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Abstract. Dipeptidyl peptidase IV (DPPIV) is mainly 
vectorially targeted to the apical surface in MDCK 
cells. BFA was found to abolish the apical targeting of 
DPPIV. This BFA effect could be achieved under con- 
ditions where the ER to Golgi transport and the total 
surface expression of DPPIV were essentially un- 
affected. BFA executed its effect during the transport 
from the trans-Golgi network (TGN) to the surface. 

The inhibition of apical targeting resulted in enhanced 
mis-targeting to the basolateral surface. The mistar- 
geted DPPIV was transcytosed back to the apical do- 
main only after BFA withdrawal. In contrast, the baso- 
lateral targeting of uvomorulin was unaffected by BFA. 
These results established that the apical targeting of 
DPPIV was selectively abolished by BFA. 

T 
HE segregation of the plasma membrane in epithe- 
lial cells into the apical and the basolaterai domains 
by tight junctions is essential for the vectorial func- 

tions of the epithelia. The apical and the basolateral domains 
are morphologically, functionally, and biochemically dis- 
tinct. Both viral and cellular proteins that are confined to 
each domain have been identified and have been used to 
study the pathway and molecular mechanism for the bio- 
genesis of domain-specific proteins (Simons and Fuller, 
1985). It is generally believed that basolateral proteins are 
directly targeted to the basolateral domain from the trans- 
Golgi network (TGN). ~ The biogenesis of apical proteins is 
mediated by both direct transport from the TGN to the apical 
domain (direct or vectorial pathway) as well as by the trans- 
cytotic pathway that involves transient appearance on the 
basolateral domain followed by specific retrieval and trans- 
cytosis to the apical surface (Rodriguez-Boulan and Nelson, 
1989; Simons and Fuller, 1985; Simons and Wandinger- 
Ness, 1990). Different apical proteins in the same cell type 
may have different pathways for their apical expression 
(LeBivic et al., 1990a; Matter et al., 1990). The same pro- 
tein may take different routes in different cell types for the 
correct apical targeting (Bartles et ai., 1987; Low et al., 
1991a; Wessels et al., 1990). In MDCK cells, both endo- 
geneous and exogeneous apical proteins are predominantly 
delivered to the apical surface by the vectorial pathway and 
the TGN plays a pivotal role in the sorting of apical and 
basolateral proteins (Caplan et al., 1986; Grifliths and Si- 
mons, 1986; Lisanti et al., 1989; Low et al., 1991b; Matlin 
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1. Abbreviations used in this paper: CGN, cis-Golgi network; DPPIV, di- 
peptidyl peptidase IV; endo H, endoglycosidase H; IgAR, IgA receptor; 
TGN, trans-Golgi network. 

and Simons, 1984; Misek et al., 1984; Rindler et ai., 1985; 
Rodriguez-Boulan et al., 1984). Furthermore, vesicles that 
mediate transport from the TGN to the apical or the baso- 
lateral surface have been isolated from MDCK cells and 
were shown to possess different protein compositions (Wan- 
dinger-Ness et al., 1990). Current studies are attempting to 
determine the nature of the signals that target proteins to the 
apical or the basolaterai domain and to understand the mo- 
lecular mechanism responsible for the correct targeting of 
domain-specific proteins. 

BFA, a fungal metabolite, has recently been used exten- 
sively to study the exocytotic pathway (Pelham, 1991). It has 
been shown that BFA inhibits protein transport from the ER 
to the Golgi and caused disassembly of the Golgi apparatus 
with the redistribution of cis-, medial-, and trans-Golgi but 
not TGN markers back to the ER (Doms et al., 1989; Fuji- 
wara et ai., 1988; Lippincott-Schwartz et al., 1990; Magner 
and Paragiannes, 1988). Further experiments revealed that 
BFA caused the rapid dissociation of a ll0-kD peripheral 
protein from the Golgi membrane (Donaldson et al., 1990). 
The Golgi to ER (retrograde) transport induced by BFA was 
most likely due to a breakdown of the Golgi apparatus and 
the fusion of the cis-, medial-, and trans-Golgi with the cis- 
Golgi network (CGN) 1. Fusion with the CGN resulted in 
their transport back to the ER by the pathway that normally 
recycles proteins from the CGN back to the ER (Lippincott- 
Schwartz et al., 1990, 1991). The ll0-kD protein that was 
dissociated from the Golgi by BFA was later identified to 
be an essential component, named /3-COP, of the non- 
clathrin-coated vesicles involved in anterograde vesicular 
transport (Duden et al., 1991). In vitro studies have shown 
that BFA could prevent the assembly of non-clathrin-coated 
buds in the Golgi cisternae. This could be the mechanism 
that mediates the inhibition of ER to Golgi transport ob- 
served in vivo. Furthermore, BFA also induced the forma- 
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tion of extensive tubular networks that connected previously 
distinct Golgi cisternae into a single topological unit in the 
in vitro system. This observation could explain the break- 
down of the Golgi apparatus and the fusion of the cis-, 
medial-, and trans-Golgi cisternae with the CGN followed by 
their redistribution back to the ER observed in vivo (Orci et 
a|., 1991). Recent studies have also shown that BFA caused 
fusion of the TGN with the endosomal system (Lippincott- 
Schwartz et al., 1991; Woods et al., 1991). 

We have previously observed that BFA could preferentially 
inhibit protein secretion from the apical domain of MDCK 
cells, resulting in enhanced secretion from the basolateral 
domain. This BFA effect could be achieved under conditions 
(0.5-2/~g/ml of BFA) where the total protein secretion and 
the Golgi structure were essentially unaffected (Low et al., 
1991c). This observation raised several intriguing questions. 
Whether the polarized targeting of membrane proteins was 
similarly affected? Where does BFA execute its effect in the 
cell? Could BFA be used to selectively and reversibly abolish 
the polarized protein trafficking in this epithelial cell? Could 
we gain more insights on the mechanism of polarized protein 
trafficking by employing BFA? The results described in this 
report provide some answers to these questions and demon- 
strate that BFA may provide a novel approach for further un- 
derstanding of the molecular mechanism that mediates po- 
larized targeting in this epithelial cell. 

Materials and Methods 

Materials 
DME, FBS, and dialyzed FBS were purchased from Gibco Laboratories 
(Grand Island, NY). BFA was from Epicentre Technologies. laSS]Met 
(>1,000 Ci/mmol) was from Amersham Corp. (Arlington Heights, IL). 
Goat anti-mouse IgG, streptavidin-agarose, and S-NHS-SS-biotin were ob- 
tained from Pierce Chemical Co. (Piscataway, NY). Transwells were from 
Costar (Cambridge, MA). Other reagents were from Sigma Chemical Co. 
(St. Louis, MO). 

Cells and Cell Culture 
Original MDCK (strain II) cells were kindly provided by Dr. Kai Simons 
(European Molecular Biology Laboratory, Heidelberg, Germany). MDCK 
cells expressing dipeptidyl peptidase IV (DPPIV) have previously been de- 
scribed (Low et al., 1991b). Cells were cultured in DMEM supplemented 
with 10% dialyzed FBS, 100 milliunitslml of penicillin, and 100 mg/ml of 
streptomycin. The medium was changed daily. Expression of the transgene 
was enhanced by culturing cells overnight in medium containing 10 mM so- 
dium butyrate. The tightness of the cell monolayers grown on Transwells 
was checked as described (LOw et al., 1991b). 

Antibodies 
mAbs against DPPIV were described before (Low et al., 1991b) and were 
generous gifts from Drs. D. L. Mendrick (Harvard Medical School, Cam- 
bridge, MA) and D. C. Hixson (Rhode Island Hospital). 

Metabolic Labeling of Cells 
After washing twice with PBS supplemented with 1 mM CaCI~ and I mM 
MgCI2 (PBSCM), cells were incubated for 45 min at 37~ in methionine- 
free medium containing 10% dialyzed FBS (labeling buffer). The cells were 
then pulse-labeled for 30 min with [3sS]Met (1 mCilml in labeling buffer). 
After washing (twice), the cells were then chased in medium containing ex- 
cess cold methionine (100 mg/liter) for various times as detailed in each 
figure. For labeling cell monolayers grown on Transwell filters, 700 ttl of 
labeling buffer containing [3SS]Met was added to the lower (basolateral) 
chamber, while the upper (apical) chamber received 700 #1 of labeling 
buffer alone. 

Selective Cell Surface Biotinylation 
This was performed as described (Low et al., 1991b). Briefly, the tight cell 
monolayers were washed four times with PBSCM (5 min each) on ice. The 
side that was not being biotinylated received 1 ml of PBSCM. 1 ml PBSCM 
containing S-NHS-SS-biotin (0.5 mg/ml diluted from a 200 mg/ml stock in 
DMSO) was added to the side to be bi~inylated The biotinylation was per- 
formed twice on ice (20 min each) and stopped by repeated washing with 
PBSCM containing 50 mM NH4C1 and/or culture medium with 10% FBS. 

Surface Stripping by Reduction 
This is performed as described using Cys (Low et al., 1991a). Briefly, 120 
mg L-cysteine was added to a pre-mixed solution containing 9 ml water, 150 
t~l 5 M NaC1, 10/~1 each 1 M CaC12, and MgC12 in a 15-ml plastic tube. 
The solution was bubbled with nitrogen immediately, sealed, and stored on 
ice. 50/~1 of 10 N NaOH and 1 ml FBS were added to the solution, mixed, 
and added to the cells immediately. Stripping was conducted twice on ice 
(25-min each). 

Immunoprecipitation 
This was performed exactly as described before (Low et al., 1991b). 

Recovery of Biotinylated Proteins 
The immunoprecipitate was boiled in 80 /~1 SDS sample buffer without 
~-mercaptoethanol, diluted immediately with 1 ml lysis buffer (25 mM 
Tris-HC1, pH 7.8, 250 mM NaCI, 5 mM EDTA, 1% Triton X-100, 1% BSA, 
5% FBS, and 1 mM PMSF), and spun down in a micmfuge. The superna- 
tant was then incubated with streptavidin-agarose (100 tzl 50% slurry) at 
4~ for 90 min. After washing, the proteins were eluted by boiling for 5 
rain in 80-/A SDS sample buffer and analyzed by SDS-PAGE. 

SDS-PAGE and Analysis of Fiuorography 
SDS-PAGE was performed as described (Low et al., 1991c). For [35S]Met- 
labeled proteins, the gel was treated with 20% 2,5-diphenyloxazole in 
dimethyl sulfoxide for 2 h at room temperature before being dried for 
fluorography. This treatment enhanced the signals on the fluorograph sig- 
nificantly. The fluorograph was analyzed by scanning the gel with Visage 
110 (BioImage, Eastman Kodak Co., Rochester, NY). 

Results 

Apical Domain Targeting of DPPIV Was 
Abolished by BFA 
We have previously established MDCK cells (referred to as 
MDCK/D4 cells) that stably express DPPIV and vectorially 
target DPPIV to the apical plasma membrane (Low et al., 
1991b). To examine the effect of BFA on polarized targeting 
of DPPIV, tight monolayers of MDCK/D4 ceils were pulse 
labeled for 30 min with psS]Met and chased for 3 h in the 
absence or presence of different concentrations of BFA. The 
delivery of newly made DPPIV to the respective domains 
was then assessed (Fig. 1 A). Similar to previous observa- 
tion, the majority of newly made DPPIV was delivered to 
the apical cell surface with a small portion being missorted 
to the basolateral domain (lanes 1 and 2) in the absence of 
BFA. This polarized targeting was unaffected by BFA at 0.1 
/xg/ml (lanes 3 and 4). BFA at 0.5 ~g/ml partially affected 
this targeting (lanes 5 and 6). BFA at concentrations above 
3 /~g/ml completely abolished the polarized targeting of 
DPPIV (lanes 7-12). Higher concentrations of BFA also re- 
duced the total surface expression, especially at 10 and 30 
/zg/ml. We also observed that 1/~g/ml of BFA could abolish 
the polarized targeting to a similar extent as 3 /~g/ml or 
higher concentrations of BFA (Fig. 1 D). To gain further in- 
sight into the effect of BFA on the polarized surface expres- 

The Journal of Cell Biology, Volume 118, 1992 52 



Figure 1. Effect of BFA on po- 
larized surface expression of 
DPPIV. (A) Tight monolayers 
of MDCK/D4 cells grown on 
transwells were pulse labeled 
with [3sS]Met for 30 min fol- 
lowed by 3 h of chase in the 
absence or presence of BFA at 
the concentrations indicated. 
The apical (A) or the basolat- 
eral (B) surface was biotiny- 
lated with NHS-SS-biotin. 
DPPIV was immunoprecipi- 
tared from the cell lysates 
and the biotinylated DPPIV 
was recovered by absorption 
to streptavidin-agarose. After 
being resolved by SDS-PAGE, 
biotinylated [35S]Met-labeled 
DPPIV was detected by fluo- 
rography. (B) Tight monolay- 
ers of MDCK/D4 cells were 
pulse labeled with [35S]Met 
for 30 min followed by the 
chase periods indicated (1 #g/ 
ml BFA was present during 
both pulse and chase periods). 
The apical (lanes 1-6) or the 
basolateral (lanes 7-12) sur- 
faces were then biotinylated 
with NHS-SS-biotin. The cell 
lysates were immunoprecipi- 
tared. 1/10 of the immuno- 
precipitate was loaded onto the 
SDS-PAGE (1/10 total) and 
served as a measure of the 
total amount of newly made 
DPPIV. The remaining 9/10 
of the immunoprecipitate was 
absorbed to streptavidin-aga- 
rose to recover biotinylated 
proteins and then analyzed 
(Surface), serving as a mea- 
sure of the amount of protein 
transported to the respec- 
tive plasma membrane do- 
mains. (C) Quantitation of 
BFA effect on total surface ex- 
pression of DPPIV. The total 
surface DPPIV expression in 
the absence of BFA was arbi- 

trarily defined as 100%, the total surface expression of DPPIV in the presence of various concentrations of BFA was normalized to that 
in the absence of BFA. (D) Quantitation of BFA effect on the polarity of DPPIV surface expression. The amount of DPPIV that was 
detected on the apical surface over that on the basolateral surface was defined as the A/B ratio and this was plotted as a function of BFA 
concentration. 

sion, cells were pulse labeled for 30 min followed by various 
intervals of  chase and the level of  expression on the respec- 
tive domain was examined. Using this approach, it was pre- 
viously found that the majority of DPPIV was vectorially de- 
livered to the apical domain (Low et al., 1991b). In the 
presence of  1/~g/ml of  BFA, the polarized vectorial targeting 
of  DPPIV was abolished and the amount of  newly made 
DPPIV delivered to the basolateral domain was always 
slightly higher than that to the apical domain (Fig. 1 B). The 
results from Fig. 1, A and B (only 3-h chase point) were 

quantitated and shown in Fig. 1, C and D. As seen, increas- 
ing concentrations of  BFA beyond 3 #g/ml caused a gradual 
increase in inhibition of  the total expression of  DPPIV on the 
surface (Fig. 1 C), while the polarity of surface expression 
was completely abolished by BFA at 1/~g/ml or above (Fig. 
1 D). The most important conclusion drawn from the above 
experiments is that BFA (at 1 /~g/ml) could selectively dis- 
rupt the polarized targeting of DPPIV while the total surface 
expression was essentially unaffected. Previous studies using 
BFA at 0.5-2 ~g/ml showed that the Golgi structure was ap- 
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parently unaffected (Low et al., 199 lc). A recent study using 
both light and electron microscopy has also demonstrated 
that the Golgi apparatus was not affected by BFA around 
these concentrations (Hunziker et al., 1991b), although 
higher concentrations indeed caused a recycling of the Golgi 
back to the ER (Low et al., 1991c). 

ER to Golgi Transport of DPPIV Was Unaffected by 
BFA at 1 #g/ml 

Because previous studies using other cell types have shown 
that BFA selectively inhibits ER to Golgi transport (Doms 
et al., 1989; Fujiwara et al., 1988; Lippincott-Schwartz et 
al., 1990; Magner and Paragiannes, 1988), we examined the 
effect of BFA at 1 and 30 #g/ml on the rate of ER to Golgi 
transport (Fig. 2). Newly made DPPIV in the ER has an ap- 
parent molecular mass of 100 kD and is sensitive to en- 
doglycosidase H (endo H). This 100-kD form is efficiently 

converted into a l l0-kD form that is resistant to endo H due 
to modifications of its N-linked glycans by Golgi glycosi- 
dases and glycosyltransferases. In control cells (Fig. 2 A, no 
BFA), newly made DPPIV was completely transported to the 
Golgi structure within 60 min of chase. In cells treated with 
1 #g/ml of BFA, the rate of conversion of the 100-kD form 
into the l l0-kD form was unaffected. In contrast, this con- 
version was significantly delayed with 30/zg/ml of BFA. The 
quantitative result is presented in Fig. 2 B. These results 
demonstrate that the ER to Golgi transport of DPPIV was 
unaffected by 1 #g/ml of BFA but significantly delayed by 30 
#g/ml of BFA. The disruption of polarized DPPIV targeting 
by 1 #g/ml of BFA was, therefore, unlikely to be due to an 
effect on the ER to Golgi transport. Since 30 #g/ml BFA 
could delay ER to Golgi transport, the observed inhibition 
on the total surface expression (in Fig. 1) by high concentra- 
tions (especially 10 and 30 #g/ml) of BFA was, at least in 
part, due to a delay in the ER to Golgi transport. 

Figure 2. BFA effect on the 
transport of DPPIV from the 
ER to the Golgi apparatus. (A) 
MDCK/IM cells were pulse 
labeled with [35S]Met for 30 
min followed by different 
chase periods as indicated. 
The pulse chase was per- 
formed either in the absence 
of BFA (No BFA) or in the 
presence of 1 or 30 #g/ml 
BFA. DPPIV was then immu- 
noprecipitated from the cell 
lysates. Half of the sample 
was treated with endo H while 
the other half was processed 
identically except that no endo 
H was added (Control). The 
100-kD polypeptide is the 
endo H-sensitive ER form 
of DPPIV while the ll0- 
kD polypeptide is the endo 
H-resistant Golgi form of 
DPPIV. (B) Quantitation of 
BFA effect on ER-Golgi trans- 
port. The percentage of endo 
H-resistant Golgi-form was 
plotted as a function of chase 
time. o, no BFA; n, 1 #g/ml 
BFA; zx, 30 #g/ml BFA. 
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Figure 3. BFA effect on Golgi 
transport to the apical or the 
basolateral plasma membrane 
domain. (A) Tight monolayers 
of MDCK/D4 cells were pulse 
labeled with [35S]Met for 30 
min followed by 2 h of chase 
at 20~ to accumulate newly 
made proteins in the TGN. 
BFA, at the indicated concen- 
tration, was then added to the 
cells and incubated at 20~ 
for an additional 60 min. Af- 
ter warming up to 37~ for 60 
rain to allow transport from 
the Golgi to the cell surface, 
the apical (A) or the basolat- 
eral (B) surface was then bio- 
tinylated. Cell lysates were 
then immunoprecipitated. 1/10 
of the immunoprecipitate was 
resolved by SDS-PAGE (1/10 
total), while the remaining 
9/10 of the immunoprecipitate 
was absorbed to streptavidin- 
agarose and then analyzed 
(Surface) (B) Quantitation 
of data from A on the effect of 
various BFA concentrations 
on the total surface expression 
of DPPIV. (C) Quantitation 
of data from A on the effect of 
different concentrations of 
BFA on the polarity of DPPIV 
surface expression. 

Polarized Targeting from TGN to the Surface Is 
Abolished by BFA 

Sorting of proteins destined for the apical or the basolateral 
domain in MDCK cells has previously been shown to occur 
in the TGN (Rodriguez-Boulan and Nelson, 1989; Simons 
and Wandinger-Ness, 1990). The above observations, taken 
together, suggest that the observed BFA effect on polarized 

targeting is most likely due to an effect on the TGN and/or 
TGN to surface transport. To explore this further, cells were 
pulse labeled for 30 rnin (all newly made DPPIV was in the 
100-kD ER form; see Fig. 2) and then chased at 20~ for 
2 h to potentially accumulate these labeled proteins in the 
TGN (Matlin and Simons, 1983), although this will have to 
be verified by further studies. The cells were treated with 
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various concentrations of  BFA at 20~ for an additional 60 
min and then warmed up to 37~ for 60 min to allow trans- 
port from the TGN to the surface. The polarized surface ex- 
pression was then examined (Fig. 3). Since TGN markers are 
not recycled back to the ER by BFA and the recycling of  
Golgi proteins in other cisternae caused by BFA are 
significantly blocked at 20~ (Lippincott-Schwartz et al., 
1990), the newly made DPPIV, accumulated in the TGN un- 
der these conditions, would only be transported to the cell 
surface. As seen, the preferential apical targeting of  DPPIV 
was similarly observed (lanes 1 and 2). BFA at 1 #g/ml or 
above abolished this polarized targeting (lanes 3-12). BFA 
at high concentrations (10 and especially 30 #g/ml) also re- 

duced the total surface expression. These results demon- 
strate that BFA executes its effect on polarized targeting at 
the TGN and/or TGN to surface transport and that high con- 
centrations of  BFA also inhibit TGN to surface transport in 
addition to the disruption of  polarized targeting. 

BFA Effect Was Reversible 

We next examined whether the BFA (1/zg/ml) effect on polar- 
ized targeting could be reversed by washing (Fig. 4). The de- 
tails of  the experiment are described in the legend and the 
results demonstrate that the BFA effect is indeed reversible. 
When the 3.5-h BFA treatment was shifted forward by 3 h 

Figure 4. BFA effect on polar- 
ized DPPIV expression is re- 
versible. (,4) Polarized surface 
expression of DPPIV was as- 
sessed as described in Fig. 1, 
including a pre-pulse period 
of 45 min in which cells were 
incubated in medium without 
Met, a pulse period of 30 min 
in which cells were labeled 
with [35S]Met, and a chase 
period of 3 h in which the cells 
were incubated in medium 
with excess unlabeled Met fol- 
lowed by selective surface bi- 
otinylation. For standard BFA 
treatment (as in Fig. 1 A), 
BFA was included in the pulse 
and chase period for a total of 
3.5 h (BFA-O). For the reversal 
experiments, the 3.5 h BFA 
treatment was shifted forward 
by 0.75 h (BFA-0.75), 1.5 h 
(BFA-1.5), 3 h (BFA-3), 6 h 
(BFA-6), and 20 h (BFA-20) 
relative to the BFA-0. (B) 
Tight monolayers of MDCK/ 
D4 cells were assessed for po- 
larized surface expression of 
DPPIV under various condi- 
tions of BFA treatment. 1/10 
Total represents 1/10 of the to- 
tal immunoprecipitate resolved 
by SDS-PAGE and Surface rep- 
resents the biotinylated sur- 
face DPPIV recovered from 
9/10 of the immunoprecipitate 
by absorption to streptavidin- 
agarose. (C) Quantitation of 
data from B, showing the ef- 
fect of different BFA treat- 
merits on the polarized surface 
expression of DPPIV. Note 
that the DPPIV in BFA-0.75, 
BFA-1.5, BFA-3, BFA-6, and 
BFA-20 has a slightly higher 
molecular mass as compared 
to BFA-0 with the most obvi- 
ous size difference in BFA-3 
onwards. 
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(BFA-3), in which the cells were treated for 3 h with BFA 
and then pulse labeled for 30 min in the presence of BFA fol- 
lowed by 3 h of chase without BFA, preferential apical target- 
ing was clearly seen (Fig. 4 B, lanes 7 and 8). Almost com- 
plete recovery of polarized targeting was observed when the 
pulse-chase experiment was performed 2.5 h after the BFA 
treatment (BFA-6) (lanes 9 and 10). The quantitation of the 
data is presented in Fig. 4 C. Interestingly, the size of DPPIV 
was significantly increased in lanes 3-12 as compared to 
lanes I and 2 of BFA-0, with maximal size increase seen in 
BFA-3 onwards. Since the size of DPPIV in BFA-0 was iden- 
tical to that in the control cells (Fig. 1), these observations 
suggest that BFA treatment followed by its withdrawal caused 
a significant increase in the size of newly made DPPIV. 

BFA Treatment Withdrawal Caused Hyper-sialylation 
o f  Newly Made DPPIV 

Since sialylation of N-linked glycosylation contributes 
significantly to the size of the glycan, we suspected that the 
increased size of DPPIV observed above was due to hyper- 
sialylation of the N-linked glycans. To test this, DPPIV was 
pulse labeled and chased under various conditions as out- 
lined in Fig. 4 A. Immunoprecipitated DPPIV was either 
treated with neuraminidase or not treated. The samples were 
then analyzed by SDS-PAGE and fluorography (Fig. 5). As 
seen, the DPPIV produced in the presence of BFA (BFA-0) 
(lane 4) was of a similar size to that produced in the control 

Figure 5. BFA treatment withdrawal caused hypersialylation of 
newly made DPPIV. MDCK/D4 cells were pulse labeled and 
chased under various conditions: No BFA, in the absence of BFA; 
BFA-0.75, BFA-3 and BFA-0 were as described in Fig. 4. [3sS]Met- 
labeled DPPIV was immunoprecipitated from the cell lysates. Half 
of the precipitate was treated with neuraminidase while the rest was 
processed identically except that no neuraminidase was included. 
As seen, neuraminidase converted the DPPIV produced under the 
different conditions into a polypeptide of identical size. 

cells (No BFA, lane/). For BFA-0.75, only a slight increase 
in size was detected (lane 2). BFA-3, however, resulted in a 
significant increase in size (lane 3), which is reproducible. 
When the samples were treated with neuraminidase, the 
DPPIV produced in all the conditions was converted into a 
polypeptide of the same size (lanes 5-8), demonstrating that 
the size difference was due to a difference in the extent of 
sialylation. Since the increase in size was only associated 
with DPPIV that was produced in cells that were pre-treated 
with BFA followed by its withdrawal, this demonstrates that 
BFA treatment withdrawal caused hyper-sialylation of the 
newly made DPPIV. The reason BFA treatment alone did not 
cause the hypersialylation and hypersialylation could only be 
observed after its withdrawal, is unknown. 

Basolateral DPPIV Is Efficiently Transcytosed to the 
Apical Surface After BFA Withdrawal 

As documented earlier, vectorial targeting of DPPIV was 
abolished by BFA (Figs. 1 and 3). One interesting question 
is whether the DPPIV, mistargeted to the basolateral sur- 
face (due to BFA treatment), could be transcytosed to the 
apical surface if BFA was removed. To examine this, cells 
were pulse labeled (30 rain) and chased (3 h) in the presence 
of BFA so that ,'~55-60 % of newly made DPPIV was mistar- 
geted to the basolateral surface. The cells were then recul- 
tured at 37~ for various times and the amount of labeled 
DPPIV on the respective surface was assessed (Fig. 6 A). 
Without further culture at 37~ the result was similar to Fig. 
1 (lanes 1 and 2). Reculturing the cells for 1 h caused 
significantly higher amounts of DPPIV to be detected on the 
apical surface (lanes 3 and 4). Almost normal polarity was 
regained after 3-5 h of culture without BFA (lanes 5-8). In 
contrast, the polarity was not regained if the reculture (5 h) 
was performed in the presence of BFA (lanes 11 and 12). 
These results strongly suggest that the basolateral DPPIV 
was efficiently transcytosed back to its correct apical loca- 
tion after BFA withdrawal. This transcytosis was further 
confirmed by another experiment (Fig. 6 B). Cells were 
pulse labeled (30 min) and chased (3 h) in the presence of 
BFA and the basolaterally localized DPPIV was tagged with 
biotin. After warming up to 37~ for various times, the bio- 
tin was stripped off the DPPIV either from the apical or the 
basolateral surface, respectively. The amount that could be 
stripped off from the apical surface represented the amount 
that was transcytosed to the apical surface, while the amount 
that could not be stripped off from basolateral surface repre- 
sented the amount that was endocytosed and/or transcy- 
tosed. As shown, a significant amount was transcytosed to 
the apical surface after 1 h of culture at 37~ (lane 5) and 
a majority of biotinylated basolateral DPPIV was accessible 
to stripping from the apical surface after reculturing for 3 h 
at 37~ (lane 8). The results for Fig. 6, A and B were quanfi- 
tated in 6, C and D, respectively. These results demonstrate 
that mistargeted DPPIV could be correctly retargeted to the 
apical surface by transcytosis after removal of BFA. These 
results also demonstrate that BFA could inhibit the basolat- 
eral to apical transcytotic pathway of DPPIV. 

Basolateral Targeting o f  Uvomorulin Was 
Unaffected by BFA 
We next examined the effect of BFA on basolateral mem- 
brane protein targeting. Uvomorulin has been previously 
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Figure 6. Transcytosis of DPPIV from the basolateral to the apical domain after BFA withdrawal. (.4) Tight monolayers of ceils were pulse- 
labeled with [3~SlMet for 30 min followed by 3 h of chase (both pulse and chase were performed in the presence of 1/~g/ml BFA). After 
washing away the BFA-containing media, cells were recultured at 37~ in the absence of BFA for various periods of time as indicated. 
Cells were then biotinylated on the respective surface and then processed for immunoprecipitation, absorption to streptavidin-agarose and 
SDS-PAGE. As a control, cells were also recultured in the presence of BFA for an additional 5 h (lanes 11 and 12). As shown, the correct 
surface polarity of DPPIV was resumed efficiently after BFA withdrawal (lanes 3-10) but not in the presence of BFA (lanes 11 and 12). 
(B) Tight monolayers of cells were pulse labeled with [35S]Met for 30 min followed by 3 h of chase in the presence of 1 t~g/ml of BFA. 
The basolateral surfaces were then biotinylated with NHS-SS-biotin. After reculturing the cells at 37~ for the times indicated, surface- 
associated biotin groups were either stripped off from the respective domains (A for apical and B for basolateral domain) by reducing 
with L-cysteine or not stripped ( - ) .  DPPW was then immunoprecipitated from the cell lysates and biotinylated DPPW was recovered 
by absorption to streptavidin-agarose from 9/10 of the immunoprecipitate. The amount that could not be stripped off from the basolateral 
surface served as a measure of the amount that was internalized and/or transcytosed, while the amount that could be stripped off from 
the apical surface served as a measure of the amount that was transcytosed from the basolateral to the apical surface. The results for A 
and B are quantified in C and D, respectively. 

localized to the basolateral surface in MDCK cells and this 
basolateral localization was achieved by vectorial targeting 
(Le Bivic et al., 1990b). In MDCK/IM cells, uvomorulin 
was similarly localized to the basolateral surface as assessed 
by immunofluoreseence microscopy (data not shown). When 

pulse-chase experiment was combined with selective surface 
biotinylation, it was found that uvomorulin was also vectori- 
ally targeted to the basolateral surface in MDCK/D4 cells 
(Fig. 7 A). Maximal expression on the basolateral surface 
was detected after 3 h of  chase, and the surface uvomorulin 
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Figure 7. (,4) Vectorial baso- 
lateral targeting of uvomora- 
lin. Cell monolayers grown 
on filters were pulse labeled 
with l~SS]Met for 30 min and 
chased for various times fol- 
lowed by selective surface 
biotinytation as indicated. 
Biotinylated uvomorutin was 
recovered from immunopre- 
cipitates and analyzed by' 
SDS-PAGE and fluorography. 
(B) Basolaterat targeting of 
u~x~morulin was unaffected by 
BFA. Cells on filters were 
pulse labeled for 30 min and 
chased for 3 h. The pulse 
chase was performed either in 
the absence or presence of 
BFA at the indicated concen- 
trations. The respective sur- 
face (A for apical and B for 
basolateral surface) was bio- 
tinylated. Cell lysates were im- 
munoprecipitated with mAbs 
against uvomorulin. Immuno- 
precipitates were absorbed 
onto streptavidin-agarose and 
the absorbed biotinylated pro- 
teins were analyzed by SDS- 
PAGE. As seen, the basolat- 
eral targeting of uvomorulin 
was unaffected by BFA. The 
120-kD polypeptide is the in- 
tact uvomorulin while the 80- 
kD polypeptide is most likely 
a proteotytic fragment of the 
intact uvomorulin. 

turned over quite fast as revealed by the significant reduction 
of the surface uvomorulin after 6 h of chase. Uvomorulin was 
not detected on the apical surface. To examine the effect of 
BFA on uvomorulin targeting, cells were pulse labeled and 
chased for 3 h under various concentrations of BFA followed 
by selective surface biotinylation (Fig. 7 B). As can be seen, 

the basolateral targeting of uvomorulin was unaffected by 1, 
3, or 10/zg/ml of BFA, although higher concentrations of 
BFA reduced the surface expression. These results demon- 
strate that BFA selectively abolished apical targeting of 
DPPIV without apparent effect on the basolateral targeting 
of uvomorulin. 
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Discussion 

Novel Effects of BFA 
BFA was previously shown to inhibit ER to Golgi transport, 
to cause disassembly of the Golgi apparatus, and to recycle 
Golgi proteins back to the ER (Lippincott-Schwartz et al., 
1990). Our previous experiments have demonstrated that 
BFA could selectively inhibit protein secretion from the apical 
surface (Low et al., 1991c). In the present study, we have ex- 
tended this observation much further. It was revealed that the 
apical targeting of the membrane protein DPPIV was abol- 
ished by BFA and this effect could be achieved under conditions 
where total surface expression and ER to Golgi transport of 
DPPIV were unaffected. It was also found that BFA executed 
this effect at the TGN and/or TGN surface transport. The 
BFA effect on apical membrane protein targeting was selec- 
tive because basolateral targeting of a membrane protein 
(uvomorulin) was unaffected under the same condition. Fur- 
thermore, BFA effect was reversible, which makes it suitable 
for the transient and selective perturbation of apical targeting 
in MDCK cells. Interestingly, hypersialylation of DPPIV 
was observed in cells that were pre-treated with BFA fol- 
lowed by its withdrawal. The hypersialylation was not seen 
in BFA-treated cells. Why withdrawal is required for BFA to 
cause hypersialylation is currently unknown and will be in- 
vestigated in future experiments. 

Transcytotic Targeting Pathway for Apical Proteins in 
MDCK Cells 
Extensive studies have established that apical and basolateral 
membrane proteins (of both endogeneous and heterogeneous 
origin) are sorted intracellularly and targeted vectorially to 
the respective domains in MDCK cells. One exception is the 
polymeric IgA receptor (IgAR), which is exocytotically tar- 
geted to the basolateral domain followed by transcytotic tar- 
geting to the apical domain (associated with the cleavage of 
the polypeptide from the membrane-spanning region) in 
liver hepatocytes as well as in transfected MDCK cells 
(Bomsel and Mostov, 1991). In hepatocytes as well as in cul- 
tured Caco-2 and LLC-PK1 cells, a transcytotic targeting 
pathway has also been revealed recently for apical proteins 
(Bartles et al., 1987; Low et al., 1991a, Le Bivic et al., 
1990a; Matter et al., 1990), This raised the question as to 
whether a transcytotic targeting pathway for apical proteins 
was also present in MDCK cells. Since the IgAR is not a typ- 
ical protein (Rodriguez-Boulan and Nelson, 1989; Bomsel 
and Mostov, 1991), the existence of a transcytotic targeting 
pathway for apical proteins in MDCK ceils is currently un- 
resolved. When expressed in MDCK cells, DPPIV was pref- 
erentially targeted to the apical domain with a small portion 
being mistargeted to the basolateral surface (Low et al., 
1991b). Since the amount of missorted DPPIV was small, it 
was not possible to assess its final destination or to determine 
whether the missorted portion was eventually targeted to the 
apical surface by a transcytotic pathway (Low et al., 1991b). 
In the presence of BFA, '~55% of newly made DPPIV was 
transported to the basolateral surface. Since the BFA effect 
was reversible, withdrawal of BFA in these cells was used to 
assess the fate of the basolateral DPPIV. It was found that 
they were efficiently transcytosed back to the apical surface. 
These results suggest that there exists a transcytotic targeting 

pathway for apical proteins in MDCK cells, Since the exo- 
cytotic targeting pathway for apical proteins is highly 
efficient in MDCK ceils, the transcytotic targeting pathway 
contributes less to the apical targeting, unless the exocytotic 
targeting pathway becomes abolished by BFA (in the case of 
DPPIV) or is not operating due to a masking of the putative 
apical targeting signal (in the case of IgAR) (Bomsel and 
Mostov, 1991). Recently, it was shown that DPPIV missorted 
to the basolateral surface was efficiently transcytosed to the 
apical surface under normal conditions (Casanova et al., 
1991b). These results, taken together, thus demonstrate that 
the sorting mechanism for apical proteins in MDCK cells ex- 
ists in both the exocytotic and transcytotic pathways. 

Transcytotic Apical Targeting Pathway Was Similarly 
Affected by BFA 
The abolishment of the exocytotic apical targeting pathway 
caused enhanced mistargeting of DPPIV to the basolateral 
surface. The mistargeted DPPIV was transported back to the 
apical surface by the transcytotic targeting pathway after 
BFA was withdrawn. This did not occur in the presence of 
BFA. If BFA only inhibits the exocytotic targeting pathway, 
we should see a transient basolateral mistargeting of DPPIV 
followed by its transcytosis back to the apical surface. This 
was not observed. The prolonged existence of the mistar- 
geted DPPIV on the basolateral surface in the presence of 
BFA and the mistargeted DPPIV being efficiently transcy- 
tosed back to the apical surface after BFA withdrawal, could 
only be explained by suggesting that the transcytotic target- 
ing pathway was similarly affected by BFA. In support of this 
idea, a recent report has shown that the transcytotic pathway 
of the IgAR to the apical surface was selectively inhibited by 
BFA (Hunziker et al., 1991b). Furthermore, the inhibition 
by BFA of the transcytotic pathway for DPPIV, as welI as that 
for the IgAR, indicates that the transcytosis of the IgAR is 
actually achieved by the normal transcytotic targeting path- 
way for apical proteins in MDCK cells. 

Relatedness of Exocytotic and Transcytotic 
Targeting Pathways 
The inhibition of both the exocytotic and transcytotic target- 
ing pathways to the apical surface by BFA raises the question 
as to how these two pathways are related, in addition to their 
sharing the property of BFA sensitivity. This susceptibility 
to BFA suggests that these two pathways may use a similar 
or cross-related mechanism for the same apical targeting. 
Two possibilities exist. The sorting compartments for these 
two pathways are physically separated and related only func- 
tionally and biochemically. Alternatively, the sorting com- 
partments for these two pathways may be physically in- 
tegrated so that only one common sorting compartment 
exists, which integrates both the exocytotic and transcytotic 
targeting pathways. Newly made DPPIV was hypersialylated 
in ceils that underwent BFA treatment withdrawal, while the 
basolateral DPPIV was not hypersialylated during transcyto- 
sis back to the apical surface under similar conditions of BFA 
treatment withdrawal. These results demonstrate that the 
transcytotic targeting pathway did not integrate with the 
Golgi compartment marked by the hypersialylation activity 
and imply that the sorting compartments for these two path- 
ways are physically separated. However, the possibility that 
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they are physically integrated in a compartment distal to the 
compartment marked by sialyltransferases can not yet be ex- 
cluded. 

Default Pathway for Membrane Proteins 
May Exist for Both the Apical and Basolateral Surface 
in MDCK Cells 
The BFA induced inhibition of the apical pathway for DPPIV 
caused its concomitant enhanced targeting to the basolateral 
surface. In contrast, targeting of a basolateral membrane 
protein (uvomorulin) was unaffected, suggesting that the 
basolateral pathway was intact in BFA treated cells. If 
basolateral transport was achieved only by a signal-mediated 
pathway, it would be difficult to explain the BFA-caused 
efficient transport of DPPIV to the basolateral surface. Al- 
ternatively, these observations could be explained by the ex- 
istence of a basolateral default pathway for membrane pro- 
teins. The inhibition of apical targeting of DPPIV resulted 
in its enhanced incorporation into the basolateral default 
pathway. By contrast, a recent study reported that the cyto- 
plasmic domain of several membrane proteins is required for 
their selective basolateral targeting and mutations in the cy- 
toplasmic domain caused their mistargeting to the apical 
surface (Hunziker et al., 1991a). The structural motif for 
some basolateral proteins is enclosed in the region for 
efficient endocytosis via clathrin-coated pits (Hunziker et 
al., 1991a). Furthermore, introduction of an endocytotic 
signal into otherwise apical proteins resulted in their basolat- 
eral sorting (Brewer and Roth, 1991; Le Bivic et al., 1991). 
These results suggest that the endocytotic signal is or over- 
laps with the basolateral targeting signal in these proteins. 
Basolateral targeting signals that could be separated from the 
endocytotic signal have also been identified (Casanova et al., 
1991a; Hunziker et al., 1991a). These results indicate the ex- 
istence of a signal-mediated basolateral pathway and a de- 
fault pathway for the apical surface. The basolateral signals 
identified could potentially function as a negative signal by 
excluding the proteins from other normal pathways. It should 
be noted that inhibition of apical targeting of DPPIV is never 
100 %, but with only about half of the protein being directed 
to each of the surfaces. This could be explained by the exis- 
tence of a default pathway also for the apical surface, and in- 
hibition of selective apical targeting of DPPIV by BFA 
caused it to be routed both to the apical as well as the 
basolateral default pathways with similar efficiency. Based on 
these observations, it could be proposed that default path- 
ways may exist for both apical and basolateral surfaces in 
MDCK cells. The targeting to both apical and basolateral 
surfaces with comparable efficiencies for IgG Fc receptor 
isoform FcRII-B1 (which does not contain an endocytotic 
signal) and Igpl20G-A (Hunziker et al., 1991a) is consistent 
with the presence of default pathways for both surfaces in 
MDCK ceils. Further investigations will be required to gain 
more understanding about this issue. 

Possible Mechanism of BFA Action 
The inhibition of the apical but not basolateral targeting 
pathway suggests that the mechanism for the apical and 
basolateral targeting is distinct. Furthermore, this effect 
could be achieved under conditions where ER to Golgi trans- 
port and total surface expression were unaffected and the 

Golgi apparatus was unaltered. Higher concentrations of 
BFA also caused an inhibition of ER to Golgi transport (Fig. 
2) as well as the recycling of Golgi components back into the 
ER (Low et al., 1991c). These results demonstrate that the 
Golgi to apical surface transport is most sensitive to BFA 
while the ER-Golgi transport is less sensitive. Furthermore, 
we have demonstrated that BFA executes its effect on apical 
targeting at the TGN and/or TGN-apical surface transport. 
Previous studies suggest that inhibition of ER-Golgi trans- 
port by BFA may be mediated by dissociating B-COP from 
Golgi membranes and by inhibiting B-COP-mediated vesicle 
formation (Orci et al., 1991). B-COP belongs to a family of 
proteins, called adaptins, which are involved in the forma- 
tion of various transport vesicles (Duden et al., 1991; Pearse 
and Robinson, 1990). One possibility is that distinct adaptins 
(with different BFA sensitivities) are involved in the forma- 
tion of vesicles for ER-Golgi transport, TGN-apical surface 
transport, TGN-basolateral surface transport and transcy- 
totic targeting. The adaptin, mediating TGN-apical surface 
transport and endocytotic apical targeting, was most sensi- 
tive to BFA, while adaptins mediating ER-Golgi and 
TGN-basolateral surface were less sensitive to BFA. This 
could be the explanation for the requirement of different con- 
centrations of BFA for abolishing apical targeting and for in- 
hibiting ER-Golgi transport. A BFA-resistant adaptin may 
mediate default pathways to both surfaces. Furthermore, the 
same or similar adaptin may be involved in the exocytotic 
and the endocytotic apical sorting pathways. Final proof for 
this hypothesis awaits the characterization of these adaptin 
molecules. 

It was recently shown that BFA could induce the formation 
of cation channels in planar lipid bilayers (Zizi et al., 1991), 
whether this is related to in vivo effects has not yet been as- 
sessed. The high specificity of BFA and the different concen- 
trations of BFA required for various effects in MDCK cells 
could not be simply explained by the formation of cation 
channels, although further investigations will be needed to 
reveal the mechanism of BFA effect in vivo. 
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