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Abstract

The group of inborn errors of metabolism (IEM) displays a marked heterogeneity and IEM can affect virtually all functions and
organs of the human organism; however, [EM share that their associated proteins function in metabolism. Most proteins carry out
cellular functions by interacting with other proteins, and thus are organized in biological networks. Therefore, diseases are rarely
the consequence of single gene mutations but of the perturbations caused in the related cellular network. Systematic approaches
that integrate multi-omics and database information into biological networks have successfully expanded our knowledge of
complex disorders but network-based strategies have been rarely applied to study IEM. We analyzed IEM on a proteome scale
and found that IEM-associated proteins are organized as a network of linked modules within the human interactome of protein
interactions, the IEM interactome. Certain IEM disease groups formed self-contained disease modules, which were highly
interlinked. On the other hand, we observed disease modules consisting of proteins from many different disease groups in the
IEM interactome. Moreover, we explored the overlap between IEM and non-IEM disease genes and applied network medicine
approaches to investigate shared biological pathways, clinical signs and symptoms, and links to drug targets. The provided
resources may help to elucidate the molecular mechanisms underlying new IEM, to uncover the significance of disease-
associated mutations, to identify new biomarkers, and to develop novel therapeutic strategies.
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Introduction commonly depicted as edges (Schadt 2009; Barabasi et al

2011; Caldera et al 2017). Inborn errors of metabolism

The human genome consists of ~25,000 protein coding genes
and most proteins carry out cellular functions by interacting
with other small molecules or macromolecules. In the network
resulting from all these interactions—the human interac-
tome—the cellular components, such as proteins, RNA, or
metabolites, serve as nodes and their interactions are
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(IEM) are the consequence of genetic variation, but the dis-
ease phenotype does not only result from functional alteration
of'the affected gene product, perturbations rather spread along
the links of the underpinning cellular networks (Schadt 2009;
Barabasi et al 2011; Menche et al 2015; Pifiero et al 2016;
Caldera et al 2017).

Proteins are the drivers of cellular function and the entirety
of protein-protein interactions forms a large sub-network within
the human interactome (Vidal et al 2011). A complete high-
quality map of the protein interaction network is of fundamental
importance for the understanding of diseases (Vidal et al 2011;
Luck et al 2017). The analysis of these networks with the
emerging tools of network medicine may help to understand
the cellular mechanisms underlying IEM, the relationships be-
tween different IEM or between IEM and other diseases.

Biological networks are not random but governed by orga-
nizing principles. They are scale-free, i.e., there are many
nodes with few neighbors and few nodes with many neigh-
bors, which are called hubs (Barabasi et al 2011; Pavlopoulos
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et al 2011). Disease-associated proteins are not scattered ran-
domly in the interactome, but tend to interact with each other
(Goh et al 2007; Feldman et al 2008; Caldera et al 2017). A
cluster of disease-associated proteins in the same network
neighborhood forms a subgraph, which constitutes a disease
module (Barabasi et al 2011; Menche et al 2015). These mod-
ules may be tissue-specific (Kitsak et al 2016) and personal-
ized gene expression pools that relate to these modules impact
individual disease expression (Menche et al 2017). Within a
disease module, different diseases may arise from common
mechanisms and display overlapping phenotypes as shown
for complex diseases, such as inflammation, asthma, and car-
diovascular diseases (Menche et al 2015; Sharma et al 2015;
Ghiassian et al 2016).

However, network medicine approaches have not been
used to systematically study IEM (Argmann et al 2016) as a
heterogeneous group of disorders affecting virtually all human
biochemical pathways and impairing the function of many
organs. A hierarchical classification of [EM provided by the
Society for the Study of Inborn Errors of Metabolism
(SSIEM) lists 612 diseases with MIM numbers (wWww.omim.
org) in 15 disease groups (www.ssiem.org/resources/IEC.
asp). By using the emerging tools of network medicine, we
aimed to investigate whether the entity of IEM is indeed
organized as disease modules in the interactome of protein
interactions and how these relate to each other. We
approached IEM on a proteome scale and established an
IEM-specific interactome (IEMi), which comprised 298 of
427 IEM-related proteins. To further improve the clinical rel-
evance of the strategy we investigated relations of the [EMi to
other non-IEM diseases, integrated database information such
as functional annotations from the gene ontology, phenotypic
features, and links to drugs or biologically active compounds.

Results
The IEM interactome

As a platform for network medicine analyses, Menche et al
(2015) compiled a human interactome (Fig. 1a) that consists
of 13,460 proteins connected by 141,296 high-confident in-
teractions including binary protein-protein interactions, regu-
latory interactions and metabolic pathway interactions (Fig.
1b). Following the SSIEM classification, 427 disease genes
are known to be associated with an IEM (Suppl. Table 1) and
376 of their gene products, the IEM-associated proteins, were
identified in the human interactome. Within the set of 376
IEM-associated proteins, 298 proteins established 706 inter-
actions with each other, resulting in the IEM interactome
(IEMi) (Fig. lc, Suppl. Fig. 1). The IEMi comprised seven
connected components of more than three nodes, where the
largest connected component contained 168 IEM disease
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Fig. 1 From the human interactome to the IEM interactome. a Network P>
representation of the interactome of all human protein-protein interac-
tions. This interactome represents a complete map of all known interac-
tions between proteins and is a part of the full human interactome includ-
ing interactions between proteins and DNA, RNA or metabolites. Nodes
are proteins and they are connected by an edge when two proteins inter-
act. Colored nodes are associated with an inborn error of metabolism
(IEM) and colors depict different IEM disease groups. IEM-associated
proteins that interact with other IEM-associated proteins define the IEM
interactome (IEMi) within the human interactome. b Network parameters
of the complete human interactome and the IEMi. Log-log plot of the
degree distribution for all nodes of the IEMi against the number of nodes
points to a scale-free network. ¢ The inset shows the seven largest con-
nected components (n>3 nodes) of the IEMi. The size of a node is
proportional to the number of its neighbors, which are interaction partners
(the number of neighbors defines the degree of a node within a network).
For a detailed scalable view including protein names, see Suppl. Fig. 1. d
The distribution of largest connected component sizes and mean shortest
distances for randomly chosen sets of proteins from the human interac-
tome compared to the IEMi (arrows). The number of randomly chosen
proteins is similar to that of the IEMi. The arrows show the observed
values for largest connected component (z-score, 5.32) and mean shortest
distances (z-score, —10.09) of the IEMi, which are both significantly
different from random expectation

proteins linked to 14 out of 15 IEM disease groups. The sec-
ond largest connected component with 22 nodes mainly
consisted of proteins associated with disorders of energy me-
tabolism (group 4), while the nine proteins that formed the
third largest connected component are associated with disor-
ders of amino acid and peptide metabolism (group 1) and
disorders in the metabolism of vitamins and (non-protein)
cofactors (group 13).

The degree of a node within a network describes the num-
ber of connections to other nodes, in the case of a protein
interaction network the number of interactions a given protein
establishes with other proteins. As previously shown for other
biological networks (Barabasi et al 2011), the degree distribu-
tion of the IEMi followed a power law, indicating a scale-free
biological network with many proteins with low degree and
few proteins with high degree (Fig. 1b). The analysis of the
IEMi showed that, on average, IEM-associated proteins have
only four interaction partners, whereas the average degree of
the human interactome is 21. Highly connected nodes, the hub
proteins, take over specific biological roles and can be
subdivided by their dynamical behavior in networks
(Pavlopoulos et al 2011; Seebacher and Gavin 2011). They
can either constitute a central node within a module or connect
several subgraphs within a network. Within the [EMi we iden-
tified 45 nodes with a degree >10. The clustering coefficient of
anode describes the tendency with which the neighbors of this
node also interact with each other. The average clustering
coefficient (cl) of the IEMi was 0.32; thus, larger than for the
human interactome (cl, 0.17). The diameter is the largest dis-
tance between any two pairs of nodes in a network. The
diameter was 22 for the IEMi and 13 for the human interac-
tome. The largest connected component of the IEMi (168, z-
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score 5.3) was larger than the random expectation (52.4),
whereas the network-based mean shortest distance of IEM-
associated proteins was smaller (1.34, z-score — 10.1) than the
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random expectation (1.81) (Fig. 1d). Taken together, the re-
sults from the analysis of the network-based measures /argest
connected component and mean shortest distance support the
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notion that IEM-associated proteins tend to locate to the same
network neighborhood in the human interactome. In addition,
we observed two different patterns of clustering within the
IEMi. Proteins associated with certain disease groups built
rather homogenous clusters and consequently were separated
from other IEM-associated proteins (lysosomal disorders; per-
oxisomal disorders; disorders in the metabolism of purines,
pyrimidines and nucleotides; disorders in the metabolism of
lipids and lipoproteins; disorders of energy metabolism).
Proteins associated with other disease groups either contribut-
ed to heterogeneous clusters central to the largest connected
component or they were distributed over remote areas of the
network.

IEM disease modules

To test the disease modules hypothesis for each of the [IEM
disease groups following the SSIEM classification, we calcu-
lated the network-based measures largest connected
component and mean shortest distances for all disease groups
(Fig. 2a). The analysis was performed for all IEM-associated
proteins mapping to the human interactome (n, 376). Disease
groups 6 (disorders of the metabolism of sterols) and 15 (dis-
orders in the metabolism of xenobiotics) were excluded from
the analysis due to low numbers of associated proteins or lack
of interactions. The IEM disease groups were compared to
sets of nodes with the respective numbers of nodes that repre-
sented the general characteristics of the human interactome.
We computed z-scores for each comparison and observed that
13 disease groups established significant disease modules
(largest connected component, z-scores >1.6; mean shortest
distance, z-scores <1.6). The largest disease modules were
identified for lysosomal disorders (25 nodes), peroxisomal
disorders (22 nodes), and disorders of energy metabolism
(18 nodes), where the latter formed a highly interlinked motif.
Three medium-sized modules arising from the disease groups
1, 5, and 8 were less interlinked. The remaining modules ei-
ther were not interlinked (disease group 7) or were very small
(disease groups 12—14).

Next, we aimed to investigate the overlap between the IEM
disease groups based on protein interactions (Fig. 2b) and
found 211 interactions between proteins belonging to different
disease groups. Disorders of amino acid and peptide metabo-
lism (disease group 1) had a central position within this net-
work. This group formed a subnetwork together with disor-
ders of carbohydrate metabolism (group 2), disorders of fatty
acid and ketone body metabolism (group 3), and disorders of
energy metabolism (group 4) that accounted for 44% of all
interactions between the disease groups. In addition, lysosom-
al disorders (group 10) shared 6% of interactions with disor-
ders of carbohydrate metabolism (group 2). Peroxisomal dis-
orders (group 11) showed significant overlap with disorders of
amino acid and peptide metabolism (group 1) as well as

@ Springer

Fig. 2 IEM disease modules. a Identification of disease modules within P>
IEMi that are specific for IEM disease groups. The z-scores for the
observed values of the largest connected components (light gray) and
mean shortest distances (dark gray) are shown. The red lines indicate z-
scores of +1.6 and —1.6 as thresholds for the level of significance (p-value
<0.05). The pie charts give the share of proteins involved in the largest
connected component (gray area) compared to the number of proteins
associated with the respective IEM disease group. Disease groups 6
(disorders of the metabolism of sterols) and 15 (disorders in the
metabolism of xenobiotics) were excluded from the analysis due to low
numbers of associated proteins or lack of interactions. b IEMi disease
group network. Nodes represent IEM disease groups. The thickness of
edges is proportional to the number of shared interactions. The node size
corresponds to the number of proteins associated with the respective IEM
disease group

disorders of fatty acid carbohydrate metabolism (group 3).
Congenital disorders of glycosylation and other disorders of
protein modification (group 9) were, except for one interaction
to disorders of fatty acid and ketone body metabolism (group
3), disconnected from the other IEM disease groups.

Disease groups with a high degree of self-organization, i.e.,
many nodes belonging to the same disease group are orga-
nized within the specific module (groups 5, 7, 8, 10, 11),
established few interactions to other disease groups. In the
case of disease groups showing a low degree of self-organiza-
tion, i.e., only a small share of the nodes is organized within
the specific module, the degree of interconnection with other
disease groups increased (groups 1, 2, 4). Taken together, we
identified disease groups with a high degree of interaction-
mediated overlap to other IEM, whereas others constituted
more distinct entities based on their interaction behavior.
Disease group 3 (disorders of fatty acid and ketone body me-
tabolism) represented a special case. Here we observed a com-
pact specific disease module where half of the proteins be-
longing to the disease group contributed to the module. In
addition to this rather high degree of self-organization strong
interactions were established with disease groups 1 (disorders
of amino acid and peptide metabolism), 4 (disorders of energy
metabolism), and 11 (peroxisomal disorders) and weak inter-
actions were established with disease groups 2, 7, 9, and 12.

Relationship between IEM and non-IEM pathways
and diseases

To uncover disease-disease relationships of IEM with other
non-IEM disease classes we sought to expand the [EMi. We
pursued the hypothesis that the location of I[EM disease mod-
ules in the neighborhood to other disease genes in the human
interactome implies shared biological pathways, similar clini-
cal signs and symptoms, and common disease mechanisms.
We extracted binary interactions of IEM-associated proteins
with non-IEM proteins in the human interactome, retrieved
1994 first order interaction partners and additionally included
interactions within this set of proteins (Suppl. Table 2). This
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resulted in an expanded IEM interactome (eIEMi) of 2370
proteins linked by 39,916 interactions (Fig. 3a). The el[EMi
consisted of one connected component of more than three
nodes (largest connected component, 2362), the average
degree increased to 33 as compared to 4 for the IEMi and the
diameter of the el[EMi decreased to 8 (Fig. 3b). Again, the
degree distribution followed a power law, indicating a scale-
free biological network with few highly connected hub pro-
teins. We characterized eIMFEi hub proteins with a degree >
100, which are important for the topology and function of the
network, with respect to their cellular distribution and observed
overrepresentation of proteins located in the ribosome (fold
enrichment (FE), 48.01; p-value, 1.81E-90), cytosol (FE,
18.92; p-value, 1.13E-66), nucleolus (FE, 12.34; p-value,
1.18E-12), and cytoplasm (FE, 4.05; p-value, 3.36E-33).
Membrane proteins were underrepresented (FE, 0.2; p-value,
0.0029) (Fig. 3c).

Next, we performed a pathway enrichment analysis for
pathways associated with non-IEM proteins in the e[EMi.
Besides enrichment for metabolic pathways and immune sig-
naling pathways, we found significant enrichments for angio-
genesis (FE, 2.97; p-value, 5.51E-8), apoptosis signaling path-
way (FE, 3.86; p-value, 2.76E-10), and for the two diseases
Parkinson disease (FE, 3.44; p-value, 1.95E-6) and
Huntington disease (FE, 2.18; p-value, 0.034) (Fig. 3d and
Suppl. Table 3). The gonadotropin releasing hormone receptor
pathway, the CCKR signaling pathway, and angiogenesis
were associated with >4 IEM disease groups. A high number
of different pathways was enriched for non-IEM proteins
interacting with IEM-associated proteins linked to disorders
of carbohydrate metabolism, energy metabolism or neuro-
transmitter metabolism (groups 2, 4, 12), whereas no pathway
enrichments were observed for non-IEM proteins associated
with disease groups 6, 7, 9, 11, 13.

In order to evaluate the overlap of [IEM disease groups with
non-IEM diseases, we analyzed their network-based distances
using a separation score, which is a network-based measure
for pathobiological and clinical similarity (Menche et al 2015;
Caldera et al 2017), and identified the related phenotypic fea-
tures (MeSH terms). We calculated separation scores for [EM
disease groups 1-14 against a set of 299 non-IEM diseases
and ranked separation scores for each of the 4186 resulting
pairs (Fig. 3e and Suppl. Table 4). Disorders of energy metab-
olism and metabolism of sterols (groups 4, 6) shared the most
pronounced overlap to other diseases, reflected by the highest
number of established links. The closest similarities among
diseases, reflected by low separation scores, were observed
between disorders of sterols metabolism and urologic diseases
(—0.080), stomatognathic system abnormalities (—0.054), and
chronic B-cell leukemia (0.054), respectively. Disorders in the
metabolism of trace elements and metals were closely linked
to intestinal (0.003) as well as urologic diseases (0.013).
Additionally, disorders of energy metabolism were strongly
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Fig. 3 The expanded IEM interactome. a Expanded IEM interactome P>
(elEMi). The IEMi was expanded to include first-order interactions of
IEM-associated proteins (colored nodes) to non-IEM proteins (gray
nodes). The size of a node corresponds to the number of its neighbors
(degree). b Network parameters of the elEMi; a log-log plot of the degree
distribution of all nodes of the eIMEi against the number of nodes points
to a scale-free network. ¢ Pie chart of the calculated fold enrichment of
cellular compartment distribution for proteins with degree >100 of the
elEMi. Ribosomal, cytosolic, and nuclear proteins are overrepresented.
Membrane proteins are underrepresented. d Heat map of enriched
PANTHER pathways of non-IEM proteins interacting with proteins of
the different IEM disease groups. Cells are colored according to their
respective p-value. Metabolic pathways were excluded from this matrix
representation. e The eIMEi disease network reveals associations of IEM
disease groups with non-IEM diseases based on protein interactions.
Rectangle nodes are MeSH terms of non-IEM diseases. Colored nodes
represent IEM disease groups, the size is proportional to the shared links
with general disease groups. The width of an edge is proportional to the
network-based relationship, i.e., the edge width negatively correlates with
a calculated separation score

connected to cranial nerve diseases (0.066). Dementia,
Alzheimer disease (AD), and motor neuron diseases displayed
similarities with IEM disease groups 6, 8, 13, and 14. In par-
ticular, we found associations of disorders of metabolism of
sterols (group 6) with AD.

The association between serum cholesterol levels and ce-
rebral amyloidosis in the pathogenesis of AD (Puglielli et al
2003; Vaya and Schipper 2007; Reed et al 2014) is not likely
due to similar genetic predispositions (Proitsi et al 2014).
However, there is evidence for a mechanistic link between
[3-amyloid protein toxicity and mitochondrial cholesterol traf-
ficking (Barbero-Camps et al 2014), and the HMG-CoA-
reductase inhibitor Simvastatin has been demonstrated to af-
fect 3-amyloid peptides (Zandl-Lang et al 2017). In addition,
we found associations of disorders in the metabolism of trace
elements and metals (group 14) with AD (Fig 3e). Recently,
polymorphisms in the ATP7B gene, which is responsible for
Wilson disease and a part of [EM-disease group 14, have been
associated with increased risk of AD (Mercer et al 2017).
These findings underlined how the identification of such
network-based connections and the transfer of knowledge be-
tween associated disease groups may help to elucidate molec-
ular mechanisms of disease and to elaborate new therapeutic
strategies.

IEM drug-target network

The observed similarities as to underlying biological path-
ways, disease mechanisms, and phenotypes between IEM-
associated proteins and non-IEM proteins in the eIMEi net-
work allow for the hypothesis of the effectiveness of common
treatment strategies. Consequently, a drug may have impact
on proteins that are linked to the drug target protein in a pro-
tein interaction network. We included drug-target information
from the drugbank database (Law et al 2014) into the eIMEFi,
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identified 634 approved drugs or active compounds that target
316 non-IEM proteins, and mapped their protein interactions
with IEM-associated proteins in the eIEMi space. The
resulting IEM drug-target network consisted of 538 proteins
and 845 interactions (Fig. 4 and Suppl. Table 5). Besides a
share of otherwise unlinked binary interactions between non-
IEM drug targets and IEM-associated disease proteins, the

IEM drug-target network showed a large connected compo-
nent with 465 nodes. This sub-network was organized by
several highly interlinked hub proteins, both IEM and non-
IEM proteins. Hence, different groups of drug targets were
interconnected by [EM-associated proteins or IEM disease
modules were interconnected by non-IEM drug targets. To
exemplify approaches toward the evaluation of therapeutic
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and nucleotides

OO0 0000
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Fig. 4 The eIEMi drug target network. The eI[EMi drug target network
shows interactions of IEM-associated proteins with non-IEM proteins,
which are listed as drug targets in the drug bank (www.drugbank.ca).
For all proteins, gene names are given as short names (UniProt), nodes
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(O 13 Disorders in the metabolism of vitamins
and (non-protein) cofactors
(O 14 Disorders in the metabolism of trace elements and metals

are colored according to the IEM disease group and gray colored nodes
represent non-IEM proteins. The size of a node is proportional to the
number of its neighbors (degree)
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concepts and identification of novel treatment options for
IEM, we discuss three scenarios. (A) An IEM disease module
linked by non-IEM drug targets. The IEM disease module for
disorders of energy metabolism (group 6) was interconnected
by two hub proteins, which are subunits of the mitochondrial
respiratory chain complex I, NADH-ubiquinone oxidoreduc-
tase (MT-ND1), and a NADH dehydrogenase (NDUFC2).
MT-NDI is listed in the drugbank database as target of volatile
anesthetics, such as isoflurane and halotane, whereas
NDUFC2 is an off-target of the (3-blocker carvedilol. (B)
Multiple links between IEM-associated proteins and non-
IEM drug targets within a disease module. A disease module
consisting of IEM-associated proteins linked to lysosomal dis-
orders and disorders of carbohydrate metabolism contains dif-
ferent non-IEM drug targets. Here, intestinal maltase-
glucoamylase (MGAM) and neutral alpha-glucosidase C
(GANC) are targeted by alpha-glucosidase inhibitors. In addi-
tion, sialidase 1 is a target of low-molecular weight heparins
and sialidase 2 of the neuramidase inhibitor oseltamivir. (C)
An IEM-associated protein linked to multiple non-IEM drug
targets. The steroid sulfatase A, which is deficient in X-linked
ichthyosis, is central to a drug-target module addressed by
imidazole or nicotinic acid derivatives (rifampicin, isoniazid,
metronidazole).

Binary interactions of IEM-associated proteins and non-
IEM drug targets may represent mechanistic links on the mo-
lecular level, and hence give rise to novel therapeutic ap-
proaches. The solute carrier family 25 member 4 gene
(SLC25A4) encodes for adenine nucleotide translocase type
1 (ANT1) that interacts with mitochondrial peptidyl-prolyl
cis-trans isomerase F (PPIF) in the [EM drug target network.
Mutations in SLC25A4 are associated with different mito-
chondrial disorders including phenotypes of mitochondrial
myopathy, exercise intolerance, cardiomyopathy, and progres-
sive external ophtalmoplegia (Kaukonen et al 2000; Strauss
et al 2013; Thompson et al 2016; Tosserams et al 2017).
Cyclosporine A targets the mitochondrial permeability transi-
tion pore (mPTP) via the mPTP regulator PPIF and CypD-
ANT1 and has been shown to improve mitochondrial function
(Merlini et al 2008; Qiu et al 2014). In patients, cyclosporine
A acts as a neuroprotective agent against stroke (Osman et al
2011) and is cardioprotective in events of ischemia
(Hausenloy et al 2012). The interaction of SLC25A4 with
PPIF in our drug-target network points to a potential therapeu-
tic effect of cyclosporine A in the treatment of mitochondrial
disorders linked to SLC25A4.

Discussion

The group of I[EM displays a marked heterogeneity and IEM
can affect all functions and organs of the human organism.
The currently most applied classification defines IEM disease

groups according to three different criteria (i) the metabolites
pertained by the genetic variation such as disorders of carbo-
hydrate metabolism; (ii) the affected biological pathways such
as disorders of glycosylation; (iii) the cellular localization of
the [EM-associated proteins such as lysosomal disorders. A
considerable number of IEM have been discovered over the
past 100 years and particularly the more frequent among them
are well studied. However, also due to the recent advances in
genomics, many new, partly very rare IEM have been discov-
ered, for which satisfying knowledge about diagnostics, care,
and treatment is often not available.

Besides their heterogeneity, IEM share that their associated
proteins function in metabolism. The latter is a huge functional
unit that, as all extended functional pathways, is organized in
biological networks. Network-based studies gave rise to the
disease module hypothesis (Barabasi et al 2011; Vidal et al
2011) where diseases with an overlap in biological networks
show significant symptom similarity and common disease
mechanisms, whereas diseases residing in separated network
neighborhoods are phenotypically distinct. In a systematic in-
vestigation to uncover relationships between human diseases,
Menche et al identified peroxisomal disorders as a distinct
disease module in the human interactome (Menche et al
2015). Systematic approaches toward human disease that in-
tegrate database information and -omics data into biological
networks have proven useful to further our understanding of
common or complex disorders (Menche et al 2015; Sharma
et al 2015; Ghiassian et al 2016). However, network-
based strategies have been rarely applied to study the
complex nature of IEM (Argmann et al 2016). Our study
aimed to evaluate the expediency of such approaches
using the human interactome and other existing biological
or disease-associated datasets.

We used publicly available protein-protein interaction data
between IEM-associated proteins and showed that IEM-
associated proteins tend to locate to the same neighborhood
within the human interactome. We termed the resulting sub-
network IEM interactome (IEMi). The identification of IEM-
specific disease modules revealed that the IEMi indeed
contained allocations that correspond to the IEM-disease
groups. Certain disease modules were highly interlinked to
each other, on the other hand, we identified disease modules
in the IEMi that consisted of proteins from many different
disease groups. Notably, some [EM-associated proteins were
not part of the IEMi and based on our network medicine ap-
proach did not show any overlap with other IEM. Therefore,
the IEMi may offer a platform to systematically explore not
only the molecular complexity of a particular disorder, but also
the relationships among apparently distinct pathophenotypes
of different IEM disease groups. In our study, we used a high-
quality and comprehensive human interactome that has been
curated recently (Menche et al 2015). However, it is estimated
that current high-throughput methods cover less than 20% of
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all potential pairwise interactions in the human cell (Caldera
etal 2017). Therefore, the lack of associations between certain
IEM-disease groups has to be evaluated carefully considering
this incompleteness.

The central position of metabolism in the functional net-
work of human biology implies a plethora of links that IEM-
associated proteins can establish with non-IEM proteins includ-
ing related cellular pathways and pathomechanisms in human
disease. The expanded IEMi (e[EMi) explored the overlap be-
tween IEM and the human interactome through integration of
database information on biological pathways, phenotypic fea-
tures, and drugs or other active compounds. The graphical
workup provided in this study exemplified network medicine
approaches for IEM, offered resources in the supplementary
material, and may be useful for the investigation of shared
molecular functions, disease mechanisms, and the evaluation
of existing or novel therapeutic concepts for [EM.

The transfer of knowledge within single disease groups,
between related IEM disease modules or between IEM and
non-IEM diseases will help to elucidate the molecular conse-
quences associated with new disease genes, to uncover the
significance of disease-associated mutations, to identify new
biomarkers, and to expand the druggable space.

Materials and methods
Curation of disease genes associated with IEM

A classification of IEM is provided by the SSIEM. We
downloaded the classification file at http://www.ssiem.org/
resources/[EC.asp on March 15, 2015. Mapping of IEM
diseases to associated disease genes was done in a web-based
manner using the OMIM API (https://www.omim.org/help/api).
This resulted in 427 IEM-related disease genes each assigned to
the respective SSIEM disease group (Suppl. Table 1). We found
only one disease protein associated with SSIEM class 15.

Constructing the IEM interactome (IEMi)
and the expanded IEM interactome (elEMi)

We used protein-protein interaction data from a previously
curated high-quality interactome (Menche et al 2015). In order
to map protein-protein interaction data to the curated IEM-
related proteins we used Entrez Gene ID retrieved from the
HGNC database (http://www.genenames.org, downloaded
Feb 5, 2017). For the construction of the IEMi, we extracted
only protein interactions that directly linked IEM-related pro-
teins resulting in 708 IEM-to-IEM protein interactions be-
tween 298 different proteins. To expand the [EMi we included
protein interactions of first order proteins. These are non-IEM
proteins that directly interact with IEM-associated disease pro-
teins. The eIEMi contains IEM-to-IEM, protein interactions to
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first order proteins and protein interactions between first order
proteins, in total 39,916 links. The 1994 first order proteins are
listed in Suppl. Table 2.

Calculation of z-score

Z-scores for the observed values V of largest connected com-
ponent size and mean shortest distances were calculated as
follows:

V—mean ( VRandom )
Stand( V Random )

Z—Score =

where mean(Vyandom) and stand(Vyandom) indicate the mean
value and standard deviation of the random expectation.

Enrichment analysis

Enrichment analysis was performed using the web-interface
provided by PANTHER (http://pantherdb.org, Panther
Annotation version 12 released 10 July, 2017, Reference
List Homo sapiens). We excluded metabolic pathways for
the heat map presentation of enriched pathways. A full list
of results is provided in Suppl. Table 3.

Comparison to non-IEM diseases

To perform a network-based comparison to other disease
classes we used a previously described measure (Menche
et al 2015). The separation score compares the mean
shortest distance of protein pairs of the same disease to
the mean shortest distance between protein pairs of differ-
ent diseases. We calculated the separation score for every
pair of a IEM disease group to a non-IEM disease. For non-
IEM diseases we used a set of 299 diseases based on MeSH
terms and compiled by Menche et al.

Drug target information

We downloaded drug target information from the DrugBank
database as of July 16, 2017 (https://www.drugbank.ca,
DrugBank Release Version 5.0.7). In more detail, we used
the approved Target Drug-UniProt sheet to retrieve only
approved drug target information for our proteins. We
mapped UniProt IDs to Entrez Gene IDs and found 634
approved drugs including small molecules and biotech drugs
targeting 316 non-IEM binding proteins.

Software
We used Cytoscape V.3.5.1 for the drawing and coloring of all

networks. Network layouts were obtained using the built-in
layout algorithm organic. The network layout for Fig. 3e was
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done manually. Basic network measures were calculated using
the Cytoscape plugin NetworkAnalyzer.
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