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ABSTRACT 

Sirtuin 1 (SIRT1) enzyme regulates major cell activities, and its activation offers lucrative therapeutic potentials 
for aging diseases including Alzheimer’s disease (AD). Regarding the global aging society, continual attention has 
been given to various chemical scaffolds as a source for the discovery of novel SIRT1 activators since the discov-
ery of the pioneer activator, resveratrol. Understanding structure-activity relationship (SAR) is essential for screen-
ing, designing as well as improving the properties of drugs. In this study, an in silico approach based on quantitative 
structure-activity relationship (QSAR) modeling, was employed for understanding the SAR of currently available 
SIRT1 fused-aromatic activators (i.e., imidazothiazole, oxazolopyridine, and azabenzimidazole analogs). Three 
QSAR models constructed using multiple linear regression (MLR) provided good predictive performance (R2

LOOCV 

= 0.729 - 0.863 and RMSELOOCV = 0.165 - 0.325). An additional novel set of 181 structurally modified compounds 
were rationally designed according to key descriptors deduced from the QSAR findings and their SIRT1 activities 
were predicted using the constructed models. In overview, the study provides insightful SAR findings of currently 
available SIRT1 activators that would be useful for guiding the rational design, screening, and development of 
further potent SIRT1 activators for managing age-related clinical conditions. A series of promising compounds as 
well as important scaffolds and molecular properties for potent SIRT1 activator were highlighted. This study 
demonstrated the efficacious role of QSAR-driven structural modification for the rational design of novel leads.  
 
Keywords: Sirtuin 1 activator, aging disease, Alzheimer’s disease, QSAR, drug design, structural modification, 
cheminformatics 
 
 
 

INTRODUCTION 

Silent information regulator 2 homolog 
one (Sirtuin 1 or SIRT1) is a member of class 
III histone deacetylases (HDACs) protein 
family that plays a major role in catalyzing the 
removal of acetyl group from acetyl-lysine 
substrates. Human SIRT1 is mainly found in 
the nucleus, but it is occasionally translocated 

into the cytoplasm (Haigis and Sinclair, 2010; 
Jing and Lin, 2015). Through the 
deacetylation of histone and other proteins, 
SIRT1 regulates a wide variety of important 
cellular processes including transcriptional 
silencing, cell cycle, and DNA damage 
responses (North and Verdin, 2004). Due to 
the central role of SIRT1 in metabolic 
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pathways and disease progression, 
considerable efforts have been directed 
towards the discovery of SIRT1 modulator as 
a novel approach for the development of 
disease-modifying therapy. Following the 
identification of resveratrol as a potent SIRT1 
activator, a series of chemical entities (i.e., 
imidazothiazoles, oxazolopyridines, biphenyl 
and phenylhydrazones) have been developed 
as potent SIRT1-targeting candidates for the 
treatment of aging diseases (Bemis et al., 
2009; Blum et al., 2011; Dai et al., 2010; Wu 
et al., 2013).  

Alzheimer’s disease (AD) is an age-
related disease that has become a major global 
health burden affecting more than 50 millions 
people in 2018 (WHO, 2018a).  It is 
responsible for approximately 2 million of 
death and disability in 2016, making it the top 
ten leading causes of death worldwide (WHO, 
2018b). Due to the rise of life expectancy and 
aging population, AD prevalence is predicted 
to be threefold increased by 2050 (WHO, 
2018a). As the numbers and costs are in-
creased in the coming years, and the fact that 
AD is currently untreatable, the development 
of innovative strategies to prevent, delay the 
progression, and cure AD has become a major 
research priority (Ballard et al., 2011; 
Karagiannis and Ververis, 2012). The hall-
marks of AD include i) formation of amyloid 
β (Aβ) plaques resulted from an unusual 
cleavage of the amyloid precursor protein 
(APP) and ii) hyperphosphorylated tau pro-
tein tangles (Alzheimer's Association, 2018). 
Normally, APP is cleaved by the α-secretase 
giving the neuroprotective soluble product, 
but the abnormal cleavage by β- and γ-secre-
tases leads to the production of an insoluble 
Aβ peptides in which their accumulation leads 
to Aβ plaque formation (Ballard et al., 2011). 
Due to the complexity of this multifactorial 
disease, the definitive understanding regard-
ing the pathogenesis of AD is still unclear. 
Several hypotheses have been proposed. 
Among these, Aβ hypothesis considers the Aβ 
plaque as a causative agent leading to other 
pathological consequences, therefore, the in-
hibition of Aβ production is considered to be 

an attractive strategy with high therapeutic 
potential (Du et al., 2018). 

The association of SIRT1 with neuronal 
functions, and neurodegenerative diseases in-
cluding AD has been recognized (Hou et al., 
2016; Kokkonen et al., 2014). There is a rela-
tionship between methylation profiles that 
cause the silencing of SIRT1 gene and the se-
verity of AD (Hou et al., 2013). On the other 
hand, an increase of SIRT1 activity has been 
reported to reduce AD-like disorder in neu-
ronal cell culture and in animal studies 
(Donmez, 2012). Similarly, in vitro activation 
of SIRT1 by either NAD+ or the small mole-
cule resveratrol has been shown to reduce the 
formation of Aβ oligomer by increasing the 
APP metabolism via the α-secretase (Braidy 
et al., 2012). Moreover, the SIRT1 enhancing 
effect of the natural compound (resveratrol) 
gives a beneficial effect in extending the yeast 
lifespan (Howitz et al., 2003). Taken together, 
these evidences have led to the growing re-
search to explore the role of SIRT1 as a po-
tential target for the development of novel 
therapeutics for AD (Braidy et al., 2012). 
Currently, several classes of SIRT1 modula-
tors have been experimentally identified 
(Bemis et al., 2009; Kim et al., 2018; Kumar 
et al., 2017; Manna et al., 2018; Vu et al., 
2009). 

Computational tools have been employed 
to facilicate many stages of the drug discov-
ery and development process to reduce time 
and cost as well as to increase the success rate 
(Prachayasittikul et al., 2015b). Quantitative 
structure-activity relationship (QSAR) is a 
computational method to establish correlation 
between the chemical structure and its 
bioactivity (Nantasenamat et al., 2009, 2010), 
which is widely recognized as an effective 
method to rationally predict the bioactivity of 
compound and its mechanism of action 
(Shoombuatong et al., 2017). QSAR models 
have been constructed to unveil the structure-
activity relationship (SAR) of various classes 
of compounds and their biological activities 
(Diukendjieva et al., 2019; Lomba et al., 
2019; Prachayasittikul et al., 2015a, 2017; 
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Shoombuatong et al., 2015; Simeon et al., 
2016; Worachartcheewan et al., 2012).  

A search from the ChEMBL database re-
vealed that there were 1,428 SIRT1 modula-
tors and 2,474 bioactivity data points. Most 
compounds were reported as SIRT1 inhibi-
tors, while less than a hundred were described 
as SIRT1 activators. This demonstrated that 
current situation in the development of SIRT1 
activating compounds is still in its infancy 
mainly due to the lack of structural diversity. 

Despite the limited number of small mol-
ecule identified as SIRT1 activators, some 
studies have exploited QSAR method to un-
derstand the SAR and their mechanisms 
(Chauhan and Kumar, 2018; Karaman et al., 
2016; Kumar and Chauhan, 2017; Park et al., 
2009). Each of the QSAR study has its own 
merit in encouraging this research area. How-
ever, an in-depth SAR analysis of the 
constructed in silico models to reveal the key 
chemical features is still essential for the 
discovery of novel potent SIRT1 activators, in 
terms of guiding their rational design and 
screening. Notably, these QSAR models were 
constructed from datasets comprising several 
classes of known SIRT1 activators without 
considering the diversity of their scaffolds. 
Scaffold refers to the structural core of a com-
pound where functional groups (R groups) are 
attached (Hu et al., 2016). The scaffold con-
cept is widely applied in the field of medicinal 
chemistry. The concept concerns that each 
scaffold has its own characteristics and com-
pounds with different core scaffolds are not 
truly be compared (Zdrazil and Guha, 2018). 
In medicinal chemistry viewpoint, more ef-
fective SAR analysis could be achieved when 
compounds with the same core structures are 
compared (Hu et al., 2016; Mok and Brown, 
2017).  

The aim of this study is to construct 
QSAR models using multiple linear regres-
sion (MLR) in order to achieve effective SAR 
insights of known SIRT1 activators. Com-
pounds obtained from the ChEMBL database 
were separated into three sets according to 
their chemical core structures (i.e., imidaz-

othiazole, oxazolopyridine, and azabenzimid-
azole) for QSAR modeling. Considering the 
limited numbers and the lack of structural 
diversity of available SIRT1 activators, an in 
silico structural modification of known 
SIRT1 activators was performed to expand its 
chemical space. Additional sets of structurally 
modified compounds were designed, and their 
activities were predicted using the 
constructed QSAR models followed by an in-
depth SAR analysis. Finally, the built QSAR 
models were applied for predicting a set of 
novel SIRT1 activators to offer mechanistic 
interpretation of their mechanisms of action.  

 
MATERIALS AND METHODS 

Data set curation 
A data set of known SIRT1 activators 

were collected from the ChEMBL database 
(Gaulton et al., 2012, 2017) and curated ac-
cording to the established protocol proposed 
by Fourches et al. (2010). The main steps of 
data curation are as follows: (i) removal of in-
organics and mixtures, (ii) structural conver-
sion and cleaning, (iii) normalization of spe-
cific chemotypes, (iv) removal of duplicates, 
and (v) final manual checking. 

An in-house script coded in the R statisti-
cal language was used to pre-process the ini-
tial data collected from the ChEMBL data-
base. Briefly, data with missing SMILES no-
tation, data containing < or > symbols, and 
duplicate data were removed. A final data set 
of 17 non-redundant compounds were at-
tained along with their SMILES notation and 
bioactivity information (EC1.5). The experi-
mental bioactivity was expressed as pEC1.5, 
which is the negative logarithmic form. EC1.5 

values represented the concentration required 
to increase the SIRT1 enzymatic activity by 
50 % (Bemis et al., 2009; Milne et al., 2007; 
Vu et al., 2009).  

Finally, manual check of the reference 
source of the ChEMBL-derived data set was 
performed that resulted in the addition of 13 
compounds that were not originally included 
in the aforementioned set of 17 compounds 
(Bemis et al., 2009; Blum et al., 2011; Milne 
et al., 2007; Vu et al., 2009; Wu et al., 2013). 
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Afterwards, the data set was divided into three 
groups with respect to their main scaffolds, 
namely scaffold A (imidazothiazole deriva-
tives), scaffold B (oxazolopyridine deriva-
tives), and scaffold C (azabenzimidazole de-
rivatives). Final data sets consisted of com-

pounds A1-A13, B1-B9, and C1-C8 belong-
ing to scaffolds A, B, and C, respectively 
(Figure 1). A schematic workflow of the study 
is presented in Figure 2. 

 
 
 

 

Figure 1: Chemical structure of SIRT1 activators (A) scaffold A: imidazothiazole, (B) scaffold B: oxa-
zolopyridine, and (C) scaffold C: azabenzimidazole 
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Figure 2: Workflow of the study 
 
 
Molecular descriptors calculation 

Chemical structures of the curated data set 
in the SMILES format were converted into 
the .mol format and further optimized using 
Gaussian 09 (Frisch et al., 2009) to obtain low 
energy conformation. Geometrical optimiza-
tion of all chemical structures were achieved 
by semi-empirical Austin Model 1 (AM1) 
level followed by density functional theory 
(DFT) computation using the Becke’s three-
parameter hybrid method with the Lee –
Yang–Parr correlation functional (B3LYP) 
together with the 6–31 g(d) level. The opti-
mized structures were used for calculation of 
the first set of thirteen quantum chemical de-
scriptors using an in-house developed script: 
the mean absolute atomic charge (Qm), total 
energy (Etotal), total dipole moment (µ), 
highest occupied molecular orbital energy 
(HOMO), lowest unoccupied molecular or-
bital energy (LUMO), energy difference of 
HOMO and LUMO (HOMO-LUMOGap), 
electron affinity (EA), ionization potential 
(IP), Mulliken electronegativity (χ), hardness 
(η), softness (S), electrophilic index (ω i), and 
electrophilicity (ω).  

An additional set of 3,224 molecular de-
scriptors were calculated using the Dragon 
software (version 5.5) (Talete, 2007), includ-

ing 22 blocks of following descriptors: Con-
stitutional descriptors, Topological de-
scriptors, Walk and path counts, Connectivity 
indices, Information indices, 2D autocorrela-
tion, Edge adjacency indices, Burden eigen-
values, Topological charge indices, Eigen-
value-based indices, Randic molecular pro-
files, Geometrical descriptors, RDF de-
scriptors, 3D-MoRSE descriptors, WHIM de-
scriptors, GETAWAY descriptors, Func-
tional group counts, Atom-centred fragments, 
Charge descriptors, Molecular properties, 2D 
binary fingerprints, and 2D frequency finger-
prints. 
 
Descriptors selection 

In order to select a set of informative de-
scriptors from a large set of calculated de-
scriptors, the correlation-based feature selec-
tion was employed. The Pearson’s correlation 
coefficient (r) value of 0.5 was used as a cut-
off for initial selection, following the calcula-
tion of pairwise correlation of each descriptor 
value and bioactivity (pEC1.5). Descriptors 
with |r| ≥ 0.5 were selected for additional se-
lection process using stepwise multiple linear 
regression (MLR) in SPSS Statistics 18.0 
software (SPSS Inc., USA). The final set of 
informative descriptors and their values were 
selected for further QSAR model develop-
ment.  

 
QSAR model construction  

QSAR models were separately developed 
according to the three different scaffolds us-
ing MLR method implemented in Waikato 
Environment for Knowledge Analysis 
(WEKA) version 3.8 (Witten et al., 2011) ac-
cording to the equation (1). 

 
	 ∑ 	 (1) 

 
where Y is the pEC1.5 values of compounds, 
B0 is the intercept and Bn are the regression 
coefficient of descriptors Xn. 
 
Validation of QSAR models 

Leave-one-out cross validation (LOO-
CV) was employed to validate the predictive 
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ability of constructed model. For small data 
sets of less than 50 compounds, LOO-CV re-
presents a reliable method for QSAR model 
validation (Gramatica, 2007; Hawkins, 2004). 
The LOO-CV method was performed by re-
moving one sample from the data set and used 
it as the testing set, while the remaining were 
used to build the QSAR model (Roy et al., 
2015). This cycle was repeated until every 
sample in the data set was used as the testing 
set. Furthermore, two statistical parameters 
were used to measure the predictive perfor-
mance of the constructed QSAR models i.e., 
the squared correlation coefficient (R2) and 
root mean square error (RMSE) (Prachaya-
sittikul et al., 2017). 
 
Prediction of structurally modified  
compounds 

To expand the chemical space of SIRT1 
activators, a set of 181 structurally modified 
compounds (A1a-A13c, B1a-B8a, and C1a-
C8b; Suppl. Figures 1-3) were rationally de-
signed according to the QSAR results of 
known SIRT1 activators. These modified 
compounds were constructed in silico and 
their key descriptor values were obtained in a 
similar manner with those of the original 
compounds as mentioned above. Subse-
quently, the obtained descriptor values of 
modified compounds were used to predict the 
SIRT1 activity according to the QSAR equa-
tions.   

 
RESULTS AND DISCUSSION 

QSAR modeling of currently available 
SIRT1 activators 

A set of informative descriptors was ob-
tained using correlation-based feature selec-
tion. Definitions of the selected descriptors 
(Table 1) and descriptor values of the investi-
gated compounds (Suppl. Tables 1-3) are pre-
sented. The equations (2-4) of constructed 
QSAR models and their predictive perfor-
mance evaluation are shown in Table 2.  

The QSAR models provided a good pre-
dictive performance for the training set as 
measured by R2

Tr values of 0.950, 0.884, and 
0.980, and RMSETr values of 0.197, 0.175, 
and 0.043, for scaffolds A, B, and C, respec-
tively. Likewise, in the testing set, R2

LOOCV 
values of 0.863, 0.729, and 0.800, and 
RMSELOOCV values of 0.325, 0.271, and 
0.165, were noted for scaffolds A, B, and C, 
respectively. The experimental and predicted 
bioactivities of SIRT1 activators (A1-A13, 
B1-B9, and C1-C8) are summarized in Table 
3 and Figure 3.  

The QSAR model of scaffold A (Table 2, 
Eq. 2) revealed that electronegativity, charge, 
and polarizability influenced the bioactivity 
of imidazothiazole analogs. The charge index 
descriptor (JGI7) was the most influential de-
scriptor as shown by its highest regression co-
efficient value of 593.47. Accordingly, the 
high value of JIGI7 along with the low values 
of HATS8u, Electronegativity, and polariza-
bility descriptor Mor15p are required for po-
tent activity of the compounds. The most po-
tent compound A5 displayed the lowest 
HATS8u value together with high Electro-
negativity (HATS8u = 0.165, Electronegativ-
ity = -0.136, Suppl. Table 1).  

The QSAR analysis of scaffold B (Table 
2, Eq. 3) showed that activities of the oxa-
zolopyridine derivatives are mainly governed 
by electronegativity, as shown by the high re-
gression coefficient values of both P1e 
(-2.1032) and Mor22e (-0.9163). It is noted 
that lower electronegativity values but higher 
frequency of C-O are desired for greater bio-
activity. This can be seen when comparing the 
most potent compound B9 (pEC1.5 = -2.699 
(Table 3), P1e = 0.665, Mor22e = -0.057, and 
F10[C-O] = 11, Suppl. Table 2) with the least 
active compound B3 (pEC1.5 = -4.398 (Table 
3), P1e = 0.874, Mor22e = 0.325, F10[C-O]= 
3, Suppl. Table 2) of the series. 
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Table 1: Definition of descriptors for construction of QSAR models 

Descriptor  Type Definition 

Electronegativity Quantum chemical descriptor Tendency of an atom to attract a bonding pair of  
electrons 

HATS8u GETAWAY descriptors Leverage-weighted autocorrelation of lag 8 / unweighted 

JGI7 2D autocorrelations Mean topological charge index of order 7 

Mor15p 3D-MoRSE descriptors Signal 15 / weighted by polarizability 

Mor22e 3D-MoRSE descriptors Signal 22 / weighted by Sanderson electronegativity 

F10[C-O] 2D Atom Pairs Frequency of C - O at topological distance 10 

P1e WHIM descriptors 1st component shape directional WHIM index / weighted 
by Sanderson electronegativity 

RDF090m RDF descriptors Radial Distribution Function - 090 / weighted by mass 

BEHp2 BCUT descriptors Highest eigenvalue n. 2 of Burden matrix / weighted by 
atomic polarizabilites 

R6m+ GETAWAY descriptors R maximal autocorrelation of lag 6 / weighted by mass 

E2u WHIM descriptors 2nd component accessibility directional WHIM index /  
unweighted 

 
 
 
Table 2: Summary of QSAR models and their predictive performance 

Equation Eq. N R2
Tr RMSETr R2

LOOCV RMSELOOCV

Scaffold A 
pEC1.5 = − 10.78 (HATS8u) −62.91(Electronegativity) 

+ 593.47(JGI7) − 0.62(Mor15p) -14.07     

(2) 13 0.950 0.197 0.863 0.325 

Scaffold B 

pEC1.5 = − 0.9163(Mor22e) + 0.0956(F10[C-O]) – 
2.1032(P1e) − 2.3796    

(3) 9 0.884 0.175 0.729 0.271 

Scaffold C 

pEC1.5 = 0.0539 (RDF090m) − 17.616(BEHp2)  + 
15.7995(R6m+) − 5.6824(E2u) + 66.1048 

(4) 8 0.980 0.043 0.800 0.165 

 
 
 
Table 3: Experimental and predicted bioactivities (pEC1.5) of scaffolds A, B, and C 

Compound Exp. Pred. Compound Exp. Pred. Com-
pound 

Exp. Pred.

A1 -2.556 -2.705 B1 -3.643 -3.465 C1 -2.845 -2.936 
A2 -2.996 -2.638 B2 -2.954 -3.253 C2 -3.613 -3.486 
A3 -2.833 -3.133 B3 -4.398 -3.999 C3 -2.699 -2.718 
A4 -4.653 -4.234 B4 -3.255 -3.096 C4 -2.954 -2.713 
A5 -2.204 -1.844 B5 -3.778 -3.794 C5 -3.146 -2.839 
A6 -3.839 -3.638 B6 -3.041 -3.568 C6 -2.699 -2.569 
A7 -2.785 -3.053 B7 -2.845 -2.657 C7 -3.204 -3.250 
A8 -5.114 -4.596 B8 -3.041 -3.568 C8 -3.362 -3.510 
A9 -3.230 -3.743 B9 -2.699 -2.645    
A10 -4.398 -4.668       
A11 -3.568 -3.851       
A12 -4.491 -4.566       
A13 -4.146 -3.980       

 

Exp. = Experimental bioactivity, Pred, = Predicted activity 
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Figure 3: Plots of experimental versus predicted pEC1.5 values of SIRT1 activators (A) scaffold A, (B) 
scaffold B, (C) scaffold C generated by QSAR models (training set: compounds are denoted by black 
circle and regression line is shown as solid line; leave-one-out validated testing set: compounds are 
represented by open circle and regression line is shown as dashed line) 
 
 

The QSAR result of scaffold C (Table 2, 
Eq. 4) revealed that the descriptors related to 
mass (RDF090m and R6m+), atomic polar-
izabilities (BEHp2), and WHIM index (E2u) 
influenced the bioactivity of azabenzimidaz-
ole compounds. It is observed that the lower 
BEHp2 and E2u, but the higher values of 
RDF090m and R6m+ are important for potent 
SIRT1 activity. The most potent compound 
C3 (pEC1.5 = -2.699, Table 3) displayed lower 
BEHp2 (3.816) and E2u (0.406), but higher 
RDF090m (8.575) and R6m+ (0.016) when 
compared with the least active compound C2 
(higher BEHp2 = 3.836 and E2u = 0.452, but 
lower RDF090m = 4.688 and R6m+ = 0.014). 
Similarly, the most potent compound C6 
(with an equivalent pEC1. 5 value) showed the 
same trend of lower and higher descriptor val-
ues (Suppl. Table 3). 

Application of QSAR models for rational 
design and in silico prediction of novel 
SIRT1 activators 

The constructed models were further ap-
plied for the efficacious rational design of a 
novel set of 181 structurally modified com-
pounds with relevant scaffolds. Key descript-
ors presented in the models revealed im-
portant features for guiding the structural 
modification strategy. Finally, three addi-
tional sets of structurally modified com-
pounds were designed (109, 51, and 21 mod-
ified compounds for scaffolds A, B and C, re-
spectively, Suppl. Figures 1-3), and their key 
descriptor values were calculated and subse-
quently applied to the QSAR equations for 
predicting their activities (Suppl. Tables 4-6). 
As a result, a set of promising novel com-
pounds with the most potent predicted activi-
ties were highlighted for their potential for 
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further development as SIRT1 activators i.e., 
compounds A5d, B7a, and C4d as shown in 
Suppl. Figures 1-3, (predicted pEC1.5 

= -0.697, -1.589, and -1.948, resepectively, 
Suppl. Tables 4-6).  

 
Understanding structure–activity  
relationships (SAR) 

According to the QSAR results, an in-
depth SAR analysis was performed consider-
ing the chemical descriptors governing bioac-
tivity of the original (scaffolds A, B, and C, 
Suppl. Tables 1-3) and modified SIRT1 acti-
vators (Suppl. Tables 4-6). Compounds from 
the scaffolds A, B, C have a common amide 
group (Figure 4) as a linker of rings A and B, 
mostly, both are aromatic/substituted aromat-
ics.  

Scaffold A 
Scaffold A consists of 13 original com-

pounds (A1-A13) with identical structural 
feature of fused imidazothiazole substituted 
on the ring A, which is connected to the ring 
B by an amide linker. The imidazothiazole 
ring of compounds A2-A13 was substituted 
with R group (piperazine), while compound 
A1 was substituted with R = pyrrolidinol 
(Figure 4). All of these compounds (A1-A13, 
Figure 1) had three different types of ring B 
including aromatic and hetero-aromatic fused 
rings (A1-A7), phenyl, benzyl, and pyrimi-
dine rings (A9-A13), as well as cycloalkane 
ring (A8). The enzyme activation assay re-
sults showed that compound A5 (Milne et al., 
2007) exerted the most potent activity (pEC1.5 

= -2.204) when compared with A8 (Wu et al., 
2013) that showed the lowest activity (pEC1.5 

= -5.114).  
Compounds from scaffold A (except for 

A8), were structurally modified at various po-
sitions on the ring B by substitution of groups 
with lone pair electrons (OH, OMe, NH2, SH) 
to provide 109 modified compounds (Suppl. 
Figure 1). The results showed that ring B 
(naphthalene) of A1 substituted by OH, OMe, 
NH2, and SH groups at the 6-position gave 
modified compounds with ranked activities as 
A1b > A1d > A1a > A1c which is relative to 
their substituted groups (OMe > SH > OH > 

NH2). When the naphthalene ring was substi-
tuted at the 8-position, the predicted activity 
was shown to be A1h > A1e > A1f > A1g (SH 
> OH > OMe > NH2). As a result, a series of 
compounds with higher potency were noted 
for A1a-A1d in which substitution at the 6-
position gave rise to better activity than that 
afforded by the 8-position of naphthalene ring 
B. Compound A1b showed the most im-
proved activity (pEC1.5 = -1.703) having high 
JGI7 (0.013) but low HATS8u (0.182) when 
compared with the parent compound A1 
(pEC1.5 = -2.556, JGI7 = 0.011, HATS8u = 
0.19).  

Compound A2 was similarly modified by 
substituting ring B with OH, OMe, NH2, and 
SH groups to give compounds A2a-A2h. It 
was found that 2-quinolinyl (ring B) substi-
tuted at the 6-position resulted in compounds 
with better activity than that of the 8-position. 
All compounds exhibited increased activity 
with the same order of substituted group (SH 
> OH > OMe> NH2). The most potent com-
pound A2d showed improvement of the pre-
dicted activity (pEC1.5 =-1.548, high JGI7 = 
0.012, low HATS8u = 0.171, and electroneg-
ativity = -0.12861), when compared with the 
parent compound A2 (pEC1.5 = -2.996, low 
JGI7 = 0.010, high HATS8u = 0.176, and 
electronegativity = -0.12731).  

In the case of compound A3, its 3-quino-
linyl ring B was substituted at the 7-position 
to afford compounds with more improved ac-
tivity (i.e. A3d) than that of the 5-position 
(A3h). The modified compound A3d was the 
most potent one (pEC1.5 = -1.387, low 
HATS8u = 0.178) when compared with the 
parent compound A3 (pEC1.5 = -2.833, high 
HATS8u = 0.260). The effect of substituted 
groups was ranked as SH > OMe > OH > 
NH2. In a series of A4 (pEC1.5 = -4.653) mod-
ified compounds, 8-quinolinyl (ring B) was 
substituted at 2-, 4-, 5-, and 7- positions. The 
results showed that the SH group substitution 
gave the most improved activity in all cases. 
Interestingly, substitution at the 5- position 
resulted in the most improved activity (A4l, 
predicted pEC1.5 = -1.107) with lower values  



EXCLI Journal 2019;18:207-222– ISSN 1611-2156 
Received: March 12, 2019, accepted: March 20, 2019, published: April 05, 2019 

 

 

216 

 
Figure 4: Structural modifications of compounds in the scaffolds A, B, and C (substitution with –OH,  
–OCH3, –NH2, and –SH groups at different positions of Ring B)   

 

 
of Mor15p (0.824) and electronegativity 
(-0.13489), but higher JGI7 (0.014) value 
compared with A4 (pEC1.5 = -4.653, with 
Mor15p = 1.126, electronegativity 
= -0.12759, and JGI7=0.009). 

Ring B as benzopyrazine (A5, pEC1.5 = -
2.204) was modified at the 6- and 8- positions 
resulting in compounds A5a-A5h. The result 
revealed that substitution at the 6- position 
(A5d) gave better activity than that of the 8-
position. The SH substituted group displayed 
the most improved activity in a series of A5a-
A5d (SH > OH >OMe > NH2) as compared 
with a series of A5e-A5h (OH > NH2 > OMe 

> SH), in which the SH group exerted the low-
est predicted activity. In the A5 series, com-
pound A5d (predicted pEC1.5 = -0.697) was 
shown to be the most potent one when com-
pared with the other parent compounds (A1-
A4 and A6-A13). Apparently, the most potent 
parent compound A5 gave rise to the most po-
tent modified compound A5d. In particular, 
structural modification of A5 at the 6-position 
provided a series of compounds, which 
ranked as the top 1, 2, 3, and 5 of all modified 
compounds as A5d, A5a, A5b, and A5e, re-
spectively. The A5d displayed lower values 
of HATS8u (0.15) and electronegativity 
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(-0.137) but higher JGI7 (0.012) when com-
pared with the parent compound A5 
(HATS8u = 0.165, electronegativity 
= -0.13634, and JGI7 = 0.010). This could be 
due to the presence of electron donor SH 
group at the 6-position of ring B (A5d) that 
provided a resonant ionic formed (A5R) re-
sulting from an inductive effect of the car-
bonyl amide linker (Figure 5). Thus, the com-
pound A5d with high mean topological 
charge index of order 7 (JGI7) was noted.  

 

 
Figure 5: Resonant ionic formed (A5R) of the 
modified compound A5d  
 
 

Compound A6 was modified by substitu-
tion at positions 4- and 6- of 5-benzofuranyl 
ring B. The results displayed that A6a (substi-
tution at 4- position) was the most potent 
compound from the series (A6a > A6c > A6b 
> A6d, with OH > NH2 > OMe > SH, respec-
tively). In the case of 2-benzofuranyl ring B 
(compound A7, pEC1.5 = -2.785), substitution 
at 4- and 6- positions were performed to give 
A7h (predicted pEC1.5 = -2.282) as the most 
potent compound of the 6-substituted ring B 
(A7h > A7g > A7f > A7e, with SH > NH2 > 
OMe >OH, respectively). Compound A9 
(pEC1.5 = -3.230) with a single ring B (pyrim-
idine) was replaced by a pyrazine ring (A9a) 
which was substituted at 3- and 5- positions. 
It was found that the 5- substitution gave the 
most potent A9i (pEC1.5 = -1.932) of the series 
A9i > A9h > A9f > A9g (SH > NH2 > OH > 
OMe). However, the pyrazine ring B (A9a) 

was less active than that of the pyrimidine 
ring B (A9). 

Compound A10 (pEC1.5 = -4.398), ring B 
(phenyl) was substituted at 2-, 3- and 4- posi-
tions. Modified compounds A10a-A10l were 
obtained, in which substitution by OH, OMe, 
SH, NH2, at 3- and 4- positions yielded more 
improved activity as compared with A10. 
When the phenyl (ring B) was changed to 2- 
and 3-furanyl rings (B), A10q (SH at the 5- 
position of 2-furanyl ring B) provided the 
most potent predicted activity (pEC1.5 

= -3.054) from the modified A10 series. Com-
pound A11 with pEC1.5 = -3.568 (3-OMe de-
rivative of A10) was modified by OH, OMe, 
NH2, SH substitutions at the position-6 of ring 
B (at p-position to the 3-OMe group) pro-
vided A11a-A11d, in which A11a (pEC1.5 

= -3.353) was the most potent compound. 
Compound A12 (2,4-dimethoxyphenyl ring 
B), its 4-OMe group was replaced by OH, 
NH2, and SH groups. The results showed that 
the SH group (A12c) exerted the most potent 
activity (predicted pEC1.5 = -3.473). Benzyl 
ring B of compound A13 was modified by re-
placing phenyl with 2-, 3-, and 4-pyridyl rings 
to afford compounds A13a-A13c. The 4-
pyridyl derivative A13c was the most potent 
one (predicted pEC1.5 = -3.361).  

All of the modified compounds from scaf-
fold A (i.e., A1a-A13c, Suppl. Figure 1) dis-
played the improved activity when compared 
with their parent compounds.  

Scaffold B 
Scaffold B is a series of compounds B1-

B9 bearing ring A and ring B linked by the 
amide bond (Figure 4), where the ring A is ei-
ther ortho- or meta-isomer, and ring B is phe-
nyl substituted by amino and methoxy groups. 
Aryl group on ring A is a fused pyridooxazole 
ring (B1-B3, B5). It was noted that the ortho- 
series exerted more potent bioactivity than the 
meta-isomer (B1 > B3 and B2 > B5). An extra 
side chain on the ring A gave rise to the com-
pounds B4, B6, B7, B8, and B9 as 1,3,5-tri-
substituted ring A, in which B9 (pEC1.5 

= -2.699) was the most potent compound. On 
the other hand, 1,3-disubstituted ring A (B3) 
displayed the lowest activity (pEC1.5 
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= -4.398). It should be noted that ring B with 
2,4-dimethoxy groups was more potent than 
3,4-dimethoxy as noted for compounds B9 > 
B8.  

Furthermore, to achieve the improved ac-
tivity, compounds (B1-B9) were structurally 
modified (Suppl. Figure 2). The 3-NMe2 
group on ring B of compound B1 was re-
placed by OH, OMe, NH2, and SH at 2-, 3-, 
and 4-positions to provide compounds B1c-
B1n. Notably, B1d with 2-methoxy substitu-
tion on ring B was predicted as the most im-
proved activity (pEC1.5 = -3.101) among the 
modified compounds in series B1. On the 
other hand, B1f (2-SH ring B, pEC1.5 = -
3.761) displayed the lowest activity in the B1 
series. Compound B3 was similarly modified 
as B1 to obtain B3a-B3n, in which B3c 
(pEC1.5 = -3.585, P1e = 0.822, Mor22e = 
0.055, F10[C-O] = 6) was the most active 
compound, but B3k (pEC1.5 = -4.134, P1e = 
0.849, Mor22e = 0.279, F10[C-O] = 3) exhib-
ited the lowest activity.  

The results showed that the ortho-ring A 
and 2-methoxy ring B (B1d) exerted higher 
activity than the meta-ring A and 2-methoxy 
ring B (B3c). Similarly, compounds B2 and 
B5 with 3,4-dimethoxy ring B were modified 
at ring B as 2,4-dimethoxy (B2a and B5a, 
pEC1.5 = -2.845 and -2.899) and 3,5-di-
methoxy (B2b and B5b, pEC1.5 = -3.242 and 
-3.692),  respectively. It was shown that the 
modified 2,4-dimethoxy exerted higher activ-
ity than the 3,5-dimethoxy compounds both in 
the ortho- and meta-isomers. Compound B4, 
its 3-NMe2 at ring B was changed to 2-NMe2 
ring B (B4a > B4), which was replaced by 
OH, OMe, NH2, and SH groups at positions 
2-, 3-, and 4- on the ring B to give compounds 
B4b-B4h. The most potent compound in this 
series was B4h with 4-methoxy ring B 
(pEC1.5 = -2.251).  

Compounds B6-B8 as 1,3,5-trisubstituted 
ring A and 3,4-dimethoxy ring B, which were 
modified at ring B as 2,4- and 3,5-dimethoxy 
to give compounds B6a, B6b, B7a, B7b, B8a. 
Compound B7a (2,4-dimethoxy ring B) was 
the most potent compound (pEC1.5 = -1.589, 
P1e = 0.603, Moer22e = -0.786, F10[C-O] = 

14), and more potent than the parent com-
pound B9. Notably, the B9 and B7a had a 
similar substitution pattern on the ring B (2,4-
dimethoxy) and ring A (1,3,5-trisubstituted). 
The ring A of both compounds has two iden-
tical substituents, but the third substituent of 
B9 as piperazine ring and of B7a as amide 
side chain. The results revealed that B7a had 
lower electronegativity (P1e = 0.603, Mor22e 
= -0.786), but with higher frequency of [C-O] 
at topological distance of 10 (F10[C-O] = 14) 
compared with that of B9 (P1e = 0.665, 
Mor22e = -0.057, F10[C-O] = 10). The higher 
frequency F10[C-O] of B7a might be resulted 
from the inductive effect of the carbonyl am-
ide (CON) side chain substituted on the ring 
A as shown by its resonant ionic formed 
(B7R, Figure 6). 

 

 
 

Figure 6: Resonant ionic formed (B7R) of modi-
fied compound B7a  
 
 

Scaffold C 
Scaffold C compounds (C1-C8) were 

sub-classified into 3 subtypes according to the 
position of amide linker on the phenyl ring A 
of the core structure (i.e. ortho-, meta-, and 
para-series). Considering the ortho series 
(C1-C4), the most potent activity was ob-
tained when the ring B was substituted by 3,4-
dimethoxy groups (C3; pEC1.5 = -2.699), 
whereas the lower activity was observed for 
4-dimethylamino (C1) and 4-morpholine 
(C4) substitutions on the ring B.  

The meta-series (C5 and C6) showed that 
compound C6 with 2,4-dimethoxy ring B ex-
hibited the most potent activity (pEC1.5 

= -2.699) as observed for 3,4-dimethoxy ring 
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B (ortho-isomer C3). It was found that ring B 
with 4-methyl, instead of 4-methoxy, pro-
vided the compound with lower activity as 
noted for compounds C2 and C8 (2-methoxy, 
4-methyl) compared with 2,4-dimethoxy 
compound C6 (the most potent). Both com-
pounds (C2 and C8, pEC1.5 = -3.613 
and -3.362, respectively) displayed the lowest 
activity (C8 > C2) amongst compounds from 
the scaffold C. Results indicated that the oxy 
function at position 4 of ring B may affect the 
activity of  the compound through mass de-
scriptor (RDF090m) value. Obviously, 3,4-
dimethoxy ring B of ortho-isomer (C3) ex-
erted the most potent activity than that of 
meta-isomer (C5) and para-isomer (C7) in 
which their ranked activities were observed as 
C3 > C5 > C7.   

The activity of compounds in this series 
was ranked as C3 = C6 > C1 > C4 > C5 > C7 
> C8 > C2. The compounds in scaffold C (C1, 
C3, C4, C6-C8) were structurally modified 
by changing substituents (using OH, OMe, 
NH2, and SH groups), and other types of rings 
on the ring B as shown in Suppl. Figure 3. It 
was found that compound C4d was the most 
potent one (pEC1.5 = -1.948) and C3a with the 
lowest activity (pEC1.5 = -3.085). While, other 
modified compounds of C4 (C4a, C4c, C4f, 
C4b) were ranked as 2nd, 3rd, 5th, and 6th from 
the highest predicted bioactivity. 4-Dimethyl-
amino group on ring B of C1 was replaced by 
OH, OMe, NH2, and SH groups. All modified 
compounds exerted improved activity when 
compared with the parent compound C1. The 
most potent compound C3 (pEC1.5 = -2.699), 
its 3,4-dimethoxy ring B was modified as 
monomethoxy, i.e. 2-methoxy (C3a) and 3-
methoxy (C3b), and dimethoxy, i.e. 2,4-di-
methoxy (C3c) and 3,5-dimethoxy (C3d). 
Results showed that C3b was the only com-
pound that possessed an improved activity 
(pEC1.5 = -2.305) when compared with C3 
(the most potent compound in the scaffold C). 
It is suggested that the high value of 
RDF090m (17.39) plays an essential role in 
improving the activity of compound C3b. On 
the other hand, 2-methoxy compound (C3a, 

with low RDF090m = 8.376) displayed the 
lowest activity (pEC1.5 = -3.085).  

Ring B of C4 was modified by changing 
the 4-morpholine group to other ring types 
(such as piperazine and piperidine rings), 
and/or substituted with OMe group at various 
positions. All modified compounds (C4a-
C4h) displayed improved activity (pEC1.5 

= -2.812 to -1.948) when compared with the 
parent compound C4 (pEC1.5 = -2.954), and 
C4d was the most potent compound with the 
highest value of RDF090m (28.043) amongst 
the modified compounds from scaffold C. 
The improved effects were also observed for 
modified compounds following this order; 
C7b > C7a > C7, and  C8b > C8a > C8. On 
the other hand, the most potent 2,4-dimethoxy 
ring B (C6) was modified to the 3,5-di-
methoxy ring B (C6a), which led to lower ac-
tivity (pEC1.5 = -2.848, high E2u = 0.448) 
when compared with the parent compound C6 
(pEC1.5 = -2.699, low E2u = 0.381). 3,4-Di-
methoxy ring B of C7 (ring A, para-isomer) 
was modified to 2-methoxy (C7a) and 3-
methoxy (C7b) ring B leading to the im-
proved activity of compounds (C7b > C7a > 
C7). In addition, the similar improved effect 
was noted for C8 (C8b > C8a > C8). High 
RDF090m value of the most potent modified 
compound C4d may be a result of the combi-
nation effects of OMe and piperazine ring 
substituted on the ring B. 

Notably, all modified compounds in scaf-
folds A, B, and C displayed improved bioac-
tivity when compared with their parent com-
pounds. The most potent modified com-
pounds (A5d, B7a, and C4d, Figure 7) are 
highlighted as potential novel SIRT1 activa-
tors to be further developed.  

 
CONCLUSION 

Understanding the SAR is considered to 
be a fundamental part of success drug discov-
ery (Guha, 2013). In this study, QSAR mod-
eling and in-depth analysis were performed to 
gain insights into the SAR of available SIRT1 
activators. Three QSAR models were suc-
cessfully constructed with good predictive 
performance affording R2

LOOCV ranging from 
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0.729 - 0.863 and RMSELOOCV ranging from 
0.165 - 0.325. The QSAR models revealed a 
set of important descriptors influencing the 
bioactivity of SIRT1 activating compounds 
including electronegativity, charge, polariza-
bility, frequency of [C-O], and mass de-
scriptors.  
 

 
Figure 7: Potential novel compounds for further 
development as SIRT1 activators (A) Known 
SIRT1 activators (experimental pEC1.5), (B) Novel 
QSAR-driven SIRT1 activators (predicted pEC1.5) 
 
 

According to the limited diversity of the 
currently available SIRT1 activators, an in 
silico structural modification was performed 
based on the key descriptors obtained from  
the QSAR analysis. Structural modification 
has been extensively used to obtain potential 
lead compounds with improved potency and 
pharmacokinetic properties, reduced toxici-
ties (Chen et al., 2015; Yao et al., 2017), as 
well as considered to be an effective strategy 
for increasing the structural diversity 
(Prachayasittikul et al., 2014, 2015a, 2017). 
Herein, the constructed QSAR models were 
used to examine the effects of structural mod-
ifications on the bioactivity of SIRT1 activat-
ing compounds. A set of structurally modified 
compounds were virtually designed based on 
the key descriptors identified from the QSAR 
analysis, and their SIRT1 activities were pre-
dicted using the constructed QSAR models. 
In summary, the study provides insightful 

SAR findings that are beneficial for guiding 
the screening, rational design, and optimiza-
tion of the relevant SIRT1 activating com-
pounds. Of note, the study demonstrated suc-
cessful application of the QSAR-driven ra-
tional design for discovery of new leads. Fi-
nally, a set of promising compounds were 
highlighted as potential SIRT1 activators 
(Figure 7) to be further developed for Alz-
heimer’s disease, other aging diseases, and 
other relevant therapeutics.  
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