uptake of non-phloem
limited viruses transmitted in a non-persistent or semipersistent manner. As opposed to non-phloem
limited viruses, the specific pd subphase(s) involved in the successful delivery of phloem limited
viruses by aphids remain unknown. Therefore, we monitored the feeding process of BYV-carrying
M. persicae individuals in sugar beet plants by the EPG technique and the feeding process was
artificially terminated at each phloem-pd subphase. Results revealed that aphids that only performed
the subphase II-1 of the phloem-pd transmitted BYV at similar efficiency than those allowed to
perform subphase II-2 or the complete phloem-pd. This result suggests that BYV inoculation occurs
during the first subphase of the phloem-pd. The specific transmission mechanisms involved in BYV
delivery in phloem cells are discussed.

Keywords: Beet yellows virus; Myzus persicae; Closterovirus; phloem-pd; electrical penetration graphs

1. Introduction

Aphids are the major vectors of noncirculatively (NC) transmitted viruses, a virus
category characterized by no latent period and loss after molting [1]. Within NC viruses,
two groups of viruses have been commonly established: the nonpersistently (NP) and
semipersistently (SP) transmitted [2]. Since the pioneer study conducted by [3], numerous
studies have focused on the feeding behavior activities of sap-sucking insects associated
with virus transmission. The electrical penetration graph (EPG) technique [4] has been
key in the study of different aphid stylet activities involved in the transmission of plant
viruses [5,6]. The different aphid stylet activities in plants have been correlated with several
characteristic EPG patterns. The dominant EPG waveform during pathway phase is wave-
form C, which is correlated with the intercellular stylet pathway periodically interrupted
by brief intracellular punctures that are identified in EPG recordings as potential drops
(‘pds’) [7].

The inoculation of stylet-borne NC viruses (non-persistently and semipersistently
transmitted) occurs during ‘pds’ produced by the aphid primarily in epidermal or mes-
ophyll cells [6,8]. These intracellular punctures are composed of three different phases
(I, II and III). Within phase II, three subphases are distinguished. Whereas subphase
II-1 is associated with injection of watery saliva into the cell and inoculation of non-
persistently-transmitted virus particles [6,9], subphase II-3 is associated with uptake of
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cell cytoplasm and therefore acquisition of non-persistent viruses [6,10]. Subphase II-2 but
not subphase II-1 was associated with the inoculation of the semipersistently transmitted
Cauliflower mosaic virus (CaMV, Caulimovirus) by Brevycorine brassicae [8]. However, the
specific activity linked to the transmission of CaMV occurring along this subphase II-2
(salivation and/or egestion) remains unknown.

Within the semipersistently transmitted virus group, certain viruses such as Beet
yellows virus (BYV, Closterovirus) are restricted to the phloem tissues of the host plant.
BYV virus particles are composed of a flexuous filamentous single-stranded RNA of
approximately 1300 nm in length and 12 nm in diameter [11,12]. Failed attempts to ac-
quire purified BYV virions by aphids from solution have led to suggestions that BYV
need the presence of a helper protein to bind to the aphid cuticle [13,14], however this
has not been proofed [15]. In fact, other viruses within family Closteroviridae, bind to
the vector by simple interaction of the minor coat protein [16,17]. The transmission of
the whitefly-transmitted Lettuce infectious yellows virus (LIYV, Closterovirus) is determined
by a minor coat protein (CPm) retention mechanism in the anterior foregut of its vec-
tor [16]. Also, Citrus tristeza virus (CTV, Closterovirus) has been suggested to bind to the
N-acetylglucosamine (NAG) moieties of the cuticular surface of its vector Toxoptera citricida
via the CPm, in addition to p61 and p65 heat shock proteins [17]. In case of BYV, efficient
assembly by CPm requires homologous Hsp70h, p64 and p20 proteins, with these proteins
also likely playing a role in virus transmission in addition to the CPm [18].

There is considerable information about BYV transmission process by its main aphid
vector Myzus persicae is available. Whereas BYV acquisition is optimized after long times
of sap phloem ingestion, BYV infection occurs very efficiently after unique intracellular
punctures (phloem-pds) produced by M. persicae in phloem cells (sieve elements and
companion cells) [19,20]. These particular potential drops in phloem cells are distinct from
the standard-pds produced in non-vascular tissues and are always preceding the phloem
sieve element salivation phase (E1 waveform). Also, these brief intracellular punctures in
the phloem have been associated with the inoculation of persistently transmitted, phloem
limited Luteoviruses [21]. Nevertheless, the specific subphase(s) of the phloem-pd involved
in virus inoculation as well as the specific stylet activities associated to the delivery of
virions from the aphid cuticle to the plant cell remain unknown.

Here, we studied the behavioral aspects linked to the transmission of semipersistently
transmitted, phloem limited viruses during the three distinct phloem-pd subphases by con-
ducting real-time artificially ended EPG recordings using viruliferous M. persicae carrying
BYV on sugar beet test plants.

2. Materials and Methods
2.1. Plants, Aphid and Virus Maintenance

A colony of M. persicae Sulzer (Mp89 clone) was used in the experiments. The colony
was started from a single virginiparous female collected from a pepper plant at El Encín
(Madrid, Spain) in 1989 and later maintained on Capsicum annuum cv. ‘Luesia’. Later, the
same M. persicae colony was maintained in Beta vulgaris cv. ‘Julietta’ since 2015. Aphid
colonies were maintained in a growth chamber at temperatures of 22:18 ◦C (light/dark)
using a 16:8 h (light/dark) photoperiod.

A BYV isolate PV-0981 (Leibniz-Institut, Plant Virus Collection, Braunschweig, Ger-
many) was maintained in B. vulgaris cv. ‘Julietta’ by sequential passages using M. persicae
as vector. Source plants for transmission tests were used 4–6 weeks after BYV infection
after checking their infection status by DAS-ELISA test [22]. New BYV-infected plants were
generated by placing groups of 10 M. persicae adults for an acquisition access period (IAP)
of 24 h on an BYV-infected plants and later transferred to a 10–12 day-old sugar beet for an
inoculation access period of 24 h. Source plants were maintained in a growth chamber at
temperatures of 24/20 ◦C (light/dark) using photoperiods of 16/8 h (light/dark).

Test plants used for EPG experiments were also B. vulgaris (cv. ‘Julietta’) at two
emerging true leaf stage. Before experiments, test plants were maintained in a virus-free
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growth chamber at temperatures of 24/20 ◦C (light/dark) using photoperiods of 16/8 h
(light/dark). After EPGs, test plants were sprayed with Confidor 20 LS (Bayer CropScience,
Leverkusen, Germany (100 ppm active ingredient [ai]) after aphid exposure and kept in a
greenhouse under natural light conditions and at 23 ± 4 ◦C for 4 weeks. Virus infection in
test plants was doubly checked by first visualization of symptoms and later verification by
serological detection by DAS-ELISA test [22].

2.2. EPG Setup and Transmission Tests

To determine the particular pd subphase associated with BYV delivery, aphid stylets
penetrations were monitored and recorded by using a DC-EPG (GIGA-8; EPG Systems)
device [4], connected to a USB AD card (DI-710; DATAQ Instruments) and a PC laptop.
Signals were acquired and analyzed using Stylet+ software for Windows (EPG Systems).
Newly emerged viruliferous M. persicae apterous adults (2–3 day-old) were used for EPG
experiments. Aphids were collected from the virus-free colony and allowed to acquire
the virus for an AAP of 24 h on a 4–6 week-old BYV-infected sugar beet. After the AAP,
viruliferous aphids were collected and wired to a gold wire connected to a copper electrode.
EPG experiments were conducted on a two-emerging true leaf stage (10–12-day-old) sugar
beets. Immediately, aphids were connected to the EPG device to monitor the IAP on the
healthy sugar beet test plants (Plant A). The feeding process was artificially terminated by
carefully lifting the gold wire during/after real time observation of the following patterns
(Figure 1): (i) after a complete standard-pd, (ii) during subphase II-1 of a phloem-pd, (iii)
during subphase II-2 of a phloem-pd, (iv) after a complete phloem-pd (subphases II-1, II-2
and II-3). Real-time identification of a phloem-pd and its specific subphases was made
according to the criteria explained below.
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Figure 1. Example of an EPG signal recorded during the stylet intracellular puncture in the sieve
elements or companion cells (phloem-pd) produced by Myzus persicae on sugar beet. The different
treatments applied for the study of BYV inoculation and the pd subphase division according to
ingestion-salivation hypothesis (I-SH) and ingestion-egestion hypothesis (I-EH) are indicated. Propo-
nents of the I-SH divide the pd into subphases II-l, II-2, and II-3 [6]. We based our current study on
that commonly accepted hypothesis, interrupting the pd during the II-1 of the phloem-pd (treatment
ii), during the II-2 of the phloem-pd (treatment iii) and a just after a single complete phloem-pd
was produced by the aphid (treatment iv). An alternative subphase division has been proposed in
agreement with the I-SH, subdividing the pd into additional subphases based on signal features [23].
Subphase II-1 is subdivided into α and β, with subphase II-2 named as γ and II-3 subdivided into
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δ and ε (ε is not indicated here as phloem-pd does not include this particular subphase). In the I-
EH [24,25], the pd is divided into pregustation (Kh-1) and gustation (Kh-2) phases. Similar intraphase
comparisons of waveforms, subdivide phases Kh-1 and Kh-2 into subphases or waveform types:
Kh-la and Kh-lb, and Kh-2a and Kh-2b, respectively (Kh-2b is not indicated here as phloem-pd does
not include this particular subphase). Y-axis: EPG output voltage expressed in volts (V); X-axis: EPG
recording time expressed in seconds (s).

For EPG recordings manually ended during the subphase II-2 (treatment iii) and just
after the complete phloem-pd (treatment iv), the phloem-pd was distinguished due to the
unique subphase II-2 observed for this type of pd, significantly lower in number and fre-
quency of intervals from the standard-pd [19,20]. However, for EPG recordings interrupted
during the subphase II-1 of the phloem-pd (treatment ii), the only strategy to identify the
phloem-pd in vivo was through the potential drop magnitude, another distinguishable fea-
ture observed in the phloem-pd, also significantly lower than the potential drop magnitude
measured for the standard-pd [19,20]. Therefore, to interrupt in vivo the subphase II-1 of
the phloem-pd, the following method was followed. EPG waveforms produced by aphids
were observed and, after a series of consecutive standard-pd and irregular C waveform,
M. persicae produce a steady waveform C (usually voltage differences of no more than
~2 volts between the highest and lowest peak observed along this waveform). The time
needed to observe that kind of steady waveform C is quite variable, occurring sometimes
after 5 standard pds, but others after more than 30 standard-pds. During that steady
waveform C, the potential drop magnitude of the standard-pds produced by the aphids
was marked by placing a scotch tape on the monitor screen just below the potential level
observed within a standard-pd. Then, to identify a phloem-pd the aphid was carefully and
quickly lifted up and the probe was interrupted once a drop in voltage of less magnitude
well above the marked voltage level was observed.

After an EPG recording was successfully terminated, the aphid was allowed to feed for
an IAP of 24 h on a second clean receptor plant (Plant B), without monitoring the behavior,
in order to check its ability to acquire and transmit the virus under optimal conditions (a
single aphid was used per each test plant). Aphids that were unable to infect either A or B
test plants were discarded from the analysis.

2.3. Determining Phloem-pd Occurrence

After conducting the EPGs coupled to the virus transmission tests, each recording was
later analyzed with Stylet + a software in order to confirm the criteria initially stablished
for each treatment. The main patterns for the identification of a phloem-pd are the unique
EPG pattern performed by the aphid along subphase II-2 together with the comparison of
the potential drop magnitude with previous standard-pd produced by the aphid [19,20].
Therefore, for distinguishing the experimental treatments concerning the phloem-pd (ii,
iii, and iv) indicated above, these two criteria were applied for an accurate phloem-pd
identification. However, for treatment ii, phloem-pd occurrence could be only determined
on the basis of the potential drop magnitude comparison. Previous studies studying the role
of the phloem-pd in the transmission of BYV revealed an average potential drop magnitude
for the phloem-pd of 84.3% in comparison with the previous standard-pd [19]. Therefore, all
recordings were thoroughly analyzed and potential drop of the phloem-pd was measured
and compared with the potential drop magnitude of the previous standard-pd produced
by the aphid. For treatment ii, aphids were considered to produce a phloem-pd when the
voltage drop magnitude of the interrupted subphase II-1 was lower than 84.3% of the total
potential drop magnitude measured in the previous standard pd.

2.4. Duration of Aphid Stylet Phloem Intrusion

Phloem activities produced by the aphids resulting in successful BYV inoculation
were thoroughly inspected in order to investigate the duration of aphid stylet intrusion in
comparison with BYV transmission. Therefore, duration of each phloem-pd subphase was
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measured within the three treatments involving phloem activities (ii, iii and iv). In order
to study an accurate comparison between subphase duration leading to BYV infection,
only recordings of aphids resulting in infection in plant A (or both test plants A + B) were
analyzed. Having measured all times of phloem intrusion, a minimum time for inoculation
of closteroviruses could be determined on the basis of BYV transmission results derived
from EPG experiments for each particular treatment. Therefore, the total duration of the
subphase II-1 (treatment ii), subphases II-1 and II-2 (treatment iii) and subphases II-1, II-2
and II-3 (treatment iv) performed by the aphids was measured for each recording.

Once the key subphase of the phloem-pd involved in BYV transmission were deter-
mined in EPG our studies, further studies were performed in order to investigate BYV
transmission during this particular subphase. Therefore, duration of subphase II-1 of the
EPG recordings from aphids leading to BYV infection in either A or A + B test plants were
studied and compared to those viruliferous aphids that did not infect test plant A but
infected plant B. Also, to investigate correlations between the duration of stylet phloem
intrusion and the success of BYV inoculation, similar time intervals (3 groups including
0.3 s each) were stablished in subphase II-1. BYV transmission efficiencies occurring at
each of the time intervals were compared.

2.5. Statistical Analysis

Transmission rates of BYV obtained for each specific EPG treatment and at different
intervals of time within subphase II-1 were compared by a Monte Carlo χ2 Pearson test,
with Bonferroni correction. Comparisons between phloem-pd subphases duration and
duration of the subphase II-1 of the phloem-pd between aphids leading to infection in plant
A and those that did not, were compared by performing a Student’s t test. Potential drop
magnitude (∆V) and the frequency of intervals in subphase II-2 (Ints/s) were compared
between standard and phloem-pds using a Student’s paired t test or a Wilcoxon test
depending on the frequency distribution of the data. If the raw data were normal, then
Student’s paired t test was use; if neither the raw data nor any of the transformations were
normal, then the non-parametric Wilcoxon test was used. Non-gaussian variables were
transformed applying ‘ln (x + 1)’ or ‘sqrt (x + 1)’ transformations. All analyses were run
using the SPSS 25.0.0.1 package [26].

3. Results
3.1. Aphid Stylet Activities and BYV Transmission

EPG-assisted transmission experiments showed that BYV transmission occurred from
the onset of the phloem-pd produced by M. persicae. Aphids transmitted BYV at an
efficiency of 56% (9/16) on recordings interrupted during the subphase II-1 of the phloem
pd, with no significant differences with BYV transmission efficiency obtained after the
interruption of the phloem-pd during the subphase II-2 (71%; 10/14) or after a complete
phloem-pd (69%; 11/16) (Table 1). No BYV transmission was obtained when aphids were
allowed to produce a single standard-pd (0/18) before any phloem-pd was produced
(Table 1).
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Table 1. Relationship between Myzus persicae stylet activities in sugar beet and inoculation efficiency
of Beet yellows virus.

Aphid Stylet Activities (EPG
Waveforms Observed) a

Total
EPG

Recordings

Discarded
Data b

Infected Plants

Total
% BYV

Transmission
Efficiency d

Plant A+

(A+ B+ or
A+ B−) c

Only
Plant

B+

(i) A single complete standard-pd 47 29 0 18 0/18 0% a
(ii) Subphase II-1 of the phloem-pd 78 62 9 7 9/16 56% b
(iii) Subphase II-2 of the phloem-pd

(subphases II-1 + II-2) 48 34 10 4 10/14 71% b

(iv) A single complete phloem-pd
(subphases II-1 + II-2 + II-3) 50 34 11 5 11/16 69% b

a Viruliferous aphids were removed from test plants (1 aphid/test plant) after specific EPG waveform patterns
were observed. b Discarded data include total number of EPG recordings ruled out due the presence of either a
previous phloem-pd (treatment ii, iii and iv), a potential drop of the phloem-pd out of criterion (>84.3% potential
drop magnitude of the previous standard-pd for treatment ii) or absence of infection in any of the A or B plants
tested in the four treatments (non-viruliferous aphids). c Plant A was the plant where the aphid feeding was
monitored until the production of the four waveform patterns was detected. Plant B was the plant to which aphids
were transferred from plant A in order to assess the initial virus acquisition by the aphid. d Virus transmission
efficiency was calculated by dividing the number of recordings where plant A became infected by the total number
of recordings where either plant A or plant B or both test plants became infected (raw division represented on the
left column ‘Total’). Different letters show significant differences according to a Monte Carlo χ2 test (Bonferroni
correction) (p < 0.05).

3.2. Duration of Phloem-pd Subphases

Mean duration of the different subphases and the accumulated time of stylet intrusion
in phloem cells along the three treatments is represented in Figure 2. The mean duration of
subphase II-1 was significantly shorter in treatment ii (1.2 s) in comparison with subphase
II-1 in treatment iii (1.57 s; p = 0.019) and treatment iv (1.47 s; p = 0.024). No significant
differences were observed when the comparison of duration of subphase II-1 between
treatments iii and iv was conducted (p = 0.471). Duration of subphase II-2 was similar
between treatments iii and iv (p = 0.769).
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BYV infection during recorded acquisition access period by EPG (either plant A or both A and B plants). For treatment ii
(n = 9), only subphase II-1 was recorded; for treatment iii (n = 10), both subphases II-1 and II-2 were recorded, and the three
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3.3. BYV Transmission in Association with the Duration of Subphase II-1

Once subphase II-1 was found to be the responsible for the delivery of BYV particles
into the phloem cells, we studied the EPG recordings interrupted during the subphase
II-1 (treatment ii) and measured and compared the duration of the subphase II-1 between
EPG recordings from viruliferous aphids that did lead to BYV infection in either plant
A or A + B and those that did not (only plant B was infected). Aphids that produced
infection produced a longer subphase II-1 (1.20 ± 0.27 s) in phloem cells than aphids that
did not produce infection (1.10 ± 0.20 s), but the differences were not statistically significant
(p = 0.245) (Figure 3).
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1.6 s) and BYV transmission efficiency was determined for each of the classes. Aphids 
resulted in significantly higher BYV transmission efficiency when the subphase II-1 lasted 
between 1.3–1.6 s (100%; 5/5), showing significant differences with those that produced a 
subphase II-1 between 1–1.3 s (17%; 1/6). Aphids interrupted at early stages of the sub-
phase II-1 (0.7–1 s) transmitted BYV at an intermediate rate of 60% (3/5), with no signifi-
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Analysis of the EPG patterns of the phloem-pd in our recordings fit the standards 
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drop magnitude of the phloem-pd with the previous standard-pd produced by the aphid 
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Figure 3. Transmission efficiency of BYV at different durations of subphase II-1 of the phloem-pd.
EPG recording interrupted during the subphase II-1 were split and grouped according to intervals of
0.3 s: 0.7 to 1; 1 to 1.3; 1.3 to 1.6 s (X-axis). BYV transmission efficiency at each specific duration of
subphase II-1 is also represented (Y-axis). Different letters show significant differences according to a
Student’s t test (p < 0.05).

Also, the duration of II-1 subphase was divided in 3 classes (0.7–1 s; 1–1.3 s and
1.3–1.6 s) and BYV transmission efficiency was determined for each of the classes. Aphids
resulted in significantly higher BYV transmission efficiency when the subphase II-1 lasted
between 1.3–1.6 s (100%; 5/5), showing significant differences with those that produced
a subphase II-1 between 1–1.3 s (17%; 1/6). Aphids interrupted at early stages of the
subphase II-1 (0.7–1 s) transmitted BYV at an intermediate rate of 60% (3/5), with no
significant differences with those aphids producing longer subphase II-1 (Figure 3).

3.4. Identification of the Phloem-pd

Analysis of the EPG patterns of the phloem-pd in our recordings fit the standards
already described for this type of potential drop [19]. The comparison between the voltage
drop magnitude of the phloem-pd with the previous standard-pd produced by the aphid
revealed clear differences in the three treatments involving phloem contact (p < 0.001)
(Figure 4). Also, the frequency of intervals was lower in the phloem pd in comparison with
the standard-pd in the two treatments including this particular pd subphase (p = 0.035 for
treatment iii; p = 0.015 for treatment iv) (Figure 4).
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Figure 4. Comparison of the potential drop magnitude and frequency of intervals in subphase II-2 between standard and
phloem-pd. The phloem-pd characteristics were compared with previous standard-pd along the recording of the three
treatments including the phloem pd: (a) treatment ii (n = 16), (b) treatment iii (n = 14), and (c) treatment iv (n = 16). Asterisks
stand for significant differences between variables according to a Student’s paired t test or a Wilcoxon test (***, p < 0.001;
*, p < 0.05).

Complete information of recordings interrupted during subphase II-1 (treatment ii) is
provided in Table 2. The study of all the pds produced by the aphids along the recording
revealed a minimum of 4.0 int/s in the 16 recordings meeting the criteria previously
established for a phloem-pd. The potential drop magnitude of the phloem-pd represented
a mean value of 77.93% in comparison with the total potential drop magnitude measured
in the previous standard-pd produced by the aphid. A minimum of 0.76 s of stylet tips
intrusion into phloem cells was long enough to successfully inoculate BYV.
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Table 2. EPG recordings interrupted during the subphase II-1 of the phloem-pd. EPG recording were
thoroughly inspected in order to discard the occurrence of a previous phloem-pd. Plants infected
during EPG recording for each EPG recording are expressed. The total number of potential drops
produced by the aphid along the recording as well as minimum frequency of intervals observed in a
subphase II-2 are indicated. Moreover, percentage of potential drop magnitude of the phloem-pd in
comparison with the previous standard-pd was measured in order to determine the production of
the phloem-pd. Duration of each interrupted subphase II-1 was measured.

EPG
Recording Infected Plants

No. of Complete
Standard

Potential Drops

Lower Subphase
II-2 Frequency

(Int./s)

% ∆V
Phloem-pd (mV)

Duration
Subphase II-1 of

the Phloem-pd (s)

1 Only A 37 4.17 69.24 1.34
2 Only A 47 5.0 84.19 0.98
3 A + B 29 5.15 67.82 1.12
4 A + B 34 4.34 73.93 1.36
5 A + B 26 5.26 67.74 1.45
6 A + B 46 4.0 72.33 1.31
7 A + B 28 4.29 82.17 0.76
8 A + B 44 4.35 81.98 0.93
9 A + B 58 4.55 81.47 1.57

10 Only B 73 4.17 79.33 0.78
11 Only B 42 4.35 83.53 1.27
12 Only B 29 5.88 74.86 1.19
13 Only B 42 4.55 77.54 0.87
14 Only B 26 4.55 83.43 1.2
15 Only B 51 4.42 84.25 1.09
16 Only B 24 5.41 83.04 1.28

Mean - 39.75 4.65 77.93 1.16

4. Discussion

Our results show unequivocal evidence that BYV particles are delivered by its vector
M. persicae into the phloem cells of the host plant from the beginning of aphid stylet
intrusion into phloem cells (either companion or sieve element cells). Results from our
EPG experiments indicated that subphase II-1 of the phloem-pd is the one involved in the
inoculation of BYV, a semipersistently transmitted, phloem limited virus. Brief intrusion
(0.76–1.57 s) into phloem cells was enough to inoculate BYV at a maximum efficiency
of transmission. Increased BYV transmission efficiencies obtained for treatments iii and
iv–though no significant differences– may be explained by the fact that treatment ii often
included an incomplete subphase II-1 since we manually disturbed the feeding during
this subphase to avoid the transition to subphase II-2. On the contrary, for treatments iii
and iv, aphids were allowed to produce a complete subphase II-1, explaining why it lasted
significantly longer than in treatment ii (Figure 2).

These results we obtained for a semipersistently transmitted, phloem limited virus
(BYV) in association to the three subphases of the potential drop produced by aphids
differed from those already described for non-phloem limited semipersistent viruses (e.g.,
CaMV). In the case of CaMV, virus delivery/inoculation occurs exclusively within subphase
II-2 of standard potential drops (standard-pds) produced by the aphid Brevicoryne brassicae
in non-vascular tissues [8]. Moreover, CaMV was detected in a specific part of the common
duct of its aphid vector, concretely in the ‘acrostyle’ [27]. Therefore, authors proposed
two hypotheses to explain the delivery of CaMV particles into the plant during subphase
II-2. The first hypothesis postulated the old ingestion–egestion hypothesis (I-EH) proposed
by Harris [24] for viruses transmitted in a non-persistent manner; the second hypothesis
dealing with an additional aphid salivation phase occurring during subphase II-2.

It is well known that salivation occurs during subphase II-1 [9] but other activities
such as egestion could concomitantly occur at some point that would explain why BYV
can be dislodged before the occurrence of subphase II-2 of a phloem-pd. Regurgitation
or egestion of cytoplasm contents previously ingested by the aphid could accumulate
in the food canal. At some point during subphase II-1 of the phloem-pd, aphids could
dislodge BYV particles from the foregut or food canal and deliver them to the plant. The
fact that most of EPG recordings that were terminated during the last past of subphase II-1
became infected (Figure 3) supports that egestion may start at the end of subphase II-1 and
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continue during subphase II-2. This would explain why there was an increase, although
not statistically significant, in the transmission rate when aphid probes were interrupted
during subphase II-2.

The I-EH hypothesis proposed by Harris and Harris [25], suggests that egestion would
occur at the end of the subphase II-1 (referred as Kh-1b subphase; Figure 1). In fact, the
Kh-1b subphase includes the complete subphase II-2 but also the very end of subphase
II-1 (as defined by [28]). Moreover, the end of the subphase II-1 was further described by
Tjallingii as β [23], due to its distinct pattern in comparison to the first part of subphase
II-1 (so-called α) (Figure 1). Therefore, in the EPG recordings interrupted in late stages of
subphase II-1, aphids would begin likely to produce subphase Kh-1b (or β pattern). Our
results show that aphids that were interrupted at the late stage of subphase II-1 transmitted
BYV particles at a higher rate than those interrupted at early or intermediate stages of the
subphase II-1 of the phloem-pd. In fact, within the 16 recordings of viruliferous aphids
interrupted during the subphase II-1, all of the 5 aphids that were interrupted after a long
subphase II-1 (1.3–1.6 s; Figure 3) were able to transmit the virus (test plant A was positive).
Thus, our results suggest that the subphase Kh-1b (egestion) is in fact involved in the
transmission of BYV. We observed that BYV transmission efficiency increased in late stages
of the subphase II-1 and also there was an increase in 15% of BYV transmission efficiency
(although not significantly different) in EPG recordings interrupted during the subphase
II-2 of the phloem-pd (Figure 1) due to in that treatment the whole Kh-1b subphase would
be produced by the aphids. The fact that aphids still transmitted BYV at an efficiency of 60%
(3/5) in the early stages of the subphase II-1 phloem-pd (0.7–1 s) could reflect inoculation by
watery salivation in a similar manner as proposed in the salivation-ingestion hypothesis [6].
In fact, egestion during standard pds could dislodge some BYV particles retained in the
foregut or food canal that would reach the common duct until a phloem pd is produced.
Then, the egested particles could be inoculated by salivation during the beginning of
subphase II-1 (α) of the phloem-pd. Thus, our results suggest that egestion together with
salivation could be involved in the process of inoculation of BYV.

Finding out the specific retention sites of BYV within the aphid mouthparts would
be key in order to confirm the precise mechanism(s) (either egestion, salivation or both)
involved in BYV particle dislodging and further delivery into the phloem cells. Previous
treatments with formalin and UV radiation in the vector suggested that this virus is not
retained in the distal portion of the aphid stylets but at some point, at the anterior ali-
mentary track [29]. More recently, the semipersistently transmitted and phloem-limited
Citrus tristeza virus (CTV, Closterovirus) was detected in the foregut of Toxoptera citricida [17].
There is evidence that the anterior foregut or cibarium of the whitefly vector is the reten-
tion site of criniviruses [16]. Other semipersistently aphid-transmitted viruses such as
Anthriscus yellows virus (AYV) and Parsnip yellow fleck virus (PYFV) were also found in the
foregut of its aphid vector Cavariella aegopodii [30]. Thus, closteroviruses and the related
criniviruses seem to be retained in the foregut of their insect vectors.

If BYV is retained in the foregut or food canal of M. persicae, then the old I-EH would
explain the process of virus inoculation into plant cells [24]. On the contrary, if BYV
is retained in the common duct of M. persicae, two hypotheses can be proposed for the
subphase II-1 of the pd as responsible of BYV delivery. First, the salivation-ingestion
hypothesis: BYV particles are flushed from the common duct during intracellular secretion
of watery saliva, similar to the mechanism described for NP viruses [6,9]. However, for
BYV, only the penetration of companion/sieve element cells by viruliferous aphids leads
to systemic infection by the phloem-limited BYV. Secondly, the egestion hypothesis [24,25]
could not be ruled out as responsible of virus delivery during the last part of subphase II-1.
If this assumption is true, salivation at the beginning followed by egestion of previously
ingested contents would occur during subphase II-1 and would dislodge the virus particles
from their retention sites.

There is currently no experimental evidence that aphids egest during penetrations
of superficial or phloem cells [31]. If egestion occurs in both subphases II-1 and II-2, or
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only in one of them is something that needs to be demonstrated. In terms of EPG signal,
the main distinguishable pattern of the phloem-pd in comparison with the standard-pds
is the different shape of subphase II-2. However, as observed in our experiments, the
occurrence in subphase II-2 of the phloem-pd does not have any significantly influence in
BYV inoculation efficiency and its different and unique shape in this subphase possibly
is influenced by the distinct type of cell punctured (CC/SE complex for the phloem-pd).
Whereas the II-2 is associated with salivation or egestion into the cell in the standard-pds
(CaMV inoculation takes place during the subphase II-2), the subphase II-2 of the phloem-
pd may actually represent a brief ingestion from phloem cells. In fact, subphase II-2 of the
phloem pd resembles a very short E2 waveform in which the aphid could acquire content
from phloem cells (in addition to the subphase II-3, already described as cytoplasm uptake
activity [6]). In spite that aphid saliva is thought to prevent occlusion in compatible aphid-
plant combinations [32], the phloem-pd likely represents a mode of very short phloem
sampling in which any phloem plant defense mechanism could be triggered.

In summary, aphid stylet activities involved during subphase II-2 of the phloem-pd
still remains unknown. However, according to our results, subphase II-1 of the phloem pd
likely represents a combination of watery salivation followed by egestion of previously
ingested sap that results in the inoculation of BYV. Further studies of the retention sites of
BYV are needed for a better understanding of the aphid activity involved during subphase
II-1 of the phloem-pd and confirm our findings. That would greatly contribute to the
knowledge of plant virus transmission by aphids.
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