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Abstract

Alcohol use disorder (AUD) is associated with changes in frontostriatal connectivity,

but functional magnetic resonance imaging (fMRI) functional connectivity

(FC) approaches are usually not adapted to these circuits. We developed a circuit-

specific fMRI analysis approach to detect dynamic changes in frontostriatal FC

inspired by medial-ventral-rostral to lateral-dorsal-caudal frontostriatal gradients

originally identified in nonhuman primate tract-tracing data. In our PeaCoG (“peak

connectivity on a gradient”) approach we use information about the location of stron-

gest FC on empirical frontostriatal connectivity gradients. We have recently

described a basic PeaCoG version with conventional FC, and now developed a

dynamic PeaCoG approach with sliding-window FC. In resting state data of n = 66

AUD participants and n = 40 healthy controls we continue here the analyses that we

began with the basic version. Our former result of an AUD-associated ventral shift in

right orbitofrontal cortex PeaCoG is consistently detected in the dynamic approach.

Temporospatial variability of dynamic PeaCoG in the left dorsolateral prefrontal cor-

tex is reduced in AUD and associated with self-efficacy to abstain and days of absti-

nence. Our method has the potential to provide insight into the dynamics of

frontostriatal circuits, which has so far been relatively unexplored, and into their role

in mental disorders and normal cognition.
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1 | INTRODUCTION

Alcohol use disorder (AUD) is characterized by a loss of control over

drinking behavior which leads to diverse and severe negative conse-

quences for affected individuals and their social environment (Bora &

Zorlu, 2017; Kendler, Ohlsson, Karriker-Jaffe, Sundquist, & Sundquist,

2017). One of the central neural systems involved in controlling

behavior by stabilizing and destabilizing behavioral plans and neural

representations in the cortex consists of cortical-basal ganglia-thala-

mus-cortical loops which constitute a functional hierarchy from

reward over cognitive to motor processes (Haber, 2003, 2016;

Shipp, 2017). With their central role for controlling overt and covert

behavior, these loops, and especially their initial frontostriatal seg-

ment, play a prominent role in normal cognitive functions (Balleine,
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Delgado, & Hikosaka, 2007; MacLean, 1972; Marquand, Haak, &

Beckmann, 2017; Samejima, Ueda, Doya, & Kimura, 2005; Takikawa,

Kawagoe, & Hikosaka, 2002) and mental disorders, where they have

for example been implicated in alcohol addiction (Becker, Kirsch,

Gerchen, Kiefer, & Kirsch, 2017; Courtney, Ghahremani, & Ray, 2013;

Galandra et al., 2019; Park et al., 2010), in other addictions (Ersche

et al., 2011; Morein-Zamir & Robbins, 2015; Wilcox, Teshiba,

Merideth, Ling, & Mayer, 2011; Yuan et al., 2017), as well as in disor-

ders like schizophrenia (Fornito et al., 2013) or attention deficit hyper-

activity disorder (Naaijen et al., 2018).

While the classical model of cortical-basal ganglia-thalamus-

cortical loops assumes that a cortical region projects to a part of the

striatum that ultimately projects back to the original cortical site

(“closed loop”), it is well established that cortical regions have wide-

spread and distributed projection profiles in the striatum and that pat-

ches of the striatum receive overlapping projections from different

cortical areas (Averbeck, Lehman, Jacobson, & Haber, 2014; Choi,

Yeo, & Buckner, 2012; Jarbo & Verstynen, 2015; Ogawa et al., 2018;

Selemon & Goldman-Rakic, 1985; Yeterian & Van Hoesen, 1978).

Already very early, it had been recognized that the projection fields of

different cortical areas are convergent if the cortical areas are ana-

tomically connected (Yeterian & Van Hoesen, 1978), which might rep-

resent an underlying anatomical mechanism that controls the dynamic

formation of networks of interacting cortex areas.

In a comprehensive review of the literature on cortical-basal

ganglia-thalamus-cortical circuits Shipp (2017) discusses the structure

and function of “closed” and “open loops” that are formed by different

frontostriatal projections. “Open loop” projections go from the cortex

to parts of the striatum that finally project to other cortical sites, and

can provide an interface of cortical areas to influence the function of

distant closed cortical-basal ganglia-thalamus-cortical loops and thus

the respective brain networks.

However, these models are mainly based on nonhuman primate

tract-tracing data, and the functional relevance of connectivity

changes in these “closed loop” and “open loop” frontostriatal projec-

tions and their implications for normal and pathological cognition and

behavior are so far only incompletely understood.

While the functional dynamics of these circuits are almost impos-

sible to assess with other neuroscientific methods, with its capability

for simultaneous data acquisition over the cortex as well as subcorti-

cal regions with relatively precise spatial resolution, functional MRI

(fMRI) is ideally suited to assess such changes in frontostriatal circuit

function. However, the most relevant fMRI analysis method at hand,

functional connectivity (FC) analysis, is usually not tailored for circuit-

specific analysis and might in its standard form only provide a per-

spective on the processes in frontostriatal circuits that might be diffi-

cult to interpret with respect to this question.

Therefore, we have developed an fMRI data functional connectiv-

ity (FC) analysis approach that aims at assessing information about the

relative spatial distribution of frontostriatal connectivity in fMRI rest-

ing state data (Gerchen, Rentsch, Kirsch, Kiefer, & Kirsch, 2019). For

simplification and for increased interpretability of the results we have

based our method on the model of medial-ventral-rostral to lateral-

dorsal-caudal frontostriatal gradients by Haber (2003). It is well

established from non-human primate tract tracing studies (Averbeck

et al., 2014; Haber, 2003) and has been confirmed in human magnetic

resonance imaging (MRI) studies (Choi et al., 2012; Di Martino et al.,

2008; Draganski et al., 2008; Jeon, Anwander, & Friederici, 2014;

Jung et al., 2014; Marquand et al., 2017) that the topography of fron-

tostriatal projections follows a medial-ventral-rostral to lateral-dorsal-

caudal organization, where more ventral and rostral frontal areas pro-

ject to more ventral and rostral striatal regions, while more dorsal and

caudal frontal areas project to more dorsal and caudal striatal regions

(Haber, 2003, 2016), which has been described as a frontostriatal con-

nectivity gradient in a model by Haber (2003).

In our fMRI analysis approach we depart from the conventional

point-to-point (for example seed-to-voxel or region of interest

[ROI]-to-ROI) analyses usually applied in FC studies and base our

analyses on the spatial localization of maximal connectivity of seed

voxels in a target area. Specifically, we use voxels in the frontal cor-

tex as seeds and identify the location of the voxel in the striatum

with maximal FC, which we call “peak connectivity.” This fron-

tostriatal peak connectivity marks the striatal area a frontal cortical

region is most strongly interacting with, and should be relatively

close to the anatomical and electrophysiological information the

Haber model is based on.

To obtain a frontostriatal gradient we then apply principle compo-

nent analysis (PCA) over the empirically estimated peak connectivity

locations of all frontal voxels, and extract the first principle compo-

nent as the representative axis. The projection of the striatal peak

connectivity locations on this gradient provides what we call PeaCoG

(“peak connectivity on a gradient”) values, which are then used for

further analyses (please see the Materials & Methods Section 2.3.3

for more details).

With this approach we were able to identify a region in the right

orbitofrontal cortex (rOFC) where striatal peak connectivity location

was shifted ventrally in patients with AUD in comparison to healthy

controls (HC; Gerchen et al., 2019; see inlay in Figure 2a). Interest-

ingly, the patient group showed a reduction in PeaCoG variability,

suggesting a “clamping” of the rOFC to ventral striatal regions in alco-

hol addiction, or, in other terms, a bias towards the closed-loop recur-

rent rOFC-striatum circuit mode. In addition, we identified

associations of PeaCoG values with self-report questionnaires

reflecting different aspects of alcohol addiction like craving or ability

to control drinking behavior in the superior frontal gyrus, medial fron-

tal and dorsolateral prefrontal cortex, and the inferior frontal gyrus

(Gerchen et al., 2019).

Importantly, these analyses were based on conventional FC mea-

sures estimated over the whole time series of a resting state fMRI

measurement. So far, it remained unclear whether frontostriatal peak

connectivity also exhibits variability within individual subjects over

the time course of an fMRI scanning session, and whether this vari-

ability is changed in AUD or is associated with clinical variables.

In this article we now describe a novel dynamic PeaCoG approach

that assesses time-varying peak connectivity locations along the same

gradient as in the former approach with sliding-window functional
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connectivity analysis and continue the analysis of the resting state

data set begun in Gerchen et al. (2019) with this newly developed

methodology.

2 | MATERIALS AND METHODS

2.1 | Participants

Data were acquired in the baseline session of an intervention

study (Becker et al., 2017; Becker et al., 2018), and the results are

based on exploratory analyses which were not preregistered as

goals of the original study. We analyzed data of n = 66 partici-

pants diagnosed with alcohol addiction based on ICD-10 criteria

(age: 46.8 ± 9.16 years (mean ± SD; range 25–65 years; 16 female)

and n = 40 healthy control participants (age: 47.28 ± 9.21 years,

range 22–64 years; 17 female). All participants were eligible for

MRI scanning and did not have further neurological or mental dis-

orders. The patient group was recruited from the Central Institute

of Mental Health inpatient addiction clinic. Patients abstained

from alcohol for at least 5 days before scanning (10.12 ± 4.69 days

[mean ± SD]) and were free of any detoxification medication for at

least 3 days.

The study was approved by the local ethics committee of the

Medical Faculty Mannheim at the University of Heidelberg, Germany

(2011-303 NMA) and all procedures complied with the WHO's Decla-

ration of Helsinki. Before participation, all participants were informed

about the study and provided written informed consent. After com-

pletion, participants received €50 compensation.

The originally acquired sample comprised 123 data sets, of which

2 were excluded due to incidental anatomical findings, 5 due to miss-

ing or corrupt physiological recordings, 4 due to excessive head

motion, and 6 due to restricted brain coverage of the normalized func-

tional images.

2.2 | Data acquisition

Before scanning, the participants completed the Obsessive Compul-

sive Drinking Scale (OCDS; Anton, 2000), the Alcohol Abstinence

Self-Efficacy Scale (AASE; DiClemente, Carbonari, Montgomery, &

Hughes, 1994), the Alcohol Dependence Scale (ADS; Skinner &

Horn, 1984), and the Alcohol Urge Questionnaire (AUQ; Bohn,

Krahn, & Staehler, 1995).

MRI measurements were conducted on a 3 T Siemens Trio TiM

scanner (Siemens Healthineers, Erlangen, Germany) at the CIMH. Ana-

tomical MPRAGE images were acquired with repetition time TR = 2.3 s,

echo time TE = 3.03 ms, flip angle 9�, and resolution of 1 × 1 × 1 mm.

During the resting state measurement 220 functional echo planar

imaging (EPI) images were acquired with TR = 1.5 s, TE = 28 ms, flip

angle 80� in 24 4 mm slices with 1 mm gap and 3 × 3 mm in-plane

resolution. During functional scanning, heart rate and respiration sig-

nals were monitored and saved.

2.3 | Data analysis

Data analysis was conducted with MATLAB (R2011b; MathWorks

Inc., Sherborn, Massachusetts, United States). Imaging analysis was

conducted with SPM12 (v6685; Wellcome Department of Cognitive

Neurology, London, United Kingdom).

2.3.1 | Preprocessing

Anatomical images were segmented and normalized to the SPM12

TPMMNI template and the forward and inverse transformation matri-

ces of the normalization were saved. The functional resting state

images were corrected for heart rate and respiration with AZTEC (van

Buuren et al., 2009), slice-time corrected, realigned to the mean image

of the run, co-registered to the anatomical image, normalized by

applying the estimated forward normalization matrix, resampled to a

resolution of 2 × 2 × 2 mm, and smoothed with a Gaussian kernel

with full width at half maximum FWHM = 6 mm.

2.3.2 | Anatomical masks

Hemisphere-specific masks of the striatum and of the frontal cortex

combined with the anterior insula and the anterior cingulate cortex

(called “frontal masks” afterwards) were constructed from the Neu-

romorphometrics atlas accompanying SPM12. All analyses were con-

ducted within these masks.

The individual inverse normalization matrices were used to pro-

ject the masks from MNI space to the individual subject space and

estimate the size of these regions in each subject. These estimates

were used as covariates in the respective second level analyses in nor-

malized space to control for a possible confounding influence of ana-

tomical differences in the target structures on our results.

2.3.3 | First level analyses

First level models were set up in SPM12 that included the six standard

motion regressors, a cerebrospinal fluid (CSF) signal, a white matter

(WM) signal, the global gray matter signal, and dummy nuisance regres-

sors of volumes affected by head motion (movement threshold = 1 mm;

global intensity change threshold z = 5) estimated with the ART toolbox

(http://www.nitrc.org/projects/artifact_detect). From this first level

analysis the residual images corrected for the covariates were saved.

Nuisance regressors were estimated in a prior first level analysis with-

out autocorrelation correction (“first” first level).

Voxel time courses of the voxels contained in the defined masks

were then extracted from the residual images and saved.

PeaCoG

All analyses were conducted separately in the left and right hemi-

sphere. For each voxel in the frontal masks, Pearson correlations were
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used to estimate functional connectivity with all voxels in the stria-

tum, and the MNI coordinates of the striatal voxel with the highest

correlation were extracted (“peak connectivity”). Further analyses are

then based on this spatial information extracted from the data.

To reduce these three-dimensional values to a single representa-

tive dimension that is straightforward to analyze, the peak connectiv-

ity positions of each frontal voxel were averaged over all subjects, a

principal component analysis was conducted over this data, and the

first principle component was extracted. This component is the repre-

sentative spatial gradient (Figure 1a) along which frontal peak connec-

tivity is maximally distributed in the striatum. It is now possible to

project the individual peak connectivity location of each frontal voxel

onto this gradient (PeaCoG) and map these PeaCoG values on the

frontal cortex (Figure 1b). When subject-specific peak connectivity

values are projected onto the representative gradient, individual

PeaCoG maps can be obtained that can then be used for second level

analyses (see also Gerchen et al. (2019)).

Dynamic PeaCoG

To assess intraindividual variability of the PeaCoG estimate over time

we developed a dynamic PeaCoG approach based on sliding-window

functional connectivity analysis. In this procedure we estimate the

position of the peak connectivity position from a chunk of the time

course with a defined number of data points (window) and project this

position onto the general gradient to obtain a PeaCoG value. Then,

the window is moved ahead one time point by one time point and the

procedure is repeated to construct a time course of PeaCoG values

(Figure 1c). As the results of dynamic functional connectivity analyses

depend on the chosen window size, we conducted analyses with four

different window sizes of 15, 20, 30, and 45 volumes (24.6 s, 32.8 s,

49.2 s, and 73.8 s, respectively) and consider the results together. We

selected window sizes that span the range from � 20 to 60 s that is

often used in sliding window FC studies, and increased the step size

for longer windows. We did not specifically select or optimize the

exact numbers, but arbitrarily started with a window size of 15 vol-

umes (=22.5 s), increased the window size by 5 volumes, and added

5 additional volumes to the increase at every step (15 + 5 = 20;

20 + 10 = 30; 30 + 15 = 45) up to a window size of 45 (= 67.5 s).

2.3.4 | Second level analyses

With the obtained time-dependent PeaCoG values it is then possible

to conduct analyses based on the intraindividual variability of fron-

tostriatal peak connectivity and compare it between subjects. For this

we focused on two measures: The distribution of peak connectivity

locations in the striatum over time, and the SD of the dynamic

PeaCoG time course on the frontal maps. All reported second level

analyses included age, gender, and the estimated individual size of the

striatum and frontal masks as covariates.

Right OFC ROI analyses

We used the first measure for a ROI analysis to test whether the shift

of frontostriatal peak connectivity towards ventral striatal regions that

we identified in the right OFC with PeaCoG analyses based on con-

ventional functional connectivity over the whole time series (Gerchen

et al., 2019; see inlay in Figure 2a) could also be demonstrated based

on the spatial distribution of dynamic PeaCoG values in the striatum

over time. For this we split the striatal gradient into 20 bins and coun-

ted the time points peak connectivity fell into these bins (i.e., similar

to a histogram). The number of bins was arbitrarily chosen at a rela-

tively high even number. The bin size (2.5 mm) is slightly higher than

the original length of voxel edges (2 mm). We then compared the

counts of each bin between groups with two-sample t tests with a

F IGURE 1 Frontostriatal connectivity gradient and dynamic PeaCoG time course. (a) Locations of striatal voxels projected on the empirically

estimated striatal gradient. (b) Striatal peak connectivity locations on the gradient of frontal voxels (PeaCoG maps) averaged over the whole
sample. A medial-ventral-rostral to lateral-dorsal-caudal organizational pattern of frontostriatal connectivity is clearly visible. Please note that the
scale of the colors in display B is more restricted than in display A, which presumably is due to a regression to the mean effect related to the
averaging. (c) Dynamic striatal peak connectivity of a voxel in the left dlPFC (Figure 3) during the resting state session in a single patient with
AUD that was not specifically selected (first participant of the sample). The y-axis and the colors correspond to striatal locations in Figure 1a. We
conducted dynamic PeaCoG analyses based on sliding window dynamic functional connectivity with window sizes of 15, 20, 30, and 45 volumes,
the example time course is shown for a window size of 20 volumes
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significance threshold of p = .05 Bonferroni corrected for the number

of bins (nominal threshold p = .05/20 = .0025).

Dynamic PeaCoG SD

We used the second measure, the PeaCoG SD, to conduct exploratory

analyses over the whole frontal masks and identify regions where the

variability of dynamic frontostriatal peak connectivity differed

between groups. Here we used mass-univariate two-sample t tests to

test for group differences in each voxel and used a cluster-level

corrected significance threshold of p = .025 (p = .05 Bonferroni

corrected for the number of hemispheres: nominal threshold

p = .05/2 = 0.025) with a cluster-defining threshold (CDT) of p < .001

uncorrected. In our analyses, we did not correct for the number of dif-

ferent window sizes here, but only consider results that were consis-

tently detected with at least two window sizes.

Association with clinical variables

We further tested the association of the frontal PeaCoG SD maps

with nine clinical variables (3 scores of the OCDS, 3 scores of the

AASE, the ADS sum score, the AUQ sum score, and the number of

abstinent days before scanning) within the clinical group. In these

tests we applied the same nominal cluster-corrected threshold of

p = 0.05/2 = 0.025 and report only results that were obtained with

more than one window size. Please note that we chose this relatively

relaxed threshold for our exploratory analyses, and that we did not

correct for the number of clinical variables here.

Further we conducted partial correlation analyses of the nine clin-

ical variables with the mean dynamic PeaCoG SD from the cluster in

the left dorsolateral prefrontal cortex (dlPFC) identified in the dynamic

PeaCoG SD group comparison (Figure 3). Here, we also report results

at a nominal threshold of p < .05 that were detected with at least two

window sizes. Again we chose a relatively relaxed discovery threshold

F IGURE 2 rOFC cluster dynamic PeaCoG spatial distribution. (a) Number of time points the right OFC cluster (small inlay) dynamic peak
connectivity fell into spatial bins in the striatum during the resting state session averaged over groups. The results demonstrate a ventral shift of
dynamic rOFC-striatal connectivity in the AUD group. The x-axis corresponds to striatal locations in Figure 1a. Small asterisks mark bins where
the number of time points was significantly different between the groups (p < .05 Bonferroni corrected for the number of bins [20]). Shaded areas
represent the SEM. (b) Area in the striatum (blue) corresponding to the bin of the gradient where more connectivity in the AUD group was
consistently detected over the different window sizes

F IGURE 3 Group comparison of dynamic PeaCoG SD. Cluster in
the left dorsolateral prefrontal cortex (dlPFC) with higher dynamic
PeaCoG variability (SD) in healthy controls in comparison to
participants with AUD (cluster-level p < .025 corr., CDT = 0.001 unc.).
The cluster was detected with three of four window sizes. Brighter
colors indicate higher overlap (max 3)
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for these exploratory analyses, and did not correct for the number of

clinical variables.

3 | RESULTS

The estimated frontostriatal peak connectivity gradients (Figure 1a,b)

are the same as in Gerchen et al. (2019). They are largely consistent

with the model of a medial-ventral-rostral to lateral-dorsal-caudal gra-

dient striatal connectivity in the frontal cortex, except for the most

dorsal and caudal parts, where connectivity seems to be oriented

toward more middle striatal parts of the striatum in our data

(Figure 1b).

An example of a frontostriatal peak connectivity time course

obtained with the dynamic PeaCoG approach is shown in Figure 1c. In

this exemplary and not specifically selected participant with AUD (the

first participant of the whole sample) it can be seen that the peak con-

nectivity location on the striatal gradient is exhibiting dynamic

changes over time within a single participant. Such dynamic PeaCoG

time courses are available for each single voxel in the frontal cortex,

and are the basis for our further analyses.

3.1 | Right OFC ROI analyses

First, we used this information to assess and compare the spatial dis-

tribution of striatal peak connectivity in the right OFC cluster that dif-

fered between AUD and HC participants in our former analyses based

on conventional FC. Plots of the average distribution of dynamic

PeaCoG values in the right OFC ROI are shown for the four window

sizes in Figure 2a. With all four window sizes a clear shift in the

dynamic spatial peak connectivity distribution in the AUD group

toward more ventral striatal regions is evident. We identified bins in

all four analyses where the number of time points of peak connectiv-

ity with these bins was significantly different between the groups

(nominal threshold p = .05/20 = .0025; marked with asterisks in

Figure 2a; see Supplementary Table S1 for detailed results). Over all

four window sizes, two bins in the mid striatum had lower

TABLE 1 SPM results of the dynamic
PeaCoG SD group comparison

Cluster-level Peak-level
Overlapping clusterspFWE-corr kE pFWE-corr t MNI (mm; x, y, z)

15 vols

Left 0.013 31 0.004 5.37 −44, 46, 24 aaa

0.376 4.20 −38, 48, 30

0.017 29 0.504 4.07 −24, 22, −20

0.945 3.58 −28, 30, 22

Right 0.004 43 0.013 5.12 26, 64, 2 bb

0.767 3.81 22, 54, −2

0.965 3.51 28, 52, 6

0.001 56 0.059 4.74 10, 50, 8

0.246 4.15 8, 48, 20

0.744 3.83 4, 42, 14

20 vols

Left 0.015 30 0.093 4.63 −38, 46, 30 aaa

0.107 4.59 −44, 46, 22

Right 0.004 41 0.024 5.02 26, 64, 2 bb

0.741 3.84 24, 52, −2

30 vols

Left 0.004 37 0.029 4.91 −44, 36, −18 cc

0.837 3.77 −42, 46, −14

0.996 3.25 −50, 36, −10

45 vols

Left 0.005 32 0.142 4.52 −46, 34, −16 cc

0.498 4.14 −44, 48, −16

0.022 23 0.251 4.37 −38, 48, 28 aaa

0.013 26 0.294 4.33 −36, 28, 46

Note: Results are presented for the contrast HC > AUD. For the contrast AUD > HC no significant cluster

was detected with any window size. Clusters that were consistently found with different window sizes

are marked as overlapping clusters with small letters. Table shows 3 local maxima more than 8 mm apart.
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connectivity and one bin in the ventral striatum had increased connec-

tivity in the AUD group. The bin with increased connectivity is plotted

in Figure 2b as a demonstration how our approach can be used to

obtain insight into the temporospatial function of frontostriatal

connectivity.

3.2 | Dynamic PeaCoG SD

We then proceeded our analyses by assessing the SD over time of the

dynamic PeaCoG time courses. In our exploratory analyses over the

whole frontal masks we identified several clusters where dynamic

PeaCoG SD was lower in the AUD group compared with the HC

group (Table 1). A cluster in the right frontopolar cortex was detected

with the 15 and 20 volume windows sizes (cluster bb in Table 1), and

a cluster in the left lateral orbital gyrus was detected with the 30 and

45 volume window sizes (cluster cc in Table 1). The most consistent

effect over the window sizes was a cluster in the left dorsolateral PFC

(left dlPFC; cluster aaa in Table 1; Figure 3) that was consistently

detected with three of our four sliding-window sizes (15, 20, and

45 volumes; effect sizes of Cohen's d = 0.77, 0.79, 0.72, respectively)

and where the effect was not much smaller (Cohen's d = 0.7) although

not significant in the fourth (30 volumes).

We did not identify any significant clusters in any of the analyses

where dynamic PeaCoG SD was increased in the AUD group in com-

parison to the HC group.

3.3 | Association with clinical variables

The exploratory analyses testing associations of dynamic PeaCoG SD

with the nine clinical variables over the whole frontal cortex maps did

not detect significant associations at the nominal cluster-level thresh-

old of p = .025 for any single window size.

When we conducted the ROI association analyses specifically for

the left dlPFC cluster (Figure 3) we detected positive associations of

the averaged dynamic PeaCoG SD at the nominal significance level

with the AASE self-efficacy to abstain (AASE-S) scale for all four win-

dow sizes (15 volumes: rho = 0.3047, p = .0212; 20 volumes:

rho = 0.3384, p = .01; 30 volumes: rho = 0.2994, p = .0237; 45 vol-

umes: rho = 0.3107, p = .0187; Figure 4a) and with the number of

days of abstinence before scanning for three window sizes (15 vol-

umes: rho = 0.2434, p = .0791; 20 volumes: rho = 0.2775, p = .0442;

30 volumes: rho = 0.3051, p = .0263; 45 volumes: rho = 0.3032,

p = .0273; Figure 4b).

4 | DISCUSSION

In this article we have established a novel fMRI analysis method to

assess the spatial dynamics of peak functional connectivity of frontal

voxels in the striatum. Our dynamic PeaCoG approach provides a win-

dow into fast functional reorganization of frontostriatal circuits, and

allows to test hypotheses about their dynamic function.

Our PeaCoG approach abstracts from the exact strength of func-

tional connectivity at specific voxels or ROIs, which so far has been

the target of the vast majority of functional connectivity studies, and

instead uses information about the relative spatial distribution of con-

nectivity values in the target structure. It is worthwhile to note that

this information would be much more difficult to obtain with other

neuroscientific methods like direct electrophysiological recordings,

but is straightforward to assess in fMRI, which is due to the specific

strength of fMRI in simultaneous large-scale measurements of cortical

and subcortical sites despite its relatively low temporal resolution and

F IGURE 4 Association of dynamic PeaCoG SD in the left dlPFC cluster with clinical variables. (a) Positive association of left dlPFC dynamic
PeaCoG SD with self-efficacy to abstain from alcohol assessed with the Alcohol Abstinence Self-Efficacy Scale (rho = 0.3384, p = .01). The
association was nominally significant with all four window sizes. (b) Positive association of left dlPFC PeaCoG SD with days of abstinence before

scanning (rho = 0.2775, p = .0442). The association was nominally significant with three of four window sizes. Scatter plots for the 20 volume
window size are shown
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susceptibility for noise from diverse sources. Nonetheless, it would be

important to substantiate the effects described here with less indirect

neuroscientific methods.

Importantly, we focus our PeaCoG analyses on the single most

representative data point that should best reflect the functional state

of a specific frontostriatal circuit, the peak connectivity location on a

frontostriatal connectivity gradient. Analyzing only this peak connec-

tivity location reduces the amount of information that is potentially

available with fMRI, but strongly enhances the practicability and inter-

pretability of the approach.

To directly demonstrate the applicability of our method and

already use it to obtain insight into relevant pathological processes,

we continued our analyses of an AUD resting state data set which we

have begun with the conventional FC PeaCoG approach in Gerchen

et al. (2019).

Here, we first focused on the rOFC cluster that we obtained with

the conventional FC approach. It is important to note that we inter-

preted this effect as a “clamping” of the OFC to the ventral striatum,

but that this was based on group effects, and not on a representation

of the dynamics of the connectivity, which would be a more appropri-

ate test for this conclusion. In principle, conventional FC is a special

case of dynamic FC using a single window with the length of the com-

plete time course. Therefore, it is lying at an extreme end of the spec-

trum of representations of the signal, and it is important to test

whether an effect detected here would generalize to analyses based

on more dynamic representations, which is exactly the case here.

While larger window sizes seem to show stronger peaks in our data,

we are able to demonstrate the ventral shift of rOFC striatal peak

connectivity consistently for all four window sizes we assessed

(Figure 2a), supporting the interpretation of our original finding as a

disease-related change in the function of the system. Furthermore,

we now demonstrate how our procedures can be used to map the

involved parts of the striatum (Figure 2b) to provide results with a

straightforward interpretation.

We then focused our analyses on the variability (SD) of the

dynamic PeaCoG signal, and found a cluster in the left dlPFC with

decreased SD in AUD. To limit the dependency of our results on the

assumptions of the applied parametric test statistics we have repeated

our main analyses on the dynamic PeaCoG SD maps with a permuta-

tion approach (threshold-free cluster enhancement (TFCE)

implemented in FSL's “randomize” function) that constructs a test sta-

tistic by randomly assigning participants to the experimental groups

while taking nuisance variables into account (Winkler, Ridgway, Web-

ster, Smith, & Nichols, 2014). With this nonparametric approach we

identify the same overlapping cluster in the left DLPFC again with the

same three window sizes (Supplementary Figure 1), demonstrating

that our results are robustly detected with parametric and nonpara-

metric statistical methods.

While our PeaCoG measures might appear rather abstract, they

have a straightforward interpretation that is reflecting a potential core

functionality of frontostriatal circuits. If, for example, the DLPFC really

influences other brain regions by striatal projections to their “closed”

cortical-basal ganglia-thalamus-cortical loops as suggested by

Shipp (2017), the variability of DLPFC dynamic PeaCoG would reflect

how flexible this executive control mechanism is exerted over net-

works within an individual. A less dynamic system might thus reflect a

pathological state that is associated with less behavioral control, like

in AUD.

Over the last decade dynamic, or time-varying, FC has been

increasingly adapted in fMRI research, and a large variety of methodo-

logical choices for estimating dynamic FC are now available (see for

example, Lurie et al., 2019; Preti, Bolton, & Van De Ville, 2017; Savva,

Mitsis, & Matsopoulos, 2019). A central aspect that concerns all

methods is that the existence of dynamic fluctuations in functional

connectivity should optimally be tested for with appropriate null

models (Chang & Glover, 2010; Hindriks et al., 2016; Liegeois,

Laumann, Snyder, Zhou, & Yeo, 2017; Savva et al., 2019; Zalesky &

Breakspear, 2015). Constructing such models and supporting the exis-

tence of dynamic fluctuations statistically is, however, challenging

(Hindriks et al., 2016; Liegeois et al., 2017). For example, Hindriks

et al. (2016) found that it is rather impossible to identify time-varying

FC in short data sets of individual participants, while averaging over

subjects or sessions clearly increased the power and allowed esta-

blishing the existence of dynamic FC.

Importantly, here we did not yet rigorously test for the existence

of dynamic changes in the topography of frontostriatal peak func-

tional connectivity with an appropriate spatiotemporal null model.

Such a null model for the dynamic PeaCoG approach should imple-

ment the underlying assumption that frontal voxels are constantly

linked to a specific location in the striatum and do not exhibit dynami-

cal changes in their maximal connectivity location. The data derived

from such a model should be combined with the complex noise pre-

sent in fMRI modeled under realistic assumptions, and the real data

should be tested against the modeled data. While it is nontrivial to

implement such an approach, it will be a crucial step for future

research to test for the existence of dynamic PeaCoG changes.

Another potential concern is the stability of the peak voxel selec-

tion, which might be susceptible to noise. In our former paper we

have conducted a control analysis in which we restricted the peak

voxel selection to clusters of k = 5 voxels with maximal connectivity

(Gerchen et al., 2019). While it was computationally infeasible to

repeat our whole dynamic PeaCoG analyses with this additional clus-

ter criterion, we have tested the effect of this control analysis in the

DLPFC cluster that was consistently showing a group difference in

dynamic PeaCoG SD in three of the four window sizes (Figure 3). The

original results in the cluster were: 15 vols: t = 4.20, p = 2.9090e−05;

20 vols: t = 4.56, p = 7.3478e−06; 30 vols: t = 3.98, p = 6.6386e−05;

45 vols: t = 3.64, p = 2.1907e−04 and the corrected results were:

15 vols: t = 2.90, p = .0023; 20 vols: t = 3.46, p = 3.9817e−04; 30 vols:

t = 3.22, p = 8.6714e−04; 45 vols: t = 2.79, p = .0031). While the

group difference was still highly significant, this shows that peak voxel

stability is a concern in the applied methodology and should be taken

into account in future implementations of the approach.

Interestingly, the SD in the left dlPFC cluster was positively asso-

ciated with self-perceived efficacy to abstain from alcohol as well as

days of abstinence before scanning in the AUD group. Thus, this
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phenotype might reflect the recovery process during the treatment of

AUD and abstinence. The clinical associations that we found suggest

that our novel fMRI analysis method is able to detect meaningful

results that contain relevant information about pathological brain pro-

cesses. However, all our analyses were of an exploratory nature and

we applied relatively relaxed statistical thresholds in the analyses

assessing clinical associations. Therefore, our results should only be

taken as a first hint on the role of frontostriatal peak connectivity in

these processes and need to be replicated.

Besides the use case in AUD demonstrated here, the established

method has the potential to allow insights into the flexible and distrib-

uted dynamic function of frontostriatal circuits in other disorders as

well as normal cognition.

An interesting further general question is how changes in fron-

tostriatal circuits relate to dynamical interactions in typical resting-state

networks such as the default-mode network, salience, and the cognitive

control network. While this question is far beyond the scope of this

paper, our approach is in principle well suited to also address this kind

of questions.

Furthermore, the dynamic PeaCoG approach could directly be

translated into a real-time fMRI neurofeedback approach that could

aim at increasing the SD of lateral PFC-striatal peak connectivity and

might be applied as an add-on therapy for AUD, but potentially also

other disorders where frontostriatal circuits are centrally involved.

5 | CONCLUSIONS

We have established a novel fMRI analysis method based on sliding-

window functional peak connectivity of frontal regions in the striatum.

The method allows obtaining insight into the dynamic function of fron-

tostriatal circuits, which has so far been relatively unexplored. Our

results suggest that connectivity in these circuits is exhibiting spatial

dynamics, and that changes in these dynamics might play a role in AUD.
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