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Abstract: This study presents an accurate biexponential weighted stochastic conjugate direction
(WSCD) method for the quantitative T2-mapping reconstruction of magnetic resonance images
(MRIs), and this approach was compared with the non-negative-least-squares Gauss–Newton (GN)
numerical optimization method in terms of accuracy and goodness of fit of the reconstructed images
from simulated data and ruptured Achilles tendon (AT) MRIs. Reconstructions with WSCD and GN
were obtained from data simulating the signal intensity from biexponential decay and from 58 MR
studies of postrupture, surgically repaired ATs. Both methods were assessed in terms of accuracy
(closeness of the means of calculated and true simulated T2 values) and goodness of fit (magnitude
of mean squared error (MSE)). The lack of significant deviation in correct T2 values for the WSCD
method was demonstrated for SNR ≥ 20 and for GN–SNR ≥ 380. The MSEs for WSCD and GN were
287.52 ± 224.11 and 2553.91 ± 1932.31, respectively. The WSCD reconstruction method was better
than the GN method in terms of accuracy and goodness of fit.

Keywords: quantitative T2-map; biexponential method; weighted reconstruction; Achilles tendon
rupture; MRI

1. Introduction

Quantitative T2 mapping is used to measure the transverse relaxation time T2 and
assess degenerative and reparative processes in musculoskeletal tissues such as tendons,
ligaments, articular cartilage, and muscles [1,2]. This technique is used to assess Achilles
tendon (AT) ruptures, cruciate ligament tears, lumbar disc degeneration, and even to detect
myocardial infarction [3–7]. Quantitative T2 mapping has attracted much attention in recent
years due to the incorporation of corresponding sequences into generally available MRI
scanners (e.g., the CartiGram sequence—GE and the MyoMaps sequence—Siemens) [8,9].

A T2 map consists of relaxation times calculated for every image voxel. The standard
approach for obtaining T2 times requires acquiring at least two different echo time (TE)
images and fitting them to a given minimization model. The most commonly used fitting
methods are based on non-negative, nonlinear least squares regression with a monoexpo-
nential function. Currently, the Gauss–Newton (GN) numerical optimization method is
the most frequently used in radiological workstations. However, this method significantly
increases the noise level of the reconstructed images, which results in a reduction in the
reconstruction accuracy [10,11]. This is of particular importance for low signal-to-noise
ratio (low SNR) MRIs [12].

Contrary to the commonly used monoexponential reconstruction method, we present
a new method of calculating so-called biexponential T2 maps. Our method, a weighted
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stochastic conjugate direction method (WSCD), can also be successively used for mono-
exponential reconstruction; however, its use as a biexponential method has many more
benefits. This approach enables the differentiation of two T2 components (short and long
components) for a single type of biological tissue. The difference between these two com-
ponents reflects the local anisotropy and subvoxel inhomogeneity of the tissue, especially
during its regeneration. The most challenging issue related to the biexponential approach is
dealing with the effects of noise on the stability of the reconstruction results. Another issue
is associated with the elongation of the examination and reconstruction times compared
to those in the monoexponential method. Our method addresses both issues. We propose
innovative concepts such as the introduction of weights into a biexponential model to
reduce noise and increase the accuracy of our method and the use of a novel stochastic
method to shorten the reconstruction time.

To verify the outstanding accuracy and quality of the new approach, it was compared
to the standard GN method based on synthetic data simulations and MRIs of the postrup-
ture AT. The GN approach can also be used in biexponential reconstruction; however, both
the noisiness and reconstruction time are increased [13]. T2 maps of ATs of high clinical
importance are used in the assessment of the healing process [13,14]. The biomechanical
and biochemical changes in the collagen fibers of the tendon that occur during rupture
and recovery lead to significant changes in T2 time. An operative, surgical approach for
repairing postrupture AT, which has been gaining popularity, requires MRI for differential
diagnosis, surgical treatment planning, and regeneration monitoring follow-up [15]. There-
fore, postrupture AT MRIs appear to be an ideal basis for quality assessments of different
T2-mapping approaches, especially more sophisticated approaches [16].

The incidence of AT rupture is high—approximately 7–18 per 100,000 in the general
population—and it may occur during spontaneous recreational activity or during profes-
sional sports activities [17,18]. Compared to that for other tendons and ligaments, the
AT healing process is prolonged due to comparatively poor blood supply [19,20]. Major
changes in the AT mainly occur during the first half year after injury, resulting in changes
in the MRI of the tendon [21].

Therefore, the aim of this study was to present a new WSCD method and assess its
accuracy based on simulated data and AT rupture MRIs.

2. Materials and Methods
2.1. Calculation of T2 Time

A biexponential signal can be considered a sum of two monoexponential signals
containing the short T2 relaxation time (TS), long T2 relaxation time (TL), short signal ampli-
tudes (AS), and long (AL) signal amplitudes. The signal is affected by noise (η(t)). Therefore,
the relationship between the above-mentioned parameters and the signal function (f ) for a
given echo time (t) is defined as [11]:

f (t) = AS exp
(
− t

TS

)
+ AL exp

(
− t

TL

)
+ η(t) (1)

We assumed that the noise has an impact on the input signals to different degrees. To
compensate for the differences in noise levels among input signals, weights were introduced
in our WSCD method. The model function, considered for a single point P in an image, is
given by:

fP(t) = WP(t)
[

ASP exp
(
− t

TSP

)
+ ALP exp

(
− t

TLP

)
+ ηP(t)

]
(2)

where t is the TE; TSP and TLP are the T2 relaxation times of the short- and long-time
components, respectively; ASP and ALP are the signal amplitudes of the short- and long-
term components, respectively; η(t) is noise; and W(t) is a weight [22]. The last term
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in the model function is a multiplication term related to noise, which is assumed to be
homogenous, and weight factors. The average noise level (n) is therefore constant.

The weights are calculated within a window of radius r. The window is defined as a
neighborhood U of point P with dimensions of (2 × r + 1)2 pixels. It is assumed that point
Q belongs to the neighborhood U and is not equal to the point P (Figure 1).
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The weights are calculated in U for point P and are defined by:

WP(t) =
nTE·∑Q∈U

[
αP,Q(t)ωP,Q(t)

]
∑m

t=1 ∑Q∈U αP,Q(t)
(3)

where nTE is the number of echo times; αP,Q is the weighting factor; and ωP,Q is the
normalization factor between points P and Q. The weighting factor is used to increase the
total weight if the difference between the signal intensities at points P and Q is small, which
occurs in the case of low noise. Consequently, images with lower noise levels are promoted,
causing an increase in the total SNR for the resulting T2 map, even if the SNRs of the input
images are low. These factors are calculated with the following equations:

αP,Q(t) = exp

(
−||P, Q||2

σ2

)
· exp

(
−
(
yP(t)− yQ(t)

)2

σ2

)
(4)

ωP,Q(t) =
yQ(t)
yP(t)

(5)

where yP(t) is the input signal at point P; yQ(t) is the input signal at point Q, ||P,Q|| is the
distance between points P and Q; and σ is the standard deviation of the noise [22]. Weights
were introduced to decrease the influence of signal noise. The local noise measure was
assumed to be a variance (σ2) calculated for each voxel and each echo time within a window
of a given radius. Therefore, to avoid overestimation of the noise within windows, the
variance was used in the denominator of the above-mentioned equation. The normalization
factor was used to reduce the impact of noise on the considerably different signal values at
points P and Q. A similar approach was used in anisotropic denoising algorithms [23,24].
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The function used for minimization with our WSCD model was the mean squared error
(MSE) of the fit between the model function (fP(t)) and the given input signal (yP(t)) [25]:

gP(θ) =
m

∑
t=1

[ fP(t)− yP(t)]
2 (6)

where θ is the set of estimated parameters, which are the relaxation times of the short-
and long-term components (TSP and TLP), signal amplitudes (ASP and ALP), and noise
(nP). Based on Equations (2) and (6), the minimization function for the above-mentioned
parameters is given by:

g
(
TSP , TLP , ASP , ALP , nP

)
=

m

∑
t=1

[
WP(t)·ASP exp

(
− t

TSP

)
+ WP(t)·ALP exp

(
− t

TLP

)
+ nP − yP(t)

]2
(7)

The WSCD method requires a set of initial parameters and initial search vectors.
The initial parameters are calculated by monoexponential log-linear regression at time
T2 and for amplitude A. The initial TS and TL parameters are equal to 75% and 125% of
monoexponential T2, respectively, and AS = AL = A/2. The initial noise level is set to zero.
Therefore, the initial set of parameters is defined as:

B0(0.75T, 1.25T, A/2, A/2, 0} (8)

The initial search vector values are equal to 10, and their normals are aligned to each
axis. In each step, a line search is performed from the initial set of parameters (point B0) to
the end point (Bi

1) along the search vector (vi). Any point located between B0 and Bi
1 can be

defined as:

Bi
s = B0 +

→
vi·s (9)

where s ∈ <0,1> [26].
The segment |B0Bi

1| is divided into m = 20 subsegments that are equal in length. Let
us consider the set of points (Ci) containing points B0 and Bi

1 and the set of points Bi
k for

which the value of the function g
(

Bi
k/m

)
is larger than the function value at two adjacent

points g(Bi
(k−1)/m) and g(Bi

(k+1)/m); k ∈ (0,m). For each subset of the set Ci, which includes

two adjacent points (Ci
j, Ci

j+1), a minimum Mj is found between these points during the
line search with the Brent method [26]:

Mj

(
C0

j +
→

C0
j C0

j+1·γ
0, C0

j +
1

∑
i=0

−−−→
Ci

jC
i
j+1·γi, . . . , C0

j +
κ

∑
i=0

−−−→
Ci

jC
i
j+1·γi

)
(10)

where κ = 4 is the number of parameters reduced by one and γi is the scalar determined

from the model function during the line search along vector
−−−→
Ci

jC
i
j+1. The new point Dj

obtained from the minimum Mj is:

Dj = C0
j +

κ

∑
i=0

−−−→
Ci

jC
i
j+1·γi (11)

The new displacement vector becomes a new search vector (vi
j), and the search vector

that contributes the most to the new direction is deleted. Both the new Dj and vi
j are added

to the list. In the next iteration, the point at which the model function has the lowest value
and corresponding vector are pulled from the list. The other nine points and vectors are
randomly selected from the list. For all ten points and vectors, the new minima, points, and
search vectors are calculated and added to the list. The algorithm iterates 200 times or until
no significant improvement is obtained, defined as a difference between the parameters in
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the previous iteration and current iteration, equaling less than 0.0001. The point associated
with the lowest value of the model function is considered the global minimum.

2.2. Simulation Data

The data used to simulate the signal intensity with biexponential decay were produced
with Equation (1). Considering both the bias and the acquisition time, the simulation data
were created with eight TEs: 9, 18, . . . , 72 ms. To simulate real conditions, we created
100 × 100 pixel intensity images that consisted of 25 subimages (with a resolution of
20 × 20 pixels). Each subimage differed in terms of short and long relaxation times and
signal amplitudes. According to the method proposed by Anastasiou and Hall [27], noise
with a Rician distribution was added for SNR < 7, and noise with a Gaussian distribution
was added for SNR ≥ 7. Several standard deviations (SDs) of noise were chosen, namely, σ
∈ 50, 75, 150, 300, and 600, resulting in five sets of eight signal intensity images (Figure 2).
The arbitrary selection of noise levels resulted in constant SNR values throughout the
image. The SNR in the simulated data was defined as the quotient of the signal value and
noise value. Therefore, the images had SNR values equal to 60, 40, 20, 10, and 5. The results
were analyzed according to these SNR values.
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Figure 2. Simulated signal intensity with biexponential decay for TE = 9 ms. The signal intensity was
created from two constant-amplitude components 1200 and 1800: (a) short T2 component with values
of 5, 10, 15, 20, and 25 ms; (b) long T2 component with values of 40, 50, 60, 70, and 80 ms; (c) noise
(level was set to 50); and (d) the simulated image consisting of 25 subimages (20 × 20 pixels).
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The GN with the model function given in Equation (1) was used as a reference for the
WSCD method, and the accuracy was assessed for both methods. Accuracy was defined as
how close to the mean calculated relaxation times for the short and long time components
were to the true T2 values. This metric was calculated separately for each SNR level. A
statistical analysis was performed with the Wilcoxon signed-rank test (WSRT), and the 95%
confidence intervals over the pseudomedian were estimated. The mean differences and
SDs of TS and TL values were also calculated for each method and SNR level.

2.3. MRI Acquisition Protocol

Fifty-eight postrupture AT patients underwent magnetic resonance examinations one
week after surgery. The MRI procedure was performed on a 1.5-T MRI unit (Sigma HDxt,
GE Medical Systems, General Electric, Chicago, IL, USA) using an eight-channel phased-
array transmit/receive leg coil (HD Lower Leg Coil, General Electric, Chicago, IL, USA).
For the T2 time measurements, the fast multiple spin echo sequence was used. The T2 map
imaging parameters were as follows: repetition time = 1200 ms, eight TEs = 9, 18, . . . , 72 ms,
field of view = 150 × 150 mm2, matrix = 512 × 512 voxels, number of slices = 10, slice thick-
ness = 3.5 mm, spacing between slices = 4.2 mm, average acquisition time = 8:17 min, and
in-slice resolution = 0.29 × 0.29 mm2. All subjects provided written informed consent, and
the study was approved by the regional research ethics board. A detailed characterization
of the obtained signals is presented in Figure 3.

Healthcare 2022, 10, 784 6 of 15 
 

 

The GN with the model function given in Equation (1) was used as a reference for 
the WSCD method, and the accuracy was assessed for both methods. Accuracy was de-
fined as how close to the mean calculated relaxation times for the short and long time 
components were to the true T2 values. This metric was calculated separately for each 
SNR level. A statistical analysis was performed with the Wilcoxon signed-rank test 
(WSRT), and the 95% confidence intervals over the pseudomedian were estimated. The 
mean differences and SDs of TS and TL values were also calculated for each method and 
SNR level. 

2.3. MRI Acquisition Protocol 
Fifty-eight postrupture AT patients underwent magnetic resonance examinations 

one week after surgery. The MRI procedure was performed on a 1.5-T MRI unit (Sigma 
HDxt, GE Medical Systems, General Electric, Chicago, IL, USA) using an eight-channel 
phased-array transmit/receive leg coil (HD Lower Leg Coil, General Electric, Chicago, IL, 
USA). For the T2 time measurements, the fast multiple spin echo sequence was used. The 
T2 map imaging parameters were as follows: repetition time = 1200 ms, eight TEs = 9, 
18,…, 72 ms, field of view = 150 × 150 mm2, matrix = 512 × 512 voxels, number of slices = 
10, slice thickness = 3.5 mm, spacing between slices = 4.2 mm, average acquisition time = 
8:17 min, and in-slice resolution = 0.29 × 0.29 mm2. All subjects provided written informed 
consent, and the study was approved by the regional research ethics board. A detailed 
characterization of the obtained signals is presented in Figure 3. 

 
Figure 3. Signal-to-TE dependency for MRI examinations of the average signal of a single study 
from an automatically segmented AT region, proving that the signal is sufficient for biexponential 
fitting (solid line). In comparison, a monoexponential fitting result (dashed line) is presented, and it 
displayed a larger error of fit. Data points are marked in red. 

The AT region was segmented with a multistep segmentation algorithm based on the 
region growing approach described in detail in [21]. The algorithm consists of adaptive 
thresholding for monoexponentially reconstructed T2 maps, automatic placement of seed 
points, seed region growing, and morphological closing operations. Biexponential T2-
map reconstructions were performed for segmented AT regions (Figure 4). 

To confirm the goodness of fit of our method, an analysis of MSEs was performed 
separately for the WSCD and GN models based on MRI data. Each MSE was calculated 
as the square of the measured signal minus the fitted value. To determine whether one of 
the biexponential models provided a better fit, MSEs were compared, and the model with 
the lower MSE was selected as more suitable. The MSEs were compared between the 

Figure 3. Signal-to-TE dependency for MRI examinations of the average signal of a single study
from an automatically segmented AT region, proving that the signal is sufficient for biexponential
fitting (solid line). In comparison, a monoexponential fitting result (dashed line) is presented, and it
displayed a larger error of fit. Data points are marked in red.

The AT region was segmented with a multistep segmentation algorithm based on the
region growing approach described in detail in [21]. The algorithm consists of adaptive
thresholding for monoexponentially reconstructed T2 maps, automatic placement of seed
points, seed region growing, and morphological closing operations. Biexponential T2-map
reconstructions were performed for segmented AT regions (Figure 4).
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Figure 4. Intensity signal obtained with TE = 18 ms. The high level of noise in the surrounding
air was noticeable. Segmentation of the AT region (outlined in red) was provided automatically.
Biexponential T2 map reconstructions were performed based on segmented AT regions.

To confirm the goodness of fit of our method, an analysis of MSEs was performed
separately for the WSCD and GN models based on MRI data. Each MSE was calculated as
the square of the measured signal minus the fitted value. To determine whether one of the
biexponential models provided a better fit, MSEs were compared, and the model with the
lower MSE was selected as more suitable. The MSEs were compared between the models
with the WSRT. For the accuracy assessment, the SNRs of the WSCD and GN methods
were compared.

To compare the accuracy of both methods based on real MRI data, the resultant
SNR was calculated using the background noise in air as a reference. The signal was the
average value from the segmented AT T2 map. Noise was defined as the mean value in the
background. The SNR values were compared with the WSRT results. A statistical analysis
was performed with RStudio.

3. Results

The accuracy assessment performed based on the simulated data and subsequent
WSRT showed that the results of the WSCD method for cases with a SNR greater than 20
did not show a significant deviation from the true T2 values. The detailed results are shown
in Table 1. For SNRs less than 20 in the WSCD method and for SNRs less than 380 in the
GN method, the WSRT indicated that the results significantly deviated from the true T2
values (p < 0.0001).
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Table 1. Detailed results of the accuracy of the GN and WSCD reconstruction methods. Significant
deviations from true T2 time values for short (TS) and long (TL) components were obtained for all
SNRs based on the GN method and for SNRs < 20 based on the WSCD method. The WSCD method
with an SNR ≥ 20 did not show a significant deviation from the true T2 values. The statistical
analysis was performed with the Wilcoxon signed-rank test with continuity correction. The numerical
values of the mean difference from true T2 values, standard deviation from the pseudomedian, and
confidence intervals (CI) of TS and TL are given in milliseconds.

SNR Method Mean
Difference

Standard
Deviation

Wilcoxon Signed-Rank Test with
Continuity Correction

Pseudo
median CI lower CI upper p

TS

5
GN −1.14 17.06 −1.38 −1.82 −0.93 0.0000

WSCD 3.41 5.73 1.30 0.41 2.18 0.0000

10
GN 0.30 15.42 −0.51 −0.92 −0.11 0.0000

WSCD −2.00 5.05 −0.54 −0.81 −0.26 0.0000

20
GN 2.23 11.13 1.66 1.25 2.40 0.0000

WSCD −0.51 5.73 −0.89 −2.18 0.41 0.0895

40
GN 2.92 7.98 2.50 2.01 2.95 0.0000

WSCD −0.42 4.04 −0.05 −0.43 0.33 0.1315

60
GN 2.97 6.76 2.50 2.30 2.71 0.0000

WSCD 0.54 3.60 0.02 −0.03 0.07 0.2112

TL

5
GN 20.27 33.32 14.95 10.10 40.00 0.0000

WSCD 14.05 10.46 14.05 6.65 21.44 0.0000

10
GN 13.26 25.28 15.00 12.49 17.50 0.0000

WSCD 6.36 12.89 4.90 −0.56 10.44 0.0017

20
GN 13.44 22.06 12.51 12.50 14.99 0.0000

WSCD −0.50 6.43 −0.40 −1.73 0.94 0.3139

40
GN 12.07 15.94 10.00 10.00 12.50 0.0000

WSCD −0.81 4.51 −0.20 −0.52 0.12 0.1025

60
GN 8.80 13.96 7.50 7.50 10.00 0.0000

WSCD 0.27 2.88 0.10 −0.16 0.40 0.2137

The GN method displayed a tendency to overestimate T2 values for all SNRs for the
short time component. The lack of significant deviation in correct T2 values was proven for
the GN method for SNR≥ 380. The relations between true values estimated with the means
and SDS of the WSCD and GN short and long relaxation times are shown in Figure 5. A
comparison of the T2 map reconstruction results obtained with the WSCD and GN methods
for simulated data is presented in Figure 6.

The analysis of both methods was performed based on 580 separate slices of AT
MRIs. The mean SNR value of the initial MRIs was 26.59, and therefore, according to
the simulation data, T2 maps reconstructed with the WSCD method for real MRIs of the
postrupture AT region were above the lower threshold of the SNR (SNR > 20) and did not
show a significant deviation from the true T2 values. T2 maps reconstructed with the GN
approach were below the lower threshold of the SNR, thus significantly deviating from the
true T2 values.

The averages of the TS and TL values in the AT region obtained with the WSCD
method were 12.52 ± 9.67 and 70.41 ± 46.12, and those obtained with the GN method were
17.16 ± 10.54 and 75.70 ± 70.51, respectively. An example of MRI reconstruction is shown
in Figure 7. The average values of noise, calculated for the air background, for Ts and TL
obtained with the WSCD method were 0.49 ± 3.95 and 2.75 ± 7.54, and those obtained
with the GN method were 5.58 ± 10.54 and 25.75 ± 24.51, respectively.
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Figure 6. Comparison of biexponential reconstructions based on the GN and WSCD methods with
the true TS, TL, AS, and AL maps. True maps were used to create simulated intensity signals from
which the biexponential reconstructions were obtained. The noise level was set to 100 and was
normally distributed. The reconstruction maps were affected by noise; however, the WSCD method
proved to be more accurate.
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The mean value of the SNR for the resultant reconstructions was 25.51 for the WSCD
method and 3.02 for the GN method, verifying the outstanding accuracy of the WSCD
approach. The WSRT statistical analysis revealed a significant deviation of the GN model
from the WSCD model (p < 0.0001). An example SNR analysis is presented in Figure 8.
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Figure 8. Signal-to-noise comparison between the WSCD and GN methods based on reconstructed
T2 maps. The signal reference value was the average of the T2 time in the segmented AT region. The
noise reference value was the mean of the T2 time in the air background. The noise level in the T2
maps reconstructed with the GN method was higher than that in the maps reconstructed with the
WSCD method.

The mean and SD of the MSE in the AT region for the WSCD and GN methods were
287.52 ± 224.11 and 2553.91 ± 1932.31, respectively. Notably, a lower MSE was obtained
for the WSCD method, verifying that it provided the best goodness of fit. The WSRT
revealed that the mean MSE of the WSCD model significantly deviated from that of the GN
(p < 0.0001) model.

One processing step in the GN and WSCD methods for a single window required ap-
proximately 3.11± 0.34 ms and 0.55± 0.28 ms per voxel on a computer station with an 8-core
Intel Xeon Processor E5-2687-W (Intel Corporation, Santa Clara, CA, USA), respectively.

4. Discussion

The WSCD approach is similar to the algorithm described by Powell in [28]. We intro-
duced several improvements for quantitative MRI reconstruction. The first improvement
was related to the bidirectional line search. In the original algorithm, only one minimum in
a segment, defined by the initial point and the search vector, was found. Our algorithm
found all local minima in a segment. Contrary to the original algorithm, we implemented a
list that stored all of the positions and search vectors, which were added in each iteration.
During subsequent iterations, ten positions and vectors were selected from the list. If a new
position showed significant improvement, it was added to the list. The algorithm iterates
until the list is empty or an arbitrarily selected iteration limit is exceeded.

The second improvement was the introduction of weights, which greatly compensate
for the differences in noise levels between the input signals (obtained with different TEs),
and are calculated slice by slice and processed with a convolutional model function in
a given window; the result is directly proportional to the sum of differences between
the signal values of the window center pixel and neighboring pixels inside the window.
Weights are used to avoid overestimation of model function parameters, which is often
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caused by noise, especially in windows incorporating regions with considerably different
signals such as between tissues with distinguishable signals.

The WSCD method presented in this study proved to be more accurate than the
commonly used GN method for signals with SNRs greater than or equal to 20. This
reconstruction method provides exact results for short and long T2 components, especially
for postrupture, postsurgery AT images. The level of signal in the ATR region in all eight
TE images were proven sufficient for performing reconstruction. The presented approach
was characterized by the lowest MSE, which was significantly better than that of the
GN method.

Notably, there are three possible results that can be obtained in terms of the T2 times
for a single voxel in a T2 map: (I) both requested T2 times are extracted; (II) only one T2
time is extracted; or (III) some T2 times are close to infinity. Case I implies the occurrence of
biexponential signal decay. Case II occurs when a monoexponential or linear approximation
is obtained. Case III occurs when the approximation ends with the best fit being a constant
function. For ruptured ATs, the first case was found to occur most commonly. This
finding suggests that most tissues in the ruptured AT region are inhomogeneous. This
inhomogeneity could be caused by the healing process of the AT when the collagen fibrils
are rearranged and extracellular matrix is produced by fibroblasts [3]. The histological
and macroscopic construction of AT tissue changes during its regeneration. Therefore,
biexponential WSCD T2 maps reflect the complex structure of the AT with higher accuracy
than monoexponential maps, and the WSCD approach might be useful for reconstruction,
especially in the assessment of AT regeneration.

Two main difficulties are encountered in calculating T2 maps, as mentioned in the liter-
ature, namely, the high computational complexity and the divergence of the output T2 times,
which is highly influenced by the initial parameters of the minimization model [29,30]. In
this paper, we showed that the computational complexity could be decreased by employing
the WSCD method because no derivatives have to be calculated. Furthermore, multiple
minima recognition and assessment in the WSCD method helps avoid the need to find a
local minimum instead of a global minimum.

Attempts have been made to solve the above-mentioned problems with monoexpo-
nential models. Improvements in the accuracy and precision of low-SNR T2 maps were
obtained by Raya et al. [10], who developed two noise-corrected fitting methods: fitting
to a noise-corrected exponential and fitting the noise-corrected squared signal intensity
to an exponential. Sandino et al. [7] introduced a pixelwise nonlinear regression method
by using SNR-scaled image reconstruction and truncating low-SNR measurements. Ak-
cakaya et al. [31] developed an improved T2-based, balanced steady-state free-precession
sequence and a signal relaxation curve fitting method. To the best of our knowledge, a few
quality-improving methods for biexponential models have also been presented including
methods based on optimized TE sampling procedures [27,32], nonselective radio frequency
pulses [12], and separate nonlinear filters [33–35]. Huang presented a study in which a
nonlinear mixed-effect model was used for the reconstruction of biexponential time maps,
and it improved the accuracy of parameter estimation [36]. Shao et al. [37] used a maximum
likelihood estimation algorithm for noise estimation in a biexponential approach. However,
none of these methods considered a postacquisition optimization or assessment of the
reconstruction model.

The clinical aspect of this research was discussed by Kapinski et al. [38], who monitored
the healing of postrupture ATs. The clinical application of this method is expected to
provide physicians and surgeons with faster and more effective information during the
prediagnosis process. Furthermore, the presented biexponential reconstruction was used in
assessments of the anatomical structure of the temporomandibular joint [39].

5. Conclusions

In conclusion, the method presented in this manuscript for calculating weighted
biexponential T2 maps proved to be accurate for SNR ≥ 20, showed the best goodness of
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fit, and displayed a shorter computational time than other methods. The WSCD method
incorporates noise reduction based on suitable calculated weights, and the desired noise–
blur balance can be achieved by choosing an adequate window size. Therefore, it is
possible to adapt the parameters of the acquired image according to the requirements of the
application such as a quantitative assessment of a particular tissue, a visual assessment by a
radiologist, the segmentation of selected organs, or further analysis based on convolutional
neural networks. Furthermore, our approach makes it possible to incorporate the WSCD
reconstruction method into qualitative healing assessments of ruptured Achilles tendons.
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