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ABSTRACT
Background. Establishing health-related causal relationships is a central pursuit
in biomedical research. Yet, the interdependent non-linearity of biological systems
renders causal dynamics laborious and at times impractical to disentangle. This
pursuit is further impeded by the dearth of time series that are sufficiently long
to observe and understand recurrent patterns of flux. However, as data generation
costs plummet and technologies like wearable devices democratize data collection,
we anticipate a coming surge in the availability of biomedically-relevant time series
data. Given the life-saving potential of these burgeoning resources, it is critical to
invest in the development of open source software tools that are capable of drawing
meaningful insight from vast amounts of time series data.
Results. Here we present CauseMap, the first open source implementation of
convergent cross mapping (CCM), a method for establishing causality from long
time series data (&25 observations). Compared to existing time series methods,
CCM has the advantage of being model-free and robust to unmeasured confounding
that could otherwise induce spurious associations. CCM builds on Takens’ Theorem,
a well-established result from dynamical systems theory that requires only mild
assumptions. This theorem allows us to reconstruct high dimensional system dy-
namics using a time series of only a single variable. These reconstructions can be
thought of as shadows of the true causal system. If reconstructed shadows can predict
points from opposing time series, we can infer that the corresponding variables
are providing views of the same causal system, and so are causally related. Unlike
traditional metrics, this test can establish the directionality of causation, even in the
presence of feedback loops. Furthermore, since CCM can extract causal relationships
from times series of, e.g., a single individual, it may be a valuable tool to personalized
medicine. We implement CCM in Julia, a high-performance programming language
designed for facile technical computing. Our software package, CauseMap, is
platform-independent and freely available as an official Julia package.
Conclusions. CauseMap is an efficient implementation of a state-of-the-art
algorithm for detecting causality from time series data. We believe this tool will be
a valuable resource for biomedical research and personalized medicine.

Subjects Bioinformatics, Mathematical Biology, Computational Science, Coupled Natural and
Human Systems
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INTRODUCTION
Establishing health-related causal relationships is a pivotal objective in biomedical

research. Yet, the interdependent non-linearity of biological systems often impedes a

thorough understanding of causal dynamics. Existing and forthcoming time series data

will likely play an important role in taming this complexity. Traditional cross-sectional

sampling have the limitation that they may average out non-linear patterns by pooling

heterogeneous signals across subjects. Long time series from a single source, on the other

hand, can allow us to understand dynamic and context-specific patterns of change.

We are just beginning to grasp the biomedical relevance of such a dynamical systems

perspective. Consider, for example, the human microbiome. Dysbiosis in the gut has

been implicated in, e.g., irritable bowel disease (IBD), obesity, diabetes, asthma, anxiety,

and depression (Foster & McVey Neufeld, 2013; Arrieta et al., 2014). Meanwhile, recent

studies on microbiome dynamics have found that the ecological makeup of the human

microbiome is dynamic and individual-specific. These dynamics may also interact

with pathogens in interesting and therapeutically important ways. For example, there

is evidence that ecological time series dynamics within the body may play a role in the

progression from HIV to AIDS (Vujkovic-Cvijin et al., 2013).

Complex, dynamically evolving interdependent systems such as the microbiome pose

a significant challenge to existing time series methods. Several metrics exist for detecting

static non-linear relationships. These include: Spearman rank correlation, (Spearman,

1904), distance correlation (Székely & Rizzo, 2009), and mutual information content

(Kullback & Leibler, 1951). Causal relationships, on the other hand, can be examined using

methods such as time-lagged regression, instrumental variables, and dynamical Bayesian

networks (Granger, 1969).

These causal methods are heavily model-based, however. As a result, they often falter

when examining arbitrary non-linear or context-dependent relationships. Furthermore,

the approaches mentioned above cannot adequately handle feedback loops, and they

frequently generate both false positives and false negatives due to the influence of un-

measured confounders (Sugihara et al., 2012). These are significant liabilities, particularly

in biomedicine, where relationships are usually embedded within a broad network of

incompletely observed interactions.

In this paper, we present the first publicly available, open source implementation of

convergent cross mapping (CCM), a model-free approach to detecting dependencies

and inferring causality in complex non-linear systems (even in the presence of feedback

loops and unmeasured confounding; Sugihara et al., 2012). CCM derives this power

from explicitly capturing time-dependent dynamics through a technique known as

state-space reconstruction (SSR). SSR has demonstrated utility for problems as diverse

as wildlife management and cerebral autoregulation (Vanderweele & Arah, 2011). In

practice, this analysis typically requires at least 25 data points, measured with relatively

high accuracy and with sufficient density to capture system dynamics. One benefit of

this approach is that, unlike most causal inference methods, the performance of CCM

improves for increasingly non-linear systems. In addition, CCM can properly disentangle
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causal relationships that involve feedback loops, provided that strong forcing from external

variables does not overwhelm the dynamics of the relationships of interest.

CCM leverages the fact that time series can be viewed as projections of higher-

dimensional system dynamics (Sugihara et al., 2012). As a logical result of this property, the

time series of individual variables must contain information about the full causal system.

Causal dynamics (conceptualized as the state space, or manifold) can then be recon-

structed using individual time series. These reconstructions can be thought of as shadows

of the true causal system. If the shadows reconstructed from distinct variables can be used

to predict points from each other’s time series, we can infer that these variables provide

views of the same causal system and so are causally related. Since these relationships are

fundamentally asymmetric, this test can also establish the directionality of causation.

Further details on CCM are available in the Supplemental Information of this paper,

as well as in that of Sugihara et al. (2012). Additional explanatory resources can also be

accessed through the project website (http://cyrusmaher.github.io/CauseMap.jl).

MATERIALS AND METHODS
Convergent cross mapping algorithm
Consider time series of hypothetical variables X and Y . Convergent cross mapping (CCM)

employs time-lagged coordinates of each of these variables to produce shadow versions of

their respective source manifolds. To illustrate, suppose the time series for X were {1, 2,

3, 4}. Reconstructing a two-dimensional shadow manifold for X using a time lag of one

would yield the following path: (2,1) → (3,2) → (4,3). For sufficiently long time series,

the path of this shadow manifold is expected to reveal important properties of the full

causal system.

We will refer to the shadow manifolds reconstructed from X and Y as Mx and My,

respectively. To test whether X causes Y , CCM applies the following logic: because

manifold reconstruction preserves important structural components of the original

system (i.e., the Lyapunov exponents; Casdagli et al., 1991), if X causes Y , then time points

that are close in My should also be close in Mx. Since Mx is constructed from lags of

the observations of X, the points that are close in Mx will also have similar values in the

corresponding time series. Therefore, if X causes Y , then My can tell us which observations

of X should best predict a given held-out point from X. Furthermore, predictability should

increase with the number of manifold points in My that are considered.

Assessing predictive skill
To test whether X causes Y , My is used to infer the points in X that will best predict a given

held-out point from X. We measure this performance using predictive skill, quantified by

ρccm as follows. To begin, we withhold a point from X that we will then attempt to predict.

We use My to infer the points in Mx that will be closest to this point of interest. This is

accomplished using relative pairwise distances of corresponding points in My. We then

perform a weighted average of the corresponding observations in X using exponential

weights derived from these pairwise distances in My. We similarly produce predicted values
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Table 1 Runtime versus time series length. Results are presented for one to six catenations of the dataset
presented in Fig. 1. Runtime values are for comprehensive parameter optimizations on a single 2.6 GHz
Intel Core i7 processor.

Time series length Runtime (s)

71 10.2

142 40.4

213 116.6

284 317.2

355 534.7

426 1080.5

for each held-out point in X. ρccm is then calculated as the Pearson correlation between

held-out and predicted points. The cross validated nature of this measure serves to reduce

over-fitting with respect to the model’s tuning parameters described below. To examine

whether the signal converges as expected for a causal relationship, these steps are repeated

using increasing numbers of points from My and Mx.

CauseMap is fast
CauseMap implements CCM in Julia, a high-performance programming language

designed for facile technical computing. By way of an intelligent JIT (just in time)

compilation, Julia offers much of the speed of low-level, low-productivity languages like C,

while also providing the ease of use and platform independence of much slower high-level

languages like Python, R, or Matlab.

At the core of CauseMap is the calculation of distances between a large number of

manifold points in potentially high dimensional spaces. To optimize efficiency, CauseMap

precomputes all necessary manifolds and pairwise distances using a state-of-the-art,

BLAS-based protocol (for benchmarks, see: https://github.com/JuliaStats/Distance.jl).

To illustrate the speed of CauseMap as a function of time series length, in Table 1 we

present the runtimes for successive catenations of the time series presented in Fig. 1. For

our time series of length 71, CauseMap finishes in approximately 10 s. For a time series

of over 400 observations, CauseMap still finishes in less than 20 min on a single CPU.

Note that for this dataset, predictive skill was nearly perfect at a time series length of 213.

This calculation finished in less than two minutes. Through this example, we observe that

CauseMap can reach superb levels of performance long before increasing time series length

generates significant computational challenge.

Tuning parameter values aid causal interpretation
Beyond the speed and comparative simplicity resulting from cutting-edge JIT compilation,

CauseMap offers a number of conveniences and performance enhancements. For CCM, it

is particularly important to optimize two tuning parameters: E and τp.

E is the number of dimensions of the reconstructed shadow manifold. If Emax is the

optimal embedding dimension, Whitney’s Theorem tells us that the dimensionality of the
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full causal system is generically between (Emax − 1)/2 and Emax, inclusive (Eelles & Toledo,

1992; Deyle & Sugihara, 2011). Note though that Emax is usually unknown and must be

inferred from the data. This procedure is described in the following section.

τp denotes the time delay of the causal effect of interest. By examining the optimal values

of these two parameters, we may place bounds on the number of variables involved in the

full causal system, gain insight into the timeframe of causal effects, and obtain a built-in

sensitivity analysis of the final results. The estimation of these parameters is described

below.

CauseMap optimizes and visualizes tuning parameters
E and τp are optimized by multiple iterations of cyclic coordinate descent. This process

chooses the values of E and τp that optimize the predictive skill of the model for held-out

data points. Typically convergence of the cross map signal as a function of the time series

length (L) alone is taken as the practical criterion for causality. However, measuring the

dependence of this signal on E and τp is also useful for evaluating whether the result is

suitably specific with respect to the assumed structure of the causal system. CauseMap

therefore also includes a plotting function to visualize the dependence of the predictive skill

(ρccm) on L, as well as on the joint values of E and τp.

Interpretation of output
The systematic increase of predictive skill (ρccm) with L constitutes a practical, qualitative

criterion for causality (Sugihara et al., 2012). Generally, non-causal ρccm curves are

flat with respect to L, while ρccm signals associated with causal signals show striking

convergence given sufficient data. One exception is in the case of strong external forcing.

An outside variable can introduce a cross map correlation between two quantities if

it exerts a sufficiently strong influence over both. We speculate that such situations

can produce ρccm values that, compared to true causal relationships, have a noisier or

less interpretable dependence on E and τp. Furthermore, it is necessary to inspect the

dependence of the cross map correlation on the joint distribution of E and τp in order to

properly understand the meaning of the maximal values of these two variables. Note that

for high throughput analyses, convergence with respect to L and sensitivity to E and τp

could be assessed with, e.g., relative difference- and entropy-based measures, respectively.

CauseMap is easy to use
Beyond the tuning parameters mentioned above, CCM requires one to specify a range

of library sizes, as well as the window of time points for which cross mapping should

be performed. Valid values for these parameters depend in turn on E and τp. To reduce

complexity for the user, CauseMap calculates intelligent defaults for these parameters,

while also offering the option of specifying them directly.

Caveats and considerations
The strengths and weaknesses of CCM make it nicely complementary to the existing

tools for causal inference. Unlike most algorithms for this task, the performance of

CCM improves for increasingly non-linear systems. However, this capacity depends upon
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relatively long time series. CCM requires at least 25 data points, measured with relatively

high accuracy and with sufficient density to capture system dynamics.

There are also theoretical and practical limitations to the types of relationships that

CCM can disentangle. For example, if both X and Y are almost entirely determined by a

third variable Z, we would be at risk of inferring a spurious relationship between X and Y

(as we would be with any other causal inference method). If the forcing from Z is relatively

weak, however, CCM is expected to provide a lower false positive rate relative to other

methods (Sugihara et al., 2012).

CCM also examines relationships between variables in a pairwise fashion. However, by

leveraging dynamical systems theory, it has the ability to measure possibly bidirectional

causal effects even in the presence of unmeasured confounding. Finally, CCM performs

best with complete data sampled at regular intervals. This is particularly important for

inferring the time lag of the causal effect. This limitation can be partially addressed through

filtering or appropriate interpolation of input data.

RESULTS AND DISCUSSION
To demonstrate CauseMap’s functionality and performance, we examined the

predator–prey relationship between Paramecium aurelia and Didinium nasutum (Heskamp

et al., 2013). Observations were collected every 12 h for 30 days, yielding a total of 60 data

points (Veilleux, 1976). Plotted in Fig. 1 is the CauseMap visualization of the dependence

of predictive skill (ρccm) on L,E, and τp. In Fig. 1A, we observe convergence in ρccm with

respect to L, the number of data points used for prediction of held-out observations. This

convergence is a practical criterion for causality and the source of the name convergent

cross mapping.

The interpretation of this result is that the causal relationship between P. aurelia and

D. nasutum is bi-directional. That is, the number of predators influences the number

of prey, and vice-versa. Furthermore, relative strengths of convergence indicate that

the top-down influence of the predator (D. nasutum) is stronger than the bottom-up

influence of the prey (P. Aurelia). As pointed out by Sugihara et al., this finding is consistent

with experimental results and illustrates the ability of CCM to investigate asymmetrical

bi-directional coupling in non-linear systems.

Figures 1B and 1C show the dependence of the max ρccm on E (the dimensionality of

the reconstructed system), and the supposed time lag of the causal effect (τp). Overall, the

patterning of these heatmaps demonstrates that max ρccm has a reasonable and moderately

specific dependence on the dimensionality of the reconstructed system (E) and on the

time lag of the causal effect (τp). We expect this built-in sensitivity analysis to rule out

some cases of spurious convergent signal caused by external forcing. In addition, this

analysis can alert the researcher when alternative combinations of E and τp explain the data

approximately as well as the optimal values of E and τp.

For the system presented in Fig. 1, while the max ρccm is relatively insensitive to the

assumed dimensionality, the best-performing τp values correspond to either immediate

causal effects, or those delayed by five days. Note that τp = 5 corresponds to the principal
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Figure 1 An example visualization from CauseMap using abundances of Paramecium aurelia and
Didinium nasutum. See Supplemental Information for more information on this system. (A) For optimal
parameter values, the convergence of the cross-map correlation with library size. (B–C). The dependence
of the maximum cross-map correlation on assumed dimensionality (measured by E) and the time lag of
the causal effect (measured by τp). Note that the second maximum at τp = 5 corresponds to the principal
frequency of the P. aurelia and D. nasutum time series, as determined by Fourier transform analysis.

frequency of the Paramecium aurelia and Didinium nasutum time series, as determined

by Fourier transform analysis (see Supplemental Information for further details). This

suggests that the peak at τp = 5 is artifactual. Therefore, we are able to infer from the

data that, as we would expect, predator and prey populations exert bidirectional effects in

real-time.

Performance
Approximately 100 CCM evaluations were conducted to produce Fig. 1. These calculations

finished in approximately 10 s on a single 2.6 GHz processor. Each of these evaluations

involved the prediction of over 60,000 points, compiled across all sliding windows of

libraries of varying lengths. At an average of 1.7 ms per prediction, this is a highly efficient

implementation given the computational challenges.

Dependence of predictive skill on time series length
CauseMap is designed to examine causal relationships in time series with 25 or more

observations. In order to illustrate the effects of shorter time series, we thinned the

Paramedium-Didinium data set by one-half and by one-third, yielding series of 30 and

20 observations, respectively. Figure 2 demonstrates the effect of this reduction on the

convergence of predictive skill (ρccm). We see that the 1/2 thinned data set recapitulates

the trends observed in the full series, including the relative magnitudes of ρccm between the

mappings of Didinium to Paramecium and vice versa. The 1/3 thinned sample set, on the

other hand, no longer demonstrates convergence. In addition, compared to the longer sets,
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Figure 2 The effect of time series length on ρccm convergence. Black, blue, and red lines illustrate ρccm
for the full, 1/2 thinned, and 1/3 thinned datasets, respectively. For a given color, darker lines show ρccm
for the test of whether Didinium abundance influences Paramecium abundance. Lighter lines examine the
converse.

it exhibits the opposite trend in relative predictive skill between the two mappings. Patterns

in max ρccm versus E and τp are approximately conserved, however (Fig. S1).

This example illustrates that CCM performance drops off sharply between 20 and 30

data points. This behavior is partially due to the fact that the predictive skill for a given

library size is averaged across sliding windows of that size. As time series get shorter,

there are fewer windows of appropriate size across which to average, so the estimate for

predictive skill becomes much less reliable.

POTENTIAL BIOMEDICAL APPLICATIONS
Despite its requirement for relatively long time series (>25 observations), CauseMap

has the advantage of requiring only a single time series for each variable. In dynamical

systems with widely varying or context-specific behavior, this would allow researchers

to draw conclusions that are tailored to a given patient, for example. Rather than

acting on population averages, biomedical researchers would be free to fully personalize

therapy to the unique biology and ecology of the patient. One example of this is in the

treatment of microbiome dysbiosis. Imbalances in the microbiome have been implicated

in, e.g., irritable bowel disease (IBD), obesity, diabetes, asthma, anxiety, and depression.

While fecal transplantation therapy is effective in treating specific types of dysbiosis, next

generation therapeutics may offer a blend of purified strains, tailored to the gut ecology of

the patient. We believe CauseMap has the potential to be a valuable tool for designing such

breakthrough therapies.

Additional examples include understanding patient-to-patient variability in drug

response using time series metabolomics, and examining the basis of, for example,

influenza seasonality using global time series. We expect that such applications will

continue to proliferate as the costs of data collection decrease over the coming years.
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For this reason, we believe it is vitally important that the biomedical research community

have access to an efficient implementation of CCM that is user-friendly and available for

immediate field testing.

Planned future development
In future versions, we will include S-map calculations to evaluate the non-linearity of

the causal system. We will also add a bootstrap-based procedure for library selection, as

opposed to the current approach using sliding windows. This has been shown to reduce

the effect of secular trends on the cross map correlation (H Ye & G Sugihara, pers. comm.,

2014). In addition, we will re-implement the plotting functionality in Julia, removing the

requirements of Python and matplotlib for visualization. Finally, we will design Python

and R wrappers for CauseMap functions so that our codebase can be easily leveraged from

those environments as well. User suggestions will also be considered as we decide how best

to develop the tool.

CONCLUSIONS
CauseMap provides a fast, user-friendly implementation of CCM, a powerful new method

for exploring dependencies and even establishing causality in complex, highly non-linear

datasets with many unobserved variables. We believe that CCM holds a great deal of

promise for a wide range of applications, including personalized microbiome therapy

and metabolic dynamics analysis. As novel time series datasets continue to emerge, it is

our hope that CauseMap will allow researchers to uncover interesting and biomedically

actionable causal relationships using this next-generation time series method.

List of abbreviations

CCM Convergent cross mapping
SSR State space reconstruction
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