
Pan-Cancer Analysis Reveals
Alternative Splicing Characteristics
Associated With Immune-Related
Adverse Events Elicited by Checkpoint
Immunotherapy
Xiujing He, Jing Yu and Hubing Shi*

Laboratory of Tumor Targeted and Immune Therapy, Clinical Research Center for Breast, State Key Laboratory of Biotherapy,
West China Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, China

Immune-related adverse events (irAEs) can impair the effectiveness and safety of immune
checkpoint inhibitors (ICIs) and restrict the clinical applications of ICIs in oncology. The
predictive biomarkers of irAE are urgently required for early diagnosis and subsequent
management. The exact mechanism underlying irAEs remains to be fully elucidated, and
the availability of predictive biomarkers is limited. Herein, we performed data mining by
combining pharmacovigilance data and pan-cancer transcriptomic information to illustrate
the relationships between alternative splicing characteristics and irAE risk of ICIs. Four
distinct classes of splicing characteristics considered were associated with splicing
factors, neoantigens, splicing isoforms, and splicing levels. Correlation analysis
confirmed that expression levels of splicing factors were predictive of irAE risk. Adding
DHX16 expression to the bivariate PD-L1 protein expression-fPD1 model markedly
enhanced the prediction for irAE. Furthermore, we identified 668 and 1,131 potential
predictors based on the correlation of the incidence of irAEs with splicing frequency and
isoform expression, respectively. The functional analysis revealed that alternative splicing
might contribute to irAE pathogenesis via coordinating innate and adaptive immunity.
Remarkably, autoimmune-related genes and autoantigens were preferentially over-
represented in these predictors for irAE, suggesting a close link between autoimmunity
and irAE occurrence. In addition, we established a trivariate model composed of
CDC42EP3-206, TMEM138-211, and IRX3-202, that could better predict the risk of
irAE across various cancer types, indicating a potential application as promising
biomarkers for irAE. Our study not only highlights the clinical relevance of alternative
splicing for irAE development during checkpoint immunotherapy but also sheds new light
on the mechanisms underlying irAEs.
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INTRODUCTION

Immune checkpoint inhibitors (ICIs) therapy has revolutionized
the therapeutic landscape in oncology. These inhibitory drugs
targeting immune checkpoints, such as cytotoxic T-lymphocyte-
associated protein 4 (CTLA-4), programmed cell death protein 1
(PD-1), and its ligand (PD-L1), can bring long-lasting clinical
benefits by eliciting immune responses against tumors in the
treatment of various cancer entities (Bagchi et al., 2021).
However, their application has been curtailed by incredibly
diverse immune-related adverse events (irAEs) in the clinic.
IrAEs can potentially affect almost every organ system and
lead to fatal consequences in some cases (Postow et al., 2018).
Most commonly, these fatal effects clinically manifest as colitis,
hepatitis, pneumonitis, myocarditis, and neurologic effects
(Wang et al., 2018). Among them, colitis is highly
predominant and accounts for 70% of anti-CTLA-4-related
fatalities, whereas anti-PD-1/PD-L1-related fatalities are often
from pneumonitis, which results in 35% mortality (Wang et al.,
2018). Therefore, early detection and diagnosis of irAEs as well as
aggressive management are urgently required.

To improve patient selection and safety for ICI applications,
numerous efforts to discover candidate biomarkers for irAE
diagnosis and prediction are currently ongoing, which are
essential to tailor safety monitoring protocols and treatment
decisions. Nonetheless, studies on the mechanism of irAE
onset and the corresponding biomarker development are still
in the exploratory stage. Fortunately, several possible biomarkers
for irAEs have been suggested, such as T-cell receptor (TCR)
diversity (Johnson et al., 2016), CD8 T-cell clonal expansion
(Subudhi et al., 2016), and tumor mutational burden (TMB)
(Bomze et al., 2019). However, none of these factors is sufficient
to achieve accurate risk prediction of irAEs and predictive
performance needs to be evaluated in larger patient cohorts
with ICI regimens. Hence, the identification of reliable
biomarkers for irAEs prediction remains a critical challenge in
cancer immunotherapy.

The FDA adverse event report system (FAERS) database,
allowing relatively unbiased estimates for the relative risk for
specific adverse events based on real-life patient populations, has
been increasingly applied to biomarker discovery for drug adverse
events (Bomze et al., 2019; Jing et al., 2020; Kerepesi et al., 2020;
Van Hasselt et al., 2020). An elegant study revealed the significant
association between TMB and irAEs occurrence during PD-1
immunotherapy by integrating real-world pharmacovigilance
data from the FAERS database and mutation feature (Bomze
et al., 2019). Similar strategies have also been successfully used to
identify the additional biomarkers for irAEs (Bomze et al., 2019;
Jing et al., 2020; Kerepesi et al., 2020), suggesting this strategy is
robust and efficient, especially in the absence of a patient-sample
cohort with sufficient sample size. The predictive potential of
transcriptomic changes for irAEs has been demonstrated using
this strategy, in which lymphocyte cytosolic protein 1 (LCP1) and
adenosine diphosphate dependent glucokinase (ADPGK) served
as biomarkers for irAE prediction by evaluating the correlation
between multi-omics factors and irAE reporting odds ratios
(ROR) calculated based on FAERS database (Jing et al., 2020).

Furthermore, the predictive performance of the combination of
LCP1 and AGDPGK was validated in an independent patient-
level validation cohort, demonstrating clinical utility in predicting
irAEs in lung cancer (Jing et al., 2020).

As a pervasive and vital post-transcriptional regulatory
mechanism, alternative splicing (AS) is partly responsible for
transcript variation and proteome diversity, with more than 95%
of transcribed human genes undergoing splicing (Pan et al.,
2008). It is known that dysfunction of splicing processes
contributes to cancer progression and therapy resistance, but
the relevance of alternative splicing for the pathogenesis of irAE is
still poorly understood. To fill this gap, we combine the power of
real-world pharmacovigilance and omics data to determine if
alternative splicing characteristics are associated with ICI-
induced irAEs. The biomarker potential of AS for irAEs in
cancer immunotherapy is also explored in this study. Our
study provides a unique perspective on the links between AS
and irAEs.

METHODS

Data Collection and Pre-Processing
We considered four distinct classes of splicing characteristics: 1)
The expression abundances of splicing factors: We downloaded
high-quality gene expression profiles of The Cancer Genome
Atlas (TCGA) samples from UCSC Xena (Goldman et al., 2021).
A total of 404 known and potential auxiliary splicing factors
obtained from Seiler et al. (2018) were subjected to downstream
analysis. The splicing factors with low abundances were removed
(the max TPM value >10, and the median TPM value >2). The
median values of each splicing factor were calculated for each
cancer type and were in the form of log2 (Transcripts Per Million
[TPM]+0.001). 2) Descriptors of splicing levels, including
splicing load and splicing frequency. The profiles of all five
major alternative splicing types identified in TCGA samples
were downloaded from the Genomic Data Commons (Kahles
et al., 2018). To build a confident set of AS events, we
implemented a series of stringent filters. AS events detected in
more than ten samples were included in the subsequent analysis.
We then filtered out splicing events with PSI <0.05, or PSI >0.95
to reduce the incidence of false positives (Pimentel et al., 2014).
Splicing load was determined using filtered AS events of TCGA
samples. We counted the number of all AS events per given
sample as the total splicing load. The median values of the total
splicing load were calculated for each cancer type. Towards
obtaining a more detailed view of splicing load, we considered
splicing load for each AS type separately. We further classified AS
events into four categories, with highly included (PSI >80%),
mid-included (40% < PSI <80%), mid-excluded (20% < PSI
<40%) and highly excluded events (PSI <20%), as described in
a previous study (Agirre et al., 2021). Splicing load for each AS
category was calculated as described above, and the median values
for each cancer type were obtained. Splicing frequency for the
individual gene was defined as the proportion of samples with AS
events detected. 3) Neoantigen-related variables, including
neojunction load and autoantigen load. For neojunction load,
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the number of neojunctions per sample for TCGA cancer types
was obtained from the Genomic Data Commons (Kahles et al.,
2018), and the median values of neojunction load were calculated
for each cancer type.We then counted the number of AS events of
autoantigen genes per given sample to calculate the splicing load
of autoantigen genes. Autoantigen genes were retrieved from the
AAgAtlas database (Wang et al., 2016). 4) The expression
abundances of splicing isoforms: We collected splicing isoform
expression profiles of TCGA samples from UCSC Xena
(Goldman et al., 2021). Low abundance isoforms were
removed (the max TPM value >10, and the median TPM
value >2). The median values of each isoform were calculated
for each cancer type and converted info log2 (TPM+0.001).
Additionally, we considered other factors that have been
previously reported to be potentially associated with anti-PD1/
PD-L1 response, including 36 variables belonging to three
distinct classes (Lee and Ruppin, 2019).

To obtain unbiased estimates of clinical risk of ICI-associated
irAEs, reporting odds ratios (RORs), a measure of
disproportionality used in pharmacovigilance databases, were
obtained from Jing et al. (2020). IrAE RORs were calculated as
follows: Individual safety reports submitted between July 2014
and June 2019 were retrieved from the FAERS database. We
considered only reports for which anti-PD-1/PD-L1 agents
(cemiplimab, nivolumab, pembrolizumab, atezolizumab,
avelumab, and durvalumab) were the suspected cause of
adverse events. Disproportionality analysis (Bate and Evans,
2009) was then performed to estimate irAE RORs by using the
entire database as the comparator. We considered cancer types
only for which there were at least 1,000 cases receiving ICIs
therapy reported in FAERS. These cancer types include Bladder
Urothelial Carcinoma [BLCA], Breast invasive carcinoma
[BRCA], Cervical squamous cell carcinoma and endocervical
adenocarcinoma [CESC], Cholangiocarcinoma [CHOL], Colon
adenocarcinoma [COAD], Esophageal carcinoma [ESCA],
Glioblastoma multiforme [GBM], Head and Neck squamous
cell carcinoma [HNSC], Liver hepatocellular carcinoma
[LIHC], Lung adenocarcinoma [LUAD], Lung squamous cell
carcinoma [LUSC], Mesothelioma [MESO], Ovarian serous
cystadenocarcinoma [OV], Pancreatic adenocarcinoma
[PAAD], Prostate adenocarcinoma [PRAD], Sarcoma [SARC],
Skin Cutaneous Melanoma [SKCM], Stomach adenocarcinoma
[STAD], Uterine Corpus Endometrial Carcinoma [UCEC].

Identification of Potential irAE Biomarkers
by Combining Alternative Splicing
Characteristics and Pharmacovigilance
Data
For the scenarios with fewer observations than features, as in the
case of our study, the advanced algorithms could have an inflated
type I error and subsequently cause more false positives, such as
Ridge, LASSO, and Elastic Net regression (Wu and Ma, 2015;
Kirpich et al., 2018; Jing et al., 2020). Therefore, we employed an
approach to identify splicing characteristics most strongly
associated with irAE risk, as described in a previous study
(Lee and Ruppin, 2019). We first measured the correlation

between single variable and irAE ROR to identify potential
biomarkers for irAE risk. Subsequently, we performed a
standard regression analysis with leave-one-out cross-
validation in predicting irAE ROR from bivariate and
trivariate linear-regression models using caret package (Kuhn,
2008). The predictive performance was evaluated based on
Spearman rank correlation coefficient (Rs) and unexplained
variance (1−Rs2). For comparison, the goodness of fit between
different models was assessed by a log-likelihood ratio test using
lmtest package (Hothorn et al., 2015). Statistical significance was
defined as p < 0.05.

Functional Annotation and Enrichment
Analysis
The parental genes of splicing isoforms were subjected to
biological function annotation and enrichment analysis using
clusterProfler package (Yu et al., 2012) and KOBAS online tool
(Xie et al., 2011) The level of significance was defined as q value or
corrected p value <0.05. GO term complexity was reduced by
measuring semantic similarity using rrvgo (Sayols, 2020). Gene
set enrichment analysis (GSEA) (Subramanian et al., 2005) was
employed to dissect the immune-related and autoimmune gene
sets significantly associated with irAE-related genes.
Autoimmune gene sets were derived from Gene and
Autoimmiune Disease Association Database (GAAD) (Lu
et al., 2018), and immune-related gene sets were collected
from the literature (Fischer and Rausell, 2016) and
ImmuneDB (Rosenfeld et al., 2017) (Supplementary Table
S1). All genes were ranked concerning their correlation with
irAE ROR. Gene set variation analysis (GSVA) (Hänzelmann
et al., 2013) was used to obtain the GSVA enrichment scores of
each sample against immune-related gene sets. Gene sets were
considered significantly enriched if their adjusted p-value
was <0.05.

RESULTS

The Association Between irAEs and
Alternative Splicing Characteristics
To delineate the relationship between immune-related adverse
events and alternative splicing, we studied 19 cancer types for
which alternative splicing characteristics from 6906 TCGA
patients and irAE reporting odds ratio (ROR) were available.
We first focused on splicing factors reported to modulate
alternative splicing. We evaluated the association of the
expression levels of splicing factors and irAE ROR. We
identified twelve potential predictors with Rs within the range
of [0.46, 0.54] (Supplementary Table S2 and Figure 1A). Among
them, slightly higher correlations were observed in CDC like
kinase 3 (CLK3), ATP-dependent RNA helicase (DHX16), and
THO Complex 5 (THOC5) (Figure 1A). Compared to cancer
types with low ROR, these predictors were more abundant in high
ROR ones (Figure 1B).

We then asked whether these splicing factors could enhance
the prediction performance of other predictive factors, which
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FIGURE 1 | The association between irAE and alternative splicing characteristics. (A) Spearman correlation between splicing factor expression and irAE ROR. All
splicing factors are ordered by correlations with irAE ROR. The splicing factors with Rs > 0.5 are labeled by name. (B) Expression distribution of the top three significantly
irAE correlated splicing factors in high- and low-irAE ROR cancer types, including CLK3, DHX16, and THOC5. Each dot represents log2 (TPM+0.001) transformed
expression level of each splicing factor in a single sample. The median of the expression level of each splicing factor for each cancer type is indicated by a horizontal
red line. TheWilcox-test p value, comparing the difference of expression levels between high- and low- irAE ROR groups, is delineated at the top. (C)Combined effect of
PD-L1 protein expression + the fraction of high PD-1 messenger RNA expression samples (fPD1) bivariate model (Rs � 0.80, p � 2.2e-04). The dashed line represents
the linear fit. Spearman’s correlation coefficient (Rs) was calculated between predicted and observed irAE ROR. Rs and the corresponding p value are shown at the top-
left of the figure. The regression formula for irAE ROR is −1.80 × PD-L1 protein expression +3.97 × fPD1 + 1.73. DHX16 expression in each cancer type is color-coded.
(D) Combined effect of PD-L1 protein expression + fPD1 + DHX16 expression trivariate model (Rs � 0.88; p � 6.4e-06). The regression formula for irAE ROR is −1.77 ×
PD-L1 protein expression +2.87 × fPD1 + 0.83 × DHX16 expression −1.74. (E) Spearman correlation between irAE ROR and splicing load of each splicing mode. The
bar represents Rs, whereas the color indicates p value. (F) Spearman correlation between neojunction load and irAE ROR. The x-axis indicates the neojunction load
across 19 cancer types, defined as the median number of the total number of neojunction. AS3 alternative 3′ splice site, AS5 alternative 5′ splice site, EX exon skipping,

(Continued )
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were significantly correlated to irAE risk (Supplementary Figure
S1). The combined PD-L1 protein expression and the fraction of
high PD-1messenger RNA expression samples (fPD1) model was
highly correlated with irAE ROR (Rs � 0.80, p � 2.2e-04),
explaining more than 64% of the irAE ROR variance observed
across different tumor types. Notably, most of the cancer types

that showed higher irAE ROR than predicted by the combined
PD-L1 protein expression and fPD1 model had higher DHX16
expression abundances, whereas those showing lower than
bivariate model-based predicted irAE risk had lower DHX16
expression levels (Figure 1C). Accordingly, trivariate model
combining PD-L1 protein expression, fPD1 and DHX16

FIGURE 1 | MEX mutually exclusive exons, RI intron retention. irAE immune-related adverse events, ROR reporting odds ratio, LUAD lung adenocarcinoma, SKCM skin
cutaneous melanoma, LUSC lung squamous cell carcinoma, PRAD prostate adenocarcinoma, BLCA bladder urothelial carcinoma, MESOmesothelioma, BRCA breast
invasive carcinoma, CESC cervical squamous cell carcinoma and endocervical adenocarcinoma, UCEC uterine corpus endometrial carcinoma, SARC sarcoma, ESCA
esophageal carcinoma, PAAD pancreatic adenocarcinoma, OV ovarian serous cystadenocarcinoma, HNSC head and neck squamous cell carcinoma, STAD stomach
adenocarcinoma, CHOL cholangiocarcinoma, COAD colon adenocarcinoma, LIHC liver hepatocellular carcinoma, GBM glioblastoma multiforme.

FIGURE 2 | Statistic correlation of splicing frequency and irAE risk across 19 cancer types. (A) Overview of irAE-related genes detected by correlation analysis
between irAE ROR and splicing frequency of individual gene. The donut plot provides information about the proportion of immune-related genes in all irAE-related genes.
(B) Functional enrichment analysis for highly positively correlated genes. The scatter plot displays the enriched GO terms. GO term complexity was reduced by
measuring semantic similarity using rrvgo. Distances between points represent the similarity between terms. The size of the point represents the number of genes
the GO term contains. (C) Venn plot of irAE-related genes and autoantigen genes. The p value of the hypergeometric test is delineated at the top. (D) Gene set
enrichment analysis (GSEA) using the autoimmune disease gene sets from GAAD. The input to GSEA pre-ranked module was a ranked list of genes determined by Rs
across all genes. (E) Splicing frequency and expression abundance of the top ten genes significantly correlated with irAE ROR across multiple cancer types. The genes
involved in immune response processes were highlighted in red color. Columns represent cancer types. The leftmost panel corresponds to cancer types with high irAE
ROR, the middle panel to cancer types with modest irAE risk, and the right panel to cancer types with low irAE ROR. The top panel indicates the splicing frequency of
genes. Rows are sorted according to Rs. Rs was calculated from the correlation analysis between the splicing frequency of genes and irAE ROR. The bottom panel
shows the expression abundance of each gene, in which Rs was calculated from the expression level of each gene and irAE ROR.
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expression markedly enhanced the irAE prediction (Rs � 0.88, p �
6.4e-06; Figure 1D) with a significant log-likelihood model
improvement compared with bivariate model (p < 2.2e-16).
The multicollinearity assessment among the variables showed
that no variable exceeded the critical values of VIF >4
(Supplementary Figure S2). These results suggested that these
splicing factors can hold promise as biomarkers for irAEs.

Neoantigens stemmed from TMB have been suggested to
contribute to irAE development (Bomze et al., 2019). Given that
alternative splicing is an important source of potential neoantigens
(Lee and Ruppin, 2019), we hereby assessed the predictive potential
of splicing load and neojunciton load for irAE risk. No significant
correlations existed between irAE risk and splicing load, as well as
neojunction load (Figures 1E,F and Supplementary Figure S3).
Increased predictive performance was detected in the bivariate
model combining neojunction load and mutational burden, albeit
the statistical significance cutoff was not met (Supplementary
Figure S4). The splicing load of autoantigen genes was also
irrelevant to irAE ROR (Supplementary Figure S5). These
observations, although unexpected, led us to consider that the
role of alternative splicing in irAE pathogenesis may be
predominantly mediated through impacting a portion of protein
function, rather than releasing excess altered antigens.

Statistic Association of Gene Splicing
Frequency and irAE ROR
We used splicing frequencies of genes as indicators and evaluated the
association between these indicators and irAE risk. Positive or negative
hits were defined as irAE-related genes (p < 0.05). We identified 668
potential predictors based on correlation analysis (Supplementary
Table S3). Notably, the preponderance of irAE-related genes
identified was positively correlated with irAE risk, with a smaller
number was inversely correlated to irAE ROR (Figure 2A). The genes
highly positively associated with irAE (Rs > 0.5, p < 0.05) were
significantly enriched in immune response processes, including
leukocyte mediated immunity, regulation of immune system
process, as well as T-cell differentiation and activation (Figure 2B).
Strikingly, autoantigen genes were preferentially over-represented in
irAE-related genes (p � 1.46e-13, hypergeometric test; Figure 2C),
suggesting a close link between autoimmunity and irAE development.
Gene set enrichment analysis reinforced the above findings, in which
irAE ROR positively correlated genes were significantly enriched in
autoimmune disease gene sets (Figure 2D). These results suggested
that alternative splicing might contribute to the connection between
autoimmunity and irAEs development.

The splicing frequencies of the top ten irAE ROR correlated genes
were depicted by heatmap (Figure 2E). More than half of them were
reported to be involved in immune response processes (Figure 2E).
Of particular interest, Wnt-1 induced secreted protein-2 (WISP2/
CCN5), which is involved in inflammation response and
autoimmune disease (Tanaka et al., 2005; Macdonald et al., 2021),
achieved the highest correlation coefficient (Rs � 0.81, p � 2.82e-5;
Figure 2E). In addition, the expression levels of most predictors were
independent of irAE ROR (Figure 2E), indicating extraordinary
predictive values of gene splicing frequency for irAE risk.

Comprehensive Identification for Potential
irAE Biomarkers on Isoform-Level
Splicing isoforms produced by alternative splicing encompass
the information about expression abundance and differences
in exon inclusion or exclusion, which may be valuable
resources to derive surrogate biomarkers for irAEs. Thus,
we detected and characterized the relationship between the
expression of splicing isoforms and irAE ROR using pan-
cancer data. In total, 1,131 splicing isoforms derived from
949 genes, were significantly associated with irAE ROR
(Figure 3A). Particularly, 550 genes corresponding to 618
splicing isoforms were significantly correlated with irAE
risk only on isoform-level (Figure 3A), such as GANAB,
ELP2, and MTCH1, which would be overlooked by standard
gene-level analysis. As exhibited in Figure 3B, GANAB-201
was the strongest positive correlate of irAE ROR (Rs � 0.75; p �
1.88e-4), but the expression level of its parental gene was
unrelated to irAE ROR (Figure 3B).

We applied pathway enrichment analysis to analyze irAE-
related splicing isoforms. Enriched pathways were divided into
five groups based on functional hierarchy. Significantly, immune-
related pathways were highly enriched, such as T cell receptor
signaling pathway, chemokine signaling pathway, and C-type
lectin receptor signaling pathway (Figure 3C). Specifically,
several genes involved in T cell activation and T cell mediated
cytotoxicity were significantly correlated with irAE ROR on
isoform-level (Figure 3D), such as WBP1, LAT, EIF2AK4, and
CTSC, suggesting alternative splicing may mediate irAE
development by fine-tuning gene expression. Other pathways
related to metabolism, genetic information processing, and signal
transduction were also strongly enriched (Figure 3C), indicating
that there is likely substantial complexity underlying irAE
development, although currently analyses remain do not offer
proof of causal relationships.

To further explore the function of irAE-related splicing
isoforms, three curated gene sets related to innate and adaptive
immune responses, as well as autoimmune diseases were used to
characterize the immune phenotype (Figure 4A). A relatively large
proportion of highly positively correlated splicing isoforms were
involved in innate immune response and autoimmune diseases
(Figure 4A). Function enrichment analysis revealed innate
immune response-related predictors participated in important
immune response processes, such as T cell mediated immunity,
interleukin-10 production, and T cell activation (Figure 4B).
GSVA analysis further revealed that innate immune response as
major biology process activated in cancer types with high irAE risk
(Figure 4C). Moreover, the adaptive immune response also
exhibited a significant activity difference between high and low
irAE ROR cancer types (Supplementary Figure S6). These results
suggested alternative splicing might contribute to irAE
pathogenesis via coordinating the activation of both innate and
adaptive immunity.

Previous studies have suggested that irAEs are promising
predictors for the efficacy of ICIs (Zhong et al., 2021).
Therefore, we next asked whether these splicing isoforms
could not only reflect irAE risk but also have the potential of
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predicting response to ICIs. The result showed that only 30
splicing isoforms were also indicators of ICIs response based
on the associations with the objective response rate (ORR) of 16
cancer types obtained from Lee and Ruppin (2019)
(Supplementary Table S4).

Construction of Regression Model to
Predict irAE Risk
We further sought to identify more powerful predictive models
that can be more easily translated into clinical practice. The top
ten irAE ROR significantly correlated splicing isoforms were
utilized for building the irAE ROR predictions (Figure 5A).

These predictors were predominantly upregulated in cancer
types with high irAE ROR compared to low irAE ROR cancer
types (Figure 5B). CDC42EP3-206 was the most predictive of
irAE risk across cancer types (Rs � 0.79, p � 5.8e-05), followed by
TMEM138-211 (Rs � 0.77, p � 1.1e-04). Combinations between
any two or three of these predictors were then evaluated by
Spearman correlation and goodness of fit using the log-likelihood
ratio test. Notably, the combination of CDC42EP3-206 and
TMEM138-211 with most of the other predictors achieved
better predictive performance (Figure 5C). Specifically, the
CDC42EP3-206 + TMEM138-211 + IRX3-202-based model
achieved maximum predictive efficacy (Rs � 0.94, FDR � 1.8e-
09), explaining more than 88% of the ROR variance observed

FIGURE 3 | Identification of irAEs-related splicing isoforms. (A) Venn plot of irAEs-related genes identified on gene- and isoform-level, respectively. (B) Spearman
correlation between irAE ROR and GANAB expression on gene and isoform level. Rs and the corresponding p value are shown at the top-left of the figure. Strip plots show
expression distribution of GANAB on gene (left) and isoform level (right). Each column represents a cancer type. Each dot corresponds to log2 (TPM+0.001) transformed
expression value of the selected gene in one sample on gene- and isoform-level, respectively. The dashed lines display the median of GANAB expression in GBM on
gene- and isoform-level, respectively. (C) Pathway enrichment analysis for positive correlated splicing isoforms to irAE. The pathways are colored according to pathway
hierarchy. The number of parental genes is shown by dot size. (D) Spearman correlation between irAE ROR and splicing isoforms involved in T cell activation and T cell-
mediated cytotoxicity. * indicates significant correlation (p value <0.05). The bar represents Rs, whereas the color indicates Rs is calculated at gene or isoform level.
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across different tumor types (Figures 5C,D). We further
evaluated the performance of the combinations of CDC42EP3-
206 + TMEM138-211 + IRX3-202 with other factors. Finally, we
established a combination model composed of CDC42EP3-206,
TMEM138-211, IRX3-202, and PD-L1 gene expression
(Figure 5E), with a slightly enhanced prediction performance
(Rs � 0.96, p � 8.7e-09). The relationship assessment between
these predictors indicated that no multicollinearity was detected,
suggesting the independent prediction for irAE (Figure 5F).

DISCUSSION

Cancer treatment by immune checkpoint inhibitors holds
promise for cancer therapy. With the growing use of ICIs,
unpredictable irAEs exhibit a significant increase, and become
a major obstacle for the optimal application of ICIs in cancer
therapy. The predictive value of alternative splicing for prognosis
and drug resistance has been suggested by several studies.
However, the predictive potential of alternative splicing for
irAE has not been clarified. To deeply understand the
relevance of splicing modulation for irAE development, we
systematically investigated the relationships between alternative
splicing characteristics and irAE risk by integrating
pharmacovigilance and molecular data.

Emerging evidence expounds the roles of splicing factors in
cancer and immunity (Yang et al., 2021). The function of splicing
factors in irAE development has not been described. In the
present study, twelve splicing factors were identified to be

significantly correlated with irAE risk (Supplementary Table
S2), suggesting predictive value for irAE. Indeed, adding DHX16
to the bivariate PD-L1 protein expression-fPD1 model led to a
trivariate regression model with a significantly improved
accuracy and decreased the unexplained variance from 0.36
(1–0.802) to 0.23 (1–0.882) (Figure 2D). DHX16 is linked to
several malignant and autoimmune diseases, and its role in innate
immunity has been documented (Gencheva et al., 2010; Hage
et al., 2019). Our observation provides new evidence for splicing
factors as another instrument for the regulation of irAEs.

By considering alternative splicing-derived, in addition to
mutant-derived, peptides as potential antigens, we interrogated
the associations between irAE risk and the descriptors associated
with alternative splicing-derived neoantigens, including the total
splicing load, neojunction load, and splicing load of autoantigen
genes. We failed to find a correspondence between irAE risk and
these descriptors (Figures 1E,F and Supplementary Figures
S3–S5). The above evidence indicated that alternative splicing
seems to affect irAE development by driving functional effects on
particular genes rather than increasing overall splicing diversity
to release excessive altered antigens. It is quite possible that a large
fraction of the increased splicing diversity is a passenger due to
disrupted splicing machinery in cancer cells, which often leads to
a lower accuracy of splicing (Pickrell et al., 2010).

Alternative splicing is becoming increasingly recognized as an
important mechanism for the generation of structural and
functional diversity in proteins, which can alter protein
function, and even remodel protein-protein interaction
networks. Our analysis revealed a significant correlation

FIGURE 4 | Functional characteristics of irAE ROR significantly correlated splicing isoforms. (A) The intersections of parental genes of highly positively irAEs-related
splicing isoforms (Rs > 0.6, p value < 0.05) with immune-related and autoimmune disease gene sets. The color dot plot showsRs values of irAEs-related splicing isoforms
in each corresponding subset. The upper inset shows the proportion of irAE-related splicing isoforms annotated into the corresponding gene sets. (B) Functional
enrichment analysis of irAEs-related splicing isoforms associated with innate immune response (top 10). Bar plot shows -log10Corrected p values of significantly
enriched pathways. (C) GSVA enrichment scores of innate immune response in patients with high and low irAE risk.
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FIGURE 5 | Regression analysis for splicing isoforms to predict irAE risk. (A) The top ten splicing isoforms significantly correlated with irAE ROR across multiple
cancer types. The bar represents Rs, and the color indicates the corresponding p value. (B) Expression distribution of representative splicing isoforms positively
correlated to irAE in different TCGA cohorts. Boxplots represent log2 (TPM+0.001) values for splicing isoforms. Within each TCGA cohort, the bottom and top of the
boxes are the 25th and 75th percentiles (interquartile range), and the thick line represents the median value. The whiskers encompass 1.5 times the interquartile
range. (C) Comparison of performance of bivariate and trivariate models in predicting irAE for all combinations of the top ten irAE ROR significantly correlated splicing
isoforms. Rs was calculated between predicted and observed irAE ROR. (D) Combination of CDC42EP3-206, TMEM138-211, and IRX3-202 to predict irAE risk. The
dot color represents the cancer type. The dashed line represents the linear fit. (E) Combination of CDC42EP3-206, TMEM138-211, IRX3-202, and PD-L1 gene
expression to predict irAE risk. (F) Multicollinearity assessment of the models fitted using the Variance Inflation Factor (VIF).
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between the ROR of reporting an irAE during ICIs therapy and
the corresponding gene splicing frequency across multiple cancer
types. The prevalence of alternative splicing was found to be
highest in genes related to immune response processes, especially
in T cell differentiation and activation (Figure 2B). Moreover,
nine splicing isoforms involved in T cell activation and T cell
mediated cytotoxicity were significantly associated with irAE risk
(Figure 3C). Our findings align well with the evidence of T cell
response in irAE lesions. Our results also revealed significant
enrichment of irAE-related splicing isoforms in signaling
pathways that have been previously associated with irAEs,
including mTOR and JAK/STAT signaling pathways
(Figure 3C, Supplementary Table S4). The mTOR signaling
pathway has an important role in the modulation of both innate
and adaptive immune responses (Powell et al., 2012). Aberrant
activation of mTOR signaling has been known to contribute to
the pathogenesis of autoimmune disorders and cancer (Perl,
2015). Presumably, mTOR signaling has a similar pathogenic
role and potential therapeutic target in irAEs. The mTOR
inhibitor in combination with anti-PD-1 therapy did indeed
maintain allograft tolerance without compromising anti-tumor
efficacy (Esfahani et al., 2019). Similar to mTOR signaling, the
JAK/STAT pathway has been implicated in the pathogenesis of
autoimmune states and irAEs (Esfahani et al., 2020), and the
inhibition of JAK/STAT signaling has led to remarkable
remissions in the setting of autoimmune disorders (Lee et al.,
2014; Sandborn et al., 2017). The mTOR and JAK/STAT
signaling pathways have emerged as promising therapeutic
targets for the treatment of irAEs. Besides, irAE-related
predictors were also strongly enriched in other pathways
related to metabolism, genetic information processing, and
cellular processes (Figure 3C), indicating the complexity of
the biological basis underlying irAE development. However,
the impacts of these pathways for irAE pathogenesis have yet
to be fully elucidated. Further research into the roles of these
predictors during checkpoint blockade may be critical for
developing combination therapies to uncouple the efficacy and
toxicity of ICIs and overcome irAE risk.

Furthermore, a part of predictors for irAEs identified in the
present study was related to autoimmune diseases (Figure 2D and
Figure 4A). Specifically, numerous autoantigen genes with high
splicing frequency were significantly correlated with irAE
(Figure 2C). Therefore, we speculate that splicing of autoantigen
genes may, to some extent, be related to irAE development.
Increased noncanonical splicing of autoantigen genes augments
the probability of confronting the immune system with
untolerized epitopes and eventually leads to irAEs (Ng et al., 2004).

The current evidence points towards a crucial role of the innate
immune system in potentially driving irAEs (Esfahani et al., 2020),
as demonstrated in this study (Figure 4). Innate immune cells can
mediate irAE development likely both in cooperation with and
independent of adaptive immune cells (Lee et al., 2021). Studies
have reported associations of irAEs with the recruitment of
CD14+CD16+ monocytes (Curry et al., 2019), the presence of
eosinophilia (Kizawa et al., 2019), increased neutrophil/
lymphocyte ratio (NLR) (Drobni et al., 2020), as well as NK
cell-mediated antibody-dependent cell-mediated cytotoxicity

(ADCC) reactions (Kelly et al., 2018). In addition to the innate
immunity, seven genes related to the adaptive immune response
also underwent alternative splicing and that were highly correlated
with irAE risk (Figure 4A). Deciphering the connections between
innate and adaptive immunity and adverse reactions from the
perspective of alternative splicing holds promise for a better
understanding of both processes.

To our knowledge, this is the first systematic evaluation of the
relationship between alternative splicing characteristics and the
risk of developing irAEs. Despite being preliminary, we envision
that alternative splicing characteristics may represent meaningful
biomarkers for irAEs and immunotherapy response in clinical
practice. Understanding the factors that contribute to irAE
development may help prevent and treat irAEs in patients
undergoing ICIs. To establish alternative splicing
characteristics as new biomarkers for irAE development,
further studies will be needed to validate our findings in a
larger, independent cohort. It would be of significant interest
to test the clinical utility of these predictors in ICI decision-
making in a prospective clinical trial.
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