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Abstract
The assumption of Hardy-Weinberg equilibrium (HWE) is generally required for association

analysis using case-control design on autosomes; otherwise, the size may be inflated.

There has been an increasing interest of exploring the association between diseases and

markers on X chromosome and the effect of the departure from HWE on association analy-

sis on X chromosome. Note that there are two hypotheses of interest regarding the X chro-

mosome: (i) the frequencies of the same allele at a locus in males and females are equal

and (ii) the inbreeding coefficient in females is zero (without excess homozygosity). Thus,

excess homozygosity and significantly different minor allele frequencies between males

and females are used to filter X-linked variants. There are two existing methods to test for (i)

and (ii), respectively. However, their size and powers have not been studied yet. Further,

there is no existing method to simultaneously detect both hypotheses till now. Therefore, in

this article, we propose a novel likelihood ratio test for both (i) and (ii) on X chromosome. To

further investigate the underlying reason why the null hypothesis is statistically rejected, we

also develop two likelihood ratio tests for detecting (i) and (ii), respectively. Moreover, we

explore the effect of population stratification on the proposed tests. From our simulation

study, the size of the test for (i) is close to the nominal significance level. However, the size

of the excess homozygosity test and the test for both (i) and (ii) is conservative. So, we pro-

pose parametric bootstrap techniques to evaluate their validity and performance. Simulation

results show that the proposed methods with bootstrap techniques control the size well

under the respective null hypothesis. Power comparison demonstrates that the methods

with bootstrap techniques are more powerful than those without bootstrap procedure and

the existing methods. The application of the proposed methods to a rheumatoid arthritis

dataset indicates their utility.
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Introduction
Association analysis is a useful tool to map disease loci by using markers on autosomes based
on family data and case-control data [1–9]. There has been an increasing interest of exploring
the association between diseases and markers on X chromosome and the effect of the departure
from Hardy-Weinberg equilibrium (HWE) on association analysis on X chromosome [10–17].
Note that there are two hypotheses of interest regarding the X chromosome: (i) the frequencies
of the same allele at a locus in males and females are equal and (ii) the inbreeding coefficient in
females is zero (without excess homozygosity) in X-specific quality control [18, 19]. As such,
excess homozygosity in females and significantly different minor allele frequencies between
males and females are used to filter X-linked variants [20, 21]. The inbreeding coefficient is
generally estimated by functions of excess homozygosity [22, 23], which may be caused by pop-
ulation substructure, consanguineous mating or factors like null alleles [24, 25]. Overall and
Nichols developed an approach to distinguish population substructure and consanguinity by
using multilocus genotype data [24]. On the other hand, Zheng et al. proposed two test statis-
tics to test for the equality of the frequencies of the same allele in males and females and the
zero inbreeding coefficient in females on X chromosome, respectively [14]. However, they only
focused on association analysis on X chromosome and the type I error rates and powers of
these two test statistics have not been studied yet. Further, there is no existing method to simul-
taneously detect both of the issues till now.

Therefore, in this article, we first combine two test statistics proposed in zheng et al. [14] and
suggest Z0 to simultaneously test for (i) the equality of the frequencies of the same allele in males
and females and (ii) the zero inbreeding coefficient on X chromosome based on the collected
sample. For the purpose of improving the test power for both (i) and (ii), a novel likelihood ratio
test on X chromosome is proposed. We write out the likelihood functions of the collected sample
under the null hypothesis and alternative hypothesis at a single locus on X chromosome, respec-
tively. Next, we obtain the maximum likelihood estimates (MLEs) of the unknown parameters
by expectation-maximization (EM) algorithms [26] and construct the corresponding likelihood
ratio test (LRT0) statistic to test for both (i) and (ii). If the null hypothesis is statistically rejected,
we further conduct two hypothesis testing issues to find the underlying reasons why the null
hypothesis is violated by proposing another two likelihood ratio tests LRT1 (for the equality of
the frequencies of the same allele in males and females) and LRT2 (for excess homozygosity).
Note that the size of LRT0 and LRT2 is conservative from our simulation study. As such, we use
parametric bootstrap techniques to evaluate the validity and performance of LRT0 and LRT2,
which are respectively denoted by LRT0b and LRT2b. Moreover, we explore the effect of popula-
tion stratification on the proposed tests. In addition, the root mean squared error (RMSE) and
bias are used to assess the accuracy of the MLEs of the unknown parameters. Finally, the applica-
tion of the proposed methods to a rheumatoid arthritis (RA) dataset indicates their utility.

Materials and Methods

Background and notations
Consider a biallelic marker locus on X chromosome with allelesM1 andM2. Let pm and pf be
the frequencies ofM1 in males and females, respectively. As such, the frequencies ofM2 in
males and females are qm = 1 − pm and qf = 1 − pf, respectively. In females, let ρ be the inbreed-
ing coefficient, which is generally nonnegative [27–29]. Thus, the frequencies of three geno-
typesM1M1,M1M2 andM2M2 in females can be expressed as follows:

PðM1M1Þ ¼ p2f þ rpf qf ; PðM1M2Þ ¼ 2ð1� rÞpf qf ; PðM2M2Þ ¼ q2f þ rpf qf :
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To this end, there is no excess homozygosity in females when ρ = 0; excess homozygosity
exists when ρ> 0. Note that pm 6¼ pf may be true on X chromosome. So, we construct the null
hypothesis denoted byH0: pm = pf and ρ = 0 to test for both of the hypotheses (i) and (ii). If the
null hypothesis is violated, we need to investigate which one of pm 6¼ pf and ρ> 0 is true. As
such, we have other two hypothesis testing issues with the null hypothesis being H01: pm = pf
andH02: ρ = 0, respectively. It should be noted that X chromosome has the problem of X chro-
mosome inactivation and dosage compensation [30], but we do not consider them in this sec-
tion. The corresponding discussion can be found later (see the Discussion section).

Assume that n1m and n0m represent the numbers of males with allelesM1 andM2 in a col-
lected sample, respectively; n2f, n1f and n0f denote the numbers of females with genotypes
M1M1,M1M2 andM2M2, respectively. Then, Nm = n1m + n0m and Nf = n2f + n1f + n0f are
respectively the numbers of males and females in the sample, and N = Nm + Nf is the sample
size.

Existing methods Z1 and Z2 for H01 (equality of the frequencies of the
same allele in males and females) and H02 (zero inbreeding coefficient),
respectively
Zheng et al. [14] proposed the test statistic

Z1 ¼
ðp̂m � p̂f Þ2

Varðp̂mÞ þ Varðp̂f Þ

to test for H01: pm = pf, where p̂m ¼ n1m=Nm and p̂f ¼ ð2n2f þ n1f Þ=ð2Nf Þ are the estimates of

pm and pf, Varðp̂mÞ ¼ p̂mð1� p̂mÞ=Nm, and Varðp̂f Þ ¼ ½p̂f � 2p̂2
f þ P̂ðM1M1Þ�=ð2Nf Þ are the

estimates of the variances of p̂m and p̂f under H01, respectively, with P̂ðM1M1Þ ¼ n2f=Nf .

Under H01, Z1 asymptotically follows the chi-square distribution with one degree of freedom
when the sample size is large enough.

Weir and cockerham [31] introduced the disequilibrium coefficient in females
Df ¼ PðM1M1Þ � p2f ¼ rpf qf . In other words, testing for Δf = 0 is equivalent to testing for ρ =

0. Hence, zheng et al. [14] further developed the following test statistic to test for H02: ρ = 0,

Z2 ¼
½D̂ f þ p̂f q̂f=ð2Nf Þ�2

VarðD̂ f Þ
¼ Nf

½D̂ f þ p̂f q̂f=ð2Nf Þ�2
p̂f

2q̂f
2

;

where D̂ f ¼ P̂ðM1M1Þ � p̂2
f , q̂f ¼ 1� p̂f , EðD̂ f Þ ¼ �pf qf=ð2Nf Þ and VarðD̂f Þ ¼ p2f qf

2=Nf .

Under H02, Z2 approximately follows the chi-square distribution with one degree of freedom
when Nf is large enough. It should be noted that the test Z2 has nothing to do with male indi-
viduals and thus only needs female individuals.

Z0 test for both hypotheses (i) and (ii) of interest regarding the X
chromosome
Zheng et al. [14] showed that, under H0: pm = pf and ρ = 0, Z1 and Z2 are independent. How-
ever, they did not propose the corresponding test statistic for H0. As such, we suggest the test
statistic

Z0 ¼ Z1 þ Z2

to test forH0: pm = pf and ρ = 0. UnderH0, Z0 asymptotically follows the chi-square distribution
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with the degrees of freedom being 2. Moreover, it should be noted that we can use

r̂z ¼
P̂ðM1M1Þ � p̂2

f

p̂f q̂f

to estimate the inbreeding coefficient ρ.

Likelihood ratio test for both hypotheses (i) and (ii) of interest regarding
the X chromosome
To construct a likelihood ratio test (LRT) for H0: pm = pf and ρ = 0, we give the likelihood func-
tion of the sample as follows:

LðyÞ ¼
Nm

n1m

 ! Nf

n2f ; n1f ; n0f

0
@

1
Apn1mm qn0mm ðp2f þ rpf qf Þn2f

�½2ð1� rÞpf qf �n1f ðq2f þ rpf qf Þn0f ;
ð1Þ

where θ = (pm, pf, ρ). Firstly, we use the following EM algorithm to estimate the unknown
parameters pm, pf and ρ under the alternative hypothesis (H1: pm 6¼ pf or ρ> 0). Suppose that Y
= (Y1, Y2, Y3, Y4, Y5) = (n1m, n0m, n2f, n1f, n0f) denotes the observed data. (Y1, Y2, Y3, Y4, Y5) can
be augmented by splitting the third cell into two cellsW1 andW2, which are unobservable ran-
dom variables such that Y3 =W1 +W2 for female homozygoteM1M1 andW1 andW2 follow
the binomial distributions with success probabilities p2f =ðp2f þ rpf qf Þ and rpf qf=ðp2f þ rpf qf Þ,
respectively, and by splitting the fifth cell into two cellsW3 andW4, where Y5 =W3 +W4 for
female homozygoteM2M2 andW3 andW4 follow the binomial distributions with success prob-
abilities q2f =ðq2f þ rpf qf Þ and rpf qf=ðq2f þ rpf qf Þ, respectively. Thus, the likelihood function of

complete data (n1m, n0m, w1, w2, n1f, w3, w4) is:

LcðyÞ / pn1mm qn0mm p
2w1þw2þn1fþw4

f q
w2þn1fþ2w3þw4

f rw2þw4ð1� rÞn1f ;

where the normalizing constant is omitted for brevity.
At the E-step, the Q function at iteration (k + 1) is constructed as

QðyjyðkÞÞ ¼ n1m ln pm þ n0m ln qm

þ½2EyðkÞ ðw1jn2f Þ þ EyðkÞ ðw2jn2f Þ þ n1f þ EyðkÞ ðw4jn0f Þ� ln pf
þ½EyðkÞ ðw2jn2f Þ þ n1f þ 2EyðkÞ ðw3jn0f Þ þ EyðkÞ ðw4jn0f Þ� ln ð1� pf Þ
þ½EyðkÞ ðw2jn2f Þ þ EyðkÞ ðw4jn0f Þ� lnrþ n1f ln ð1� rÞ;

where θ(k) is the estimate of θ at iteration k.
At the M-step, the estimated value θ(k+1) of θ at iteration (k + 1) can be obtained by maxi-

mizing the Q function with respect to θ. Therefore, the MLEs of pm, pf and ρ at iteration (k + 1)
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are respectively

p̂m ¼ n1m

Nm

;

p̂ðkþ1Þ
f 1 ¼ EyðkÞ ð2w1 þ w2jn2f Þ þ n1f þ EyðkÞ ðw4jn0f Þ

2Nf

;

r̂ðkþ1Þ
1 ¼ EyðkÞ ðw2jn2f Þ þ EyðkÞ ðw4jn0f Þ

EyðkÞ ðw2jn2f Þ þ EyðkÞ ðw4jn0f Þ þ n1f

:

Note that the MLE of pm is the same for all the iterations, which is also the same as zheng
et al. [14]. In the above expressions,

EyðkÞ ðw1jn2f Þ ¼
n2f p̂ðkÞ

f 1

� �2

p̂ðkÞ
f 1

� �2

þ r̂ðkÞ
1 p̂ðkÞ

f 1 q̂
ðkÞ
f 1

; ð2Þ

EyðkÞ ðw2jn2f Þ ¼ n2f r̂
ðkÞ
1 p̂ðkÞ

f 1 q̂
ðkÞ
f 1

p̂ðkÞ
f 1

� �2

þ r̂ðkÞ
1 p̂ðkÞ

f 1 q̂
ðkÞ
f 1

; ð3Þ

EyðkÞ ðw3jn0f
Þ ¼

n
0f

q̂ðkÞ
f 1

� �2

q̂ðkÞ
f 1

� �2

þ r̂ðkÞ
1 p̂ðkÞ

f 1 q̂
ðkÞ
f 1

; ð4Þ

EyðkÞ ðw4jn0f
Þ ¼ n0f r̂

ðkÞ
1 p̂ðkÞ

f 1 q̂
ðkÞ
f 1

q̂ðkÞ
f 1

� �2

þ r̂ðkÞ
1 p̂ðkÞ

f 1 q̂
ðkÞ
f 1

; ð5Þ

where q̂ðkÞ
f 1 ¼ 1� p̂ðkÞ

f 1 . Given the initial value θ(0) of θ, the above-mentioned two steps continue

until the convergence criterion is satisfied. For example, the absolute differences between the
estimates of the parameters at two consecutive iterations are all less than 10−7. The value of θ

obtained at the last iteration is taken as the MLE ŷ1 ¼ ðp̂m; p̂f 1; r̂1Þ of θ under H1.

Note that pm = pf and ρ = 0 under H0. Let p = pm = pf, the pooled allele frequency ofM1.
Then, L(θ) in Eq (1) can be rewritten as

LðyÞ / pn1mþ2n2fþn1f ð1� pÞn0mþn1fþ2n0f :

Thus, the MLE of p under H0 is p̂ ¼ ðn1m þ 2n2f þ n1f Þ=ðNm þ 2Nf Þ, the estimated pooled

allele frequency ofM1. Let ŷ0 ¼ ðp̂; p̂; 0Þ. Then, we can construct the following LRT to test for
H0

LRT0 ¼ 2 ln
Lðŷ1Þ
Lðŷ0Þ

; ð6Þ

which asymptotically follows a chi-square distribution with the degrees of freedom being 2
when the null hypothesis holds.

Likelihood Ratio Test for Excess Homozygosity on X Chromosome

PLOSONE | DOI:10.1371/journal.pone.0145032 December 15, 2015 5 / 18



Likelihood ratio test for equality of frequencies of the same allele in
males and females
Once the null hypothesis (H0: pm = pf and ρ = 0) is rejected based on the result of Eq (6), we fur-
ther need to consider the following two tests H01: pm = pf andH02: ρ = 0. Note that under the
null hypothesis H01: pm = pf = p, ρmay not be zero and we need to estimate it. Let ϕ = (p, ρ)
and q = 1 − p. Thus, the corresponding likelihood function of complete data is

Lc1
ð�Þ / pn1mþ2w1þw2þn1fþw4ð1� pÞn0mþw2þn1fþ2w3þw4rw2þw4ð1� rÞn1f :

We use the following EM algorithm to estimate ϕ under H01. The corresponding formulas
at iteration (k + 1) are as follows

p̂ðkþ1Þ
01 ¼ E�ðkÞ ð2w1 þ w2jn2f Þ þ E�ðkÞ ðw4jn0f Þ þ n1f þ n1m

Nm þ 2Nf

;

r̂ðkþ1Þ
01 ¼ E�ðkÞ ðw2jn2f Þ þ E�ðkÞ ðw4jn0f Þ

E�ðkÞ ðw2jn2f Þ þ E�ðkÞ ðw4jn0f Þ þ n1f

;

where p̂ðkþ1Þ
01 and r̂ðkþ1Þ

01 are respectively the MLEs of p and ρ at iteration (k + 1), and

�ðkÞ ¼ ðp̂ðkÞ
01 ; r̂

ðkÞ
01 Þ. Eϕ(k)(w1|n2f), Eϕ(k)(w2|n2f), Eϕ(k)(w3|n0f) and Eϕ(k)(w4|n0f) in the above expres-

sions are similar to Eθ(k)(w1|n2f), Eθ(k)(w2|n2f), Eθ(k)(w3|n0f) and Eθ(k)(w4|n0f) in Eqs (2)–(5), just

replacing p̂ðkÞ
f 1 , q̂

ðkÞ
f 1 and r̂ðkÞ

1 in Eqs (2)–(5) by p̂ðkÞ
01 , q̂

ðkÞ
01 and r̂ðkÞ

01 , respectively. Let

ŷ01 ¼ ðp̂01; p̂01; r̂01Þ. Then, we propose the following test statistic LRT1 to test for the null
hypothesis H01: pm = pf,

LRT1 ¼ 2 ln
Lðŷ1Þ
Lðŷ01Þ

; ð7Þ

which approximately follows a chi-square distribution with the degree of freedom being 1
under H01.

Likelihood ratio test for inbreeding coefficient being zero
Note that under the null hypothesisH02 : ρ = 0, pm and pfmay be different from each other and
we need to estimate them separately. Let ψ = (pm, pf) and L(θ) in Eq (1) can be rewritten as

L2ðcÞ / pn1mm qn0mm p
2n2fþn1f
f q

n1fþ2n0f
f :

Then, the MLEs of pm and pf are p̂m ¼ n1m=Nm and p̂f ¼ ð2n2f þ n1f Þ=ð2Nf Þ, respectively,
which are the same as zheng et al. [14]. Let ŷ02 ¼ ðp̂m; p̂f ; 0Þ. As such, we develop the following
test statistic to test for H02 : ρ = 0

LRT2 ¼ 2 ln
Lðŷ1Þ
Lðŷ02Þ

; ð8Þ

which asymptotically follows a chi-square distribution with the degree of freedom being 1
under H02. Just like the Z2 test statistic, LRT2 only uses female individuals in the sample
because the terms based on male individuals in the numerator and the denominator of the frac-
tion are the same, which can be reduced.
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Likelihood ratio tests via parametric bootstrap for H0 and H02

It should be noted from our simulation results (see the Results section) that the simulated type
I error rates of LRT0 and LRT02 respectively for H0 andH02 are too conservative. On the other
hand, several studies showed that the likelihood ratio tests may typically not follow a chi-square
distribution asymptotically [31, 32], and hence their exact distributions can be obtained by
Monte Carlo simulation [33]. Accordingly, we make use of parametric bootstrap techniques to
evaluate the size and power of these two methods. For convenience, we denote these methods
via parametric bootstrap by LRT0b and LRT2b, respectively. We begin by describing the imple-
mentation steps for LRT0b as follows:

1. For a collected sample of size N with Nm males and Nf females, calculate the value of LRT0;

2. Compute the estimated pooled allele frequency p̂ based on the sample as follows:
p̂ ¼ ðn1m þ 2n2f þ n1f Þ=ðNm þ 2Nf Þ;

3. Based on p̂, calculate the frequencies of three genotypesM1M1,M1M2 andM2M2 in females

under H0 in the following: p̂2, 2p̂q̂ and q̂2, respectively, where q̂ ¼ 1� p̂;

4. According to p̂ and q̂, regenerate the alleles of Nm males; based on p̂2, 2p̂q̂ and q̂2, regener-
ate the genotypes of Nf females;

5. Calculate the value of LRT0 based on the new Nm males and Nf females, denoted by LRT�
0;

6. Repeat Steps 4 and 5 B times, which results in B test statistics LRT1�
0 , LRT2�

0 , . . ., LRTB�
0 ;

7. The P-value of the original LRT0 can be estimated as

P̂ � value ¼ 1

B

XB
i¼1

IfLRTi�
0
>LRT0g:

For LRT2b, we can conduct the steps similar to those mentioned above. Firstly, after obtain-
ing the value of LRT2, calculate the frequencies of three genotypesM1M1,M1M2 andM2M2 in
females underH02 in the following: p̂2

f , 2p̂f q̂f and q̂
2
f , respectively, with

p̂f ¼ ð2n2f þ n1f Þ=ð2Nf Þ. The alleles of Nm males stay the same as the original sample and only

regenerate the genotypes of Nf females according to p̂2
f , 2p̂f q̂f and q̂

2
f . Then, carry out the simi-

lar procedures of Steps 4–7 and we can obtain the the estimated P-value of LRT2.

Software implementation
We have written the XHWE software with R (http://www.r-project.org), which includes the
eight test statistics: LRT0, LRT0b, LRT1, LRT2, LRT2b, Z0, Z1 and Z2. The R package named
XHWE is available on CRAN (http://cran.r-project.org/web/packages/XHWE/). The initial
values of pm, pf, p and ρ in the EM algorithms are taken to be n1m/Nm, (2n2f + n1f)/(2Nf), (n1m
+ 2n2f + n1f)/(Nm + 2Nf) and 0.02, respectively. The convergence criterion is that the absolute
differences between the estimates of the parameters at two consecutive iterations are all less
than 10−7 for the LRT-type statistics. The default maximum number of iterations is 1000. The
input data file is the standard pedigree data. The XHWE software only uses the founders with
genotypes available in it and will analyze marker loci one by one. The software outputs the val-
ues of all the test statistics and the corresponding P-values. Also, the XHWE software outputs
the estimates of all the parameters under both the null and alternative hypotheses for each test
statistic. The parameter estimates under the alternative hypothesis for the LRT-type test
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statistics are the same. However, under the respective null hypotheses of the LRT-type test sta-
tistics, the estimates may be different. It should be noted that the estimates of pm and pf under
the null hypothesis ofH02 in this article and those in zheng et al. [14] are the same, respectively.
The output results will be automatically saved in the text file named “results.txt”.

Simulation settings
Simulation study is conducted to assess the performance of the proposed LRT0, LRT0b, LRT1,
LRT2, LRT2b and Z0 test statistics and to compare them with the existing Z1 and Z2 under vari-
ous simulation settings which are similar to those in zheng et al. [14]. The allele frequency pm in
males takes two values: 0.3 and 0.5. When pm is fixed, the value of pf in females is taken as pf =
pm + �, where � = 0, ±0.04 and ±0.05. The inbreeding coefficient ρ in females is set at 0 to 0.1 in
increment of 0.05. The sample size is taken as 800 and 1200 with the ratio r = Nm : Nf being 2:1,
1.5:1, 1:1, 1:1.5 and 1:2. As mentioned earlier, when pm = pf and ρ = 0, the size of all the eight test
statistics is simulated; when pm = pf and ρ> 0, the size of LRT1 and Z1 is gotten; when pm 6¼ pf
and ρ = 0, the size of LRT2, LRT2b and Z2 is obtained. Otherwise, we simulate the corresponding
powers. In addition, it should be noted that for the fixed sample size (800 or 1200) simulated
above, the powers of all the three test statistics LRT2, LRT2b and Z2 forH02 : ρ = 0 are not so
large, from our simulation results below. On the other hand, these three test statistics only use
female individuals. As such, we further obtain the sample sizeNf required for LRT2b to gain 80%
simulated power and then simulate the size and powers of LRT2, LRT2b and Z2 under this sam-
ple size. To investigate how population structure affects the proposed methods, we also consider
the following population stratification model with two subpopulations in our simulation study.
pm = 0.3 (0.5), pf = pm + �, � = 0, ±0.04 and ±0.05 in the first (second) subpopulation and the �
values are respectively denoted by �1 and �2. Assume that ρ = 0 in each subpopulation, and the
ratio of each subpopulation constructing the population is set to 0.5. The sample size is taken to
be 1800, where each individual is a female or a male with equal probability. Note that under
population stratification, the null hypothesisH0: pm = pf and ρ = 0 is generally not true. Thus,
we use the population stratification model to study the powers of the proposed methods. The
significance level is fixed at 5% and 10000 replications are simulated under each simulation set-
ting. For LRT0b and LRT2b via parametric bootstrap, B is set to be 1000. Finally, to compare the
efficiency of the parameter estimates of the proposed EM algorithms with those in zheng et al.
[14] for each simulation setting, we use the RMSEs and biases to assess the accuracy of the

parameter estimates, where RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½Biasðb̂Þ�2 þ Varðb̂Þ

q
and Bias ¼ Eðb̂Þ � b, and β is the

parameter which needs to estimate.

Results

Simulation results
Table 1 lists the simulated size of LRT0, LRT0b, LRT1, LRT2, LRT2b, Z0, Z1 and Z2 under H0 : pm
= pf = p and ρ = 0 with N = 800 and 1200 and p = 0.3 and 0.5 for different values of r = Nm : Nf.
According to the table, the size of LRT1, Z0, Z1 and Z2 is close to the nominal 5% level, while
the size of LRT0 and LRT2 is too conservative. However, after the parametric bootstrap tech-
nique, LRT0b and LRT2b stay close to the nominal 5% level.

Fig 1 gives the simulated powers of the eight test statistics against r under H1 : pm 6¼ pf and ρ
> 0 for different values of ρ (0.05 and 0.1) and N (800 and 1200), having pm = 0.3 and pf = 0.35.
It is shown in the figure that LRT0b is more powerful than LRT0 and Z0, and LRT0 and Z0 have
the similar performance in power (Fig 1a-1d in the first row), regarded of the inbreeding coeffi-
cient ρ, the sample size N and the ratio r. LRT1 and Z1 have almost the same performance in
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power (Fig 1e-1h in the second row). LRT2b has much more power than LRT2 and Z2, and
LRT2 is a little less powerful than Z2 (Fig 1i-1l in the third row). The powers of LRT1 and Z1
are not so affected by the different values of r, while LRT0, LRT0b, Z0, LRT2b, LRT2 and Z2 are
more and more powerful with the number of female individuals increasing (r changing from
2:1 to 1:2) when other parameters are fixed. We also find that the powers of LRT0, LRT0b, Z0,
LRT2, LRT2b and Z2 appear great reaction to the different values of ρ when N is fixed. Specially,
their powers under ρ = 0.1 (subplots in the second and fourth columns, respectively) are much
larger than those under ρ = 0.05 (subplots in the first and third columns, respectively). How-
ever, the powers of LRT1 and Z1 are almost not influenced by ρ. Further, it can be seen in Fig 1
that LRT0, LRT0b and Z0 with two degrees of freedom (subplots in the first row) are much
more powerful than LRT1, Z1, LRT2, LRT2b and Z2 with one degree of freedom (subplots in the
second and third rows). This is because the true model is pm 6¼ pf and ρ> 0. In addition, when
the sample size changes from 800 (subplots in the first and second columns) to 1200 (subplots
in the third and fourth columns), all the test statistics are much more powerful.

Fig 2 displays the simulated size/powers of the eight test statistics against r under H02 : ρ = 0
for different values of pf, having pm = 0.3 and N = 1200. The results in the third row of the fig-
ure are the size of LRT2, LRT2b and Z2, while those in the first and the second rows of the figure
are the powers of LRT0, LRT0b and Z0, and those of LRT1 and Z1, respectively. It is shown in
the figure that the size of LRT2b and Z2 maintains close to the nominal 5% level, while LRT2 is
too conservative. As for the tests for H01 : pm = pf, LRT1 and Z1 almost have the same simulated
power just like Fig 1. On the other hand, the powers of LRT0, LRT0b, Z0, LRT1 and Z1 are not
so affected by the ratio r. However, their powers are greatly influenced by the absolute differ-
ence |�| = |pm − pf|. Specifically, their powers under pf = 0.25 and pf = 0.35 are much larger than
those under pf = 0.26 and pf = 0.34. In addition, when the simulation setting is fixed, LRT1 and

Table 1. Simulated size (in %) of LRT0, LRT0b, LRT1, LRT2, LRT2b, Z0, Z1 and Z2 underH0 : pm = pf = p and ρ = 0 withN = 800 and 1200 for different val-
ues of r and p.

N r p LRT0 LRT0b LRT1 LRT2 LRT2b Z0 Z1 Z2

800 2:1 0.3 3.01 4.81 5.02 1.91 4.87 4.83 5.22 4.83

2:1 0.5 2.98 4.97 5.02 2.28 4.99 5.13 5.19 5.13

1.5:1 0.3 2.92 4.81 4.74 2.19 4.75 4.99 4.93 4.99

1.5:1 0.5 3.07 4.93 4.83 2.22 4.98 5.02 4.99 5.02

1:1 0.3 3.17 5.05 4.74 2.59 5.36 4.82 4.81 4.82

1:1 0.5 3.30 4.99 5.33 2.40 5.20 5.16 5.34 5.16

1:1.5 0.3 3.05 5.18 5.09 2.40 5.11 5.09 5.28 5.09

1:1.5 0.5 3.39 5.18 5.03 2.49 5.34 5.19 5.07 5.19

1:2 0.3 3.13 4.89 4.77 2.18 4.81 5.13 4.89 5.13

1:2 0.5 3.12 4.85 4.65 2.32 5.13 5.23 4.78 5.23

1200 2:1 0.3 3.42 5.31 4.84 2.35 5.07 5.47 4.97 5.47

2:1 0.5 3.45 5.38 4.76 2.48 5.15 5.38 5.01 5.38

1.5:1 0.3 2.91 4.84 4.84 2.30 5.12 4.83 5.02 5.16

1.5:1 0.5 3.36 5.31 5.29 2.45 5.35 5.38 5.42 5.38

1:1 0.3 2.88 4.77 5.05 2.15 4.73 4.73 5.18 4.73

1:1 0.5 3.04 5.07 5.22 2.01 4.79 4.94 5.30 4.94

1:1.5 0.3 2.93 4.97 4.75 2.25 4.98 4.98 4.87 4.98

1:1.5 0.5 3.08 4.83 5.06 2.24 4.86 4.87 5.12 4.87

1:2 0.3 3.13 4.98 4.83 2.39 5.31 5.03 4.92 5.03

1:2 0.5 3.24 5.06 4.86 2.54 5.38 5.05 4.91 5.05

doi:10.1371/journal.pone.0145032.t001

Likelihood Ratio Test for Excess Homozygosity on X Chromosome

PLOSONE | DOI:10.1371/journal.pone.0145032 December 15, 2015 9 / 18



Fig 1. Simulated powers of LRT0, LRT0b, LRT1, LRT2, LRT2b, Z0, Z1 and Z2 against r = Nm : Nf underH1 : pm 6¼ pf and ρ > 0 based on 10000 replicates
with pm = 0.3 and pf = 0.35. In the first column: ρ = 0.05 andN = 800; in the second column: ρ = 0.1 andN = 800; in the third column: ρ = 0.05 andN = 1200;
in the fourth column: ρ = 0.1 andN = 1200. In the first row, the powers of LRT0, LRT0b and Z0 for H0 : pm = pf and ρ = 0; in the second row, the powers of LRT1

and Z1 for H01 : pm = pf; in the third row, the powers of LRT2, LRT2b and Z2 for H02 : ρ = 0.

doi:10.1371/journal.pone.0145032.g001
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Fig 2. Simulated size/powers of LRT0, LRT0b, LRT1, LRT2, LRT2b, Z0, Z1 and Z2 against r =Nm : Nf underH02 : ρ = 0 based on 10000 replicates with
pm = 0.3 andN = 1200. In the first column: pf = 0.25; in the second column: pf = 0.26; in the third column: pf = 0.34; in the fourth column: pf = 0.35. In the first
row, the powers of LRT0, LRT0b and Z0 for H0 : pm = pf and ρ = 0; in the second row, the powers of LRT1 and Z1 for H01 : pm = pf; in the third row, the size of
LRT2, LRT2b and Z2 for H02 : ρ = 0.

doi:10.1371/journal.pone.0145032.g002
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Z1 with one degree of freedom are a little more powerful than LRT0, LRT0b and Z0 with two
degrees of freedom, because the true model is pm 6¼ pf and ρ = 0. By comparing Fig 2d (ρ = 0),
Fig 1c (ρ = 0.05) and Fig 1d (ρ = 0.1) under N = 1200, pm = 0.3 and pf = 0.35, LRT0, LRT0b and
Z0 are more and more powerful with ρ increasing.

Figs A–G in S1 File show the corresponding results under other simulation settings with pm
6¼ pf and ρ> 0, which are similar to those in Fig 1. Figs H and I in S1 File plot the correspond-
ing results under pm = pf and ρ> 0, and Figs J–L in S1 File give the corresponding results
under pm 6¼ pf and ρ = 0. The more details refer to S1 File.

Table 2 shows the simulated size of LRT2, LRT2b and Z2 for H02 : ρ = 0 for different values of
pf, having Nm = 0 under the sample sizes Nf required for LRT2b to obtain 80% simulated power.
Table 3 lists the simulated powers under these sample sizes for different values of pf, having ρ =
0.05 and 0.1. From Table 2, we can see that the type I error rates of LRT2, LRT2b and Z2 are
close to the nominal significance level of 5%. It is shown in Table 3 that the power of LRT2b

attains to about 80%, and the difference in power between LRT2b and Z2 is about 10%.
Tables A–J in S1 File list the RMSEs and biases of the estimates of pm, pf, the pooled allele

frequency p and ρ for different values of pm, pf, ρ, r and N. It should be noted that the estimate
of pm based on the EM algorithm is the same as zheng et al. [14]. Further, the estimates p̂f 1 and

p̂01 of pf and p based on the EM algorithms have the similar RMSEs and biases as those from
zheng et al. [14], respectively. However, when we focus on the estimate of ρ, we find that
although the biases of r̂1 and r̂01 based on the EM algorithms are larger than r̂z in zheng et al.
[14] for some cases, the RMSEs of r̂1 and r̂01 are smaller than r̂z for all the simulation settings.

Table 4 displays the simulated size/powers of LRT0, LRT0b, LRT1, LRT2, LRT2b, Z0, Z1 and Z2
under the population stratification model. When �1 = �2 = 0, the size of LRT1 and Z1 is obtained.
Further, note that the ratios of two subpopulations in the whole population are equal. As such,
�1 = −�2 will also cause the size of LRT1 and Z1. Under other simulation settings, we get the pow-
ers of the eight test statistics. To investigate whether or not the population stratification model

Table 2. Simulated size (in %) of LRT2, LRT2b and Z2, havingNm = 0 and ρ = 0.

Nf pf LRT2 LRT2b Z2

2500 0.20 2.27 5.18 4.84

0.25 2.27 4.96 4.89

0.30 2.43 5.15 5.13

0.35 2.31 4.99 5.14

0.40 2.25 4.96 4.70

0.45 2.43 5.05 4.93

0.50 2.54 5.03 5.06

0.55 2.38 5.26 4.86

0.60 2.49 5.11 5.10

650 0.20 2.14 4.98 4.67

0.25 2.03 4.62 4.82

0.30 2.53 4.91 5.20

0.35 2.45 5.05 5.11

0.40 2.18 4.72 4.54

0.45 2.04 4.84 4.65

0.50 2.48 4.98 5.14

0.55 2.30 4.74 5.12

0.60 2.27 5.01 4.77

doi:10.1371/journal.pone.0145032.t002
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causes excess homozygosity, we save the values of 10000 ρ estimates for each estimation method
(r̂1, r̂01 or r̂z). Then, calculate the corresponding mean and standard deviation (SD), which are
also listed in Table 4. The results show that the population stratification model indeed leads to
the positive inbreeding coefficient (i.e., excess homozygosity), which is consistent with Overall
and Nichols [24]. The mean r̂ values (r̂1 and r̂01) using the EM algorithm are a little larger than
r̂z proposed in zheng et al. [14], while r̂1 and r̂01 have less standard deviation. On the other
hand, the size of LRT1 and Z1 is close to the nominal significance level of 5%. The power of
LRT0b is larger than LRT0 and Z0, and LRT0 and Z0 have the similar powers, irrespective of the
�1 and �2 values. LRT1 and Z1 have almost the same powers. LRT2b is much more powerful than
LRT2 and Z2, and the power of LRT2 is a little smaller than Z2. If �1 is fixed and �2 is changed,
the ρ estimate increases with �2 increasing, and hence LRT2, LRT2b and Z2 are more and more
powerful; if �2 is fixed and �1 is changed, the ρ estimate decreases with �1 increasing, and hence
LRT2, LRT2b and Z2 are less and less powerful. This may be caused by pm being taken to be 0.3
and 0.5 in the first and second subpopulations, respectively.

Application to RA data
We apply the proposed methods to the RA dataset from North American Rheumatoid Arthritis
Consortium for studying their practicability, which is available from Genetic Analysis Work-
shop 15. In this dataset, there are 1217 families. Note that many individuals’ genotypes are
missing. On the other hand, to obtain a sample of which all the individuals are independent,
we only select the available founders in this dataset, which results in a sample composed of 369
founders (Nm = 112 and Nf = 257) in the analysis. 293 SNP markers on X chromosome for
each founder are included in this application. The significance level is fixed at α = 5%. Table 5
gives the corresponding results based on the P-values of LRT0b, LRT1, LRT2b, Z0, Z1 and Z2.
From Table 5, LRT0b identified 6 loci which Z0 did not identify, and Z0 identified 4 additional
loci. One locus is detected by LRT1 that is not found by Z1, and 4 additional loci are detected by

Table 3. Simulated powers (in %) of LRT2, LRT2b and Z2, havingNm = 0.

Nf ρ pf LRT2 LRT2b Z2

2500 0.05 0.20 68.2 79.0 69.7

0.05 0.25 69.1 79.4 69.9

0.05 0.30 69.4 79.9 70.2

0.05 0.35 69.8 80.2 70.3

0.05 0.40 70.0 80.6 70.4

0.05 0.45 69.3 79.9 69.6

0.05 0.50 70.6 80.8 71.5

0.05 0.55 71.2 81.0 71.5

0.05 0.60 70.2 80.6 70.5

650 0.10 0.20 68.1 78.9 70.3

0.10 0.25 69.2 79.9 70.8

0.10 0.30 69.9 80.9 71.0

0.10 0.35 70.3 80.5 71.1

0.10 0.40 71.1 81.1 71.8

0.10 0.45 71.9 81.9 72.5

0.10 0.50 71.1 81.6 72.1

0.10 0.55 70.7 81.4 71.3

0.10 0.60 70.8 81.9 71.6

doi:10.1371/journal.pone.0145032.t003
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Z1. There are 12 loci identified by LRT2b, which can not be identified by Z2, and only 2 addi-
tional loci are identified by Z2. However, there exist multiple testing problems because we
simultaneously analyze 293 loci. So, Bonferroni correction is used (α0 = 0.05/293 = 1.71 × 10−4)
and there is no statistically significant result to occur. The more details can be found in Tables
K–M in S1 File.

To investigate the computational efficiency of the XHWE software, we implement the code
with the default arguments for this dataset (1217 families and 293 SNPs), on a HP 2311f per-
sonal computer (Microsoft Windows 7 Enterprise (Service Pack 1), 4GB of RAM and 3.40
GHz Intel(R) Core(TM) i7 Duo processor) and record its computational time. This process
needs 977 seconds. Therefore, on the average, the running time for a single SNP is about 3.3
seconds. For the genome-wide case, for example, one would analyze 200000 SNP markers on
X chromosome for the family sample of the type mentioned above, which would lead to
1600000 tests for the hypotheses with running time being about 7.6 days on the personal com-
puter of this type.

Table 4. Mean and standard deviation (SD) of ρ estimates over 10000 replications, and simulated size/powers (in %) of LRT0, LRT0b, LRT1, LRT2,
LRT2b, Z0, Z1 and Z2 under population stratification model.

� r̂1 r̂01 r̂z Power

�1
a �2

b Mean SD Mean SD Mean SD LRT0 LRT0b LRT1 LRT2 LRT2b Z0 Z1 Z2

-0.05 -0.05 0.043 0.031 0.046 0.032 0.042 0.034 72.3 78.6 72.1 24.1 37.0 72.6 71.5 25.0

-0.04 0.050 0.031 0.052 0.032 0.049 0.034 67.8 74.4 63.4 31.0 43.9 67.7 63.0 31.6

0.00 0.067 0.032 0.068 0.032 0.067 0.033 54.8 63.4 22.7 51.7 65.2 55.3 22.5 52.5

0.04 0.088 0.034 0.088 0.034 0.087 0.034 65.0 72.3 4.7 73.6 82.8 65.6 4.7 74.5

0.05 0.093 0.035 0.093 0.035 0.093 0.035 70.9 76.3 4.1 78.7 86.2 71.3 4.1 79.0

-0.04 -0.05 0.039 0.029 0.041 0.030 0.037 0.033 60.5 69.0 63.2 19.2 28.5 60.9 63.2 19.8

-0.04 0.045 0.030 0.046 0.031 0.043 0.033 57.6 63.8 50.5 25.6 37.6 57.6 49.9 26.2

0.00 0.061 0.033 0.062 0.033 0.060 0.034 42.2 51.1 17.0 44.5 57.7 42.6 17.0 45.0

0.04 0.081 0.033 0.081 0.033 0.081 0.034 57.4 64.0 4.2 65.9 77.9 58.1 4.3 66.4

0.05 0.088 0.033 0.088 0.033 0.088 0.033 65.2 72.5 5.0 74.7 85.2 65.8 5.0 75.7

0.00 -0.05 0.029 0.027 0.030 0.027 0.025 0.033 21.8 29.0 23.0 11.0 19.0 22.5 22.9 12.1

-0.04 0.030 0.027 0.031 0.027 0.026 0.033 18.9 24.6 17.3 12.5 20.0 19.6 17.2 12.9

0.00 0.043 0.029 0.043 0.029 0.041 0.032 17.7 24.0 4.3 23.1 34.9 18.2 4.3 23.9

0.04 0.058 0.032 0.058 0.032 0.058 0.033 42.3 50.6 19.0 40.0 54.1 43.1 19.0 40.6

0.05 0.063 0.032 0.063 0.032 0.063 0.033 49.4 57.4 23.3 46.2 59.5 50.1 23.5 46.9

0.04 -0.05 0.019 0.023 0.020 0.023 0.012 0.032 6.7 9.4 6.8 4.8 10.0 7.6 6.9 6.1

-0.04 0.022 0.024 0.022 0.025 0.014 0.034 6.3 9.0 4.7 7.1 11.7 7.0 4.7 7.7

0.00 0.031 0.028 0.031 0.028 0.026 0.034 18.0 23.7 17.5 11.8 20.7 18.9 17.5 12.8

0.04 0.041 0.031 0.041 0.031 0.039 0.034 52.1 61.9 51.8 21.2 32.0 52.7 52.1 21.5

0.05 0.046 0.031 0.047 0.031 0.045 0.034 61.7 69.5 58.6 27.1 38.9 62.1 58.8 27.6

0.05 -0.05 0.018 0.023 0.018 0.023 0.008 0.034 4.1 7.2 4.9 4.5 8.4 5.2 5.0 5.5

-0.04 0.020 0.023 0.020 0.023 0.011 0.034 6.0 8.4 5.2 4.2 10.1 7.5 5.2 5.9

0.00 0.028 0.028 0.028 0.028 0.022 0.035 22.1 28.2 24.1 10.4 16.9 22.9 24.2 11.2

0.04 0.036 0.028 0.037 0.028 0.034 0.032 59.5 65.7 61.6 17.0 27.1 60.0 61.9 17.7

0.05 0.042 0.031 0.043 0.030 0.040 0.033 68.1 74.1 67.2 22.6 32.1 68.3 67.6 23.4

a � in the first subpopulation.
b � in the second subpopulation.

doi:10.1371/journal.pone.0145032.t004
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Discussion
The existing Z1 and Z2 tests were respectively proposed to test for H01 : pm = pf andH02 : ρ = 0.
However, we find that there is no simulation study conducted to assess the validity of Z1 and
Z2 and their performance [14]. Further, there is no existing method to simultaneously test for
H0 : pm = pf and ρ = 0. Therefore, in this article, we first combine these two test statistics and
suggest Z0 = Z1 + Z2 to test for the equality of the frequencies of the same allele in males and
females and the zero inbreeding coefficient on X chromosome based on the collected sample,
because Z1 and Z2 are independent of each other. What’s more, for the purpose of improving
the test power, we propose several LRT-type test statistics. Firstly, we write out the likelihood
functions under H0 : pm = pf and ρ = 0 and H1 : pm 6¼ pf or ρ> 0 at a single SNP locus on X
chromosome, respectively. Then, we obtain the MLEs of the male allele frequency, the female
allele frequency and the inbreeding coefficient by the EM algorithms, where we use the RMSE
and bias to assess the accuracy of the MLEs of these unknown parameters and construct the
corresponding likelihood ratio test (LRT0) statistic under the null hypothesis H0. IfH0 is statis-
tically rejected, we further develop two LRT-type test statistics LRT1 and LRT2 respectively for
H01 : pm = pf andH02 : ρ = 0. Note that LRT0 and LRT2 are too conservative from the simulated
results. So, we use parametric bootstrap techniques and propose the LRT0b and LRT2b test sta-
tistics. We simulate the data under different parameter settings. Simulation results show that
the proposed bootstrap-based methods LRT0b and LRT2b, LRT1, Z0 and the existing Z1 and Z2
control the type I error rates well under the respective null hypothesis. Power comparison dem-
onstrates that LRT0b is more powerful than both LRT0 and Z0. Under ρ> 0, LRT2b has much
more power than LRT2 and Z2, and LRT2 is a little less powerful than Z2. In addition, LRT1 and
Z1 almost have the same power under pm 6¼ pf.

As for the parameter estimates, the estimate of pm based on the EM algorithm is the same as
that in zheng et al. [14]. Further, the estimates p̂f 1 and p̂01 of pf and the pooled allele frequency p

based on the EM algorithms have the RMSE and bias similar to those from zheng et al. [14],
respectively. However, although the biases of r̂1 and r̂01 based on the EM algorithms are larger
than r̂z from zheng et al. [14] for some cases, the RMSEs of r̂1 and r̂01 are smaller than r̂z for all
the simulation settings. In addition, the population stratification model indeed causes excess
homozygosity, which is consistent with Overall and Nichols [24]. The mean r̂ values (r̂1 and r̂01)

Table 5. LRT0b, LRT1, LRT2b, Z0, Z1 and Z2 results of application to rheumatoid arthritis data at 5%
level.

A. Contingency table showing LRT0b and Z0 results at 5% level.

PZ0
< 0.05 PZ0

� 0.05 Total

PLRT0b
< 0.05 11 6 17

PLRT0b
� 0.05 4 272 276

Total 15 278 293

B. Contingency table showing LRT1 and Z1 results at 5% level.

PZ1
< 0.05 PZ1

� 0.05 Total

PLRT1
< 0.05 9 1 10

PLRT1
� 0.05 4 279 283

Total 13 280 293

C. Contingency table showing LRT2b and Z2 results at 5% level.

PZ2
< 0.05 PZ2

� 0.05 Total

PLRT2b
< 0.05 14 12 26

PLRT2b
� 0.05 2 265 267

Total 16 277 293

doi:10.1371/journal.pone.0145032.t005

Likelihood Ratio Test for Excess Homozygosity on X Chromosome

PLOSONE | DOI:10.1371/journal.pone.0145032 December 15, 2015 15 / 18



using the EM algorithm are a little larger than r̂z proposed in zheng et al. [14], while r̂1 and r̂01

have less standard deviation.
Note that ρ = 0 and ρ> 0 in the null and alternative hypotheses of the likelihood ratio test

LRT0 or LRT2, respectively, which causes the “boundary” problem and that the corresponding
likelihood ratio test is not expected to follow a χ2 distribution [31, 33]. This may be the reason
why the size of LRT0 and LRT2 is too conservative. Therefore, we use parametric bootstrap
techniques to obtain the exact distributions of LRT0 and LRT2 in this article.

Due to the presence of the X chromosome inactivation (XCI) and dosage compensation
(DC), association analysis and excess homozygosity tests on X chromosome are more compli-
cated than those on autosomes [34]. In the presence of XCI, only one allele from a pair of alleles
in females is expressed [35]. Consequently, if considering a locus with two allelesM1 andM2,
the effect of theM1 allele in males should be equivalent to the difference betweenM2M2 and
M1M1 homozygous females. As such, when we conduct analyses based on allele-counting, we
must either count each allele twice in males or equivalently count each allele in females as 0.5,
reflecting a “dosage compensation” for X inactivation [34]. It should be noted that LRT2,
LRT2b and Z2 for H02 : ρ = 0 are not affected by XCI and DC because they only use female indi-
viduals in the collected sample. Similarly, Z1 for H01 : pm = pf is also not influenced by XCI and
DC because it estimates the allele frequencies and the corresponding variances in males and
females, respectively. Thus, Z0 = Z1 + Z2 is still valid when XCI and DC exist. To investigate the
effect of XCI and DC on LRT0, LRT0b, LRT1 and LRT1b, where LRT1b is the bootstrap version
of LRT1, we carry out simulation study under several simulation settings in the presence of
XCI and DC. The simulation settings and simulation results are listed in Table 6. It is shown in
the table that the size of LRT2b, Z0, Z1 and Z2 stays close to the nominal 5% level and the size of
LRT2 is still conservative. However, LRT0 and LRT1 without bootstrap cannot control the size
well. Fortunately, the type I error rates of LRT0b and LRT1b with bootstrap are very close to 5%.
Furthermore, LRT0b is more powerful than Z0 almost for all the cases and LRT1b and Z1 almost

Table 6. Simulated size/powers (in %) of LRT0, LRT0b, LRT1, LRT1b, LRT2, LRT2b, Z0, Z1 and Z2 based on 10000 Monte Carlo replications and 1000
bootstrap replications under X chromosome inactivation and dose compensation, having pm = 0.3 and the ratioNm : Nf = 1: 1.

N ρ pf LRT0 LRT0b LRT1 LRT1b LRT2 LRT2b Z0 Z1 Z2

800 0.00 0.30 6.5 5.0 10.6 4.9 2.3 5.2 4.8 4.8 4.9

0.05 0.30 17.2 13.3 10.8 4.9 16.2 25.9 13.0 5.0 17.0

0.10 0.30 44.1 38.5 11.4 5.2 49.3 63.0 41.2 5.3 50.5

0.00 0.34 31.7 27.3 42.2 29.2 2.5 5.4 23.5 29.7 5.2

0.05 0.34 41.8 36.5 41.2 27.9 15.8 26.3 31.6 28.4 16.4

0.10 0.34 65.1 59.5 41.0 28.2 50.9 64.0 58.5 28.5 52.0

0.00 0.35 43.6 38.7 55.5 41.3 2.2 4.9 33.6 41.9 5.0

0.05 0.35 54.3 48.9 55.3 41.5 15.8 26.0 42.0 41.9 16.7

0.10 0.35 72.1 67.3 53.7 40.2 49.9 63.1 64.8 40.6 50.9

1200 0.00 0.30 6.7 4.8 10.9 5.1 2.2 4.8 5.1 5.0 5.5

0.05 0.30 22.4 18.0 10.8 5.1 23.0 34.3 18.4 5.0 24.3

0.10 0.30 60.9 54.8 11.2 5.5 67.3 78.5 58.6 5.5 68.3

0.00 0.34 42.7 37.8 55.0 40.7 2.2 4.9 32.5 41.3 4.9

0.05 0.34 57.3 52.1 54.4 40.8 22.1 33.6 46.6 41.0 22.9

0.10 0.34 81.0 76.8 53.0 39.3 67.5 79.3 76.0 39.5 68.7

0.00 0.35 59.5 53.8 70.6 57.4 2.3 4.9 47.5 57.9 5.0

0.05 0.35 71.2 66.2 70.3 57.5 22.7 34.3 59.7 57.8 23.8

0.10 0.35 88.1 84.7 68.5 55.4 67.7 78.8 83.6 56.0 68.7

doi:10.1371/journal.pone.0145032.t006
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have the same performance in power. Therefore, in the presence of XCI and DC, LRT0b, Z1 and
LRT2b are recommended. Finally, LRT0b and LRT2b can deal with samples of small size. How-
ever, LRT0b and LRT2b are based on the parametric bootstrap techniques, which are more com-
putationally intensive.

Supporting Information
S1 File. Supporting Information. Tables A–J, root mean squared errors (RMSE) and biases of
estimates of pm, pf and ρ based on EM algorithm and zheng et al. [14] under different simula-
tion settings. Tables K–M, LRT0, LRT0b, Z0, LRT1, Z1, LRT2, LRT2b, and Z2 results of applica-
tion to rheumatoid arthritis data, respectively. Figs A–L, simulated size/powers of LRT0,
LRT0b, LRT1, LRT2, LRT2b, Z0, Z1 and Z2 against r = Nm : Nf based on 10000 replicates under
different simulation settings.
(PDF)
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