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Abstract: Peripheral arterial disease (PAD), leading to intermittent claudication, critical ischemia
with rest pain, and/or tissue damage, is a public health issue associated with significant morbidity
and mortality. Little is known about the link between PAD, cognitive function, and whether
exercise might reduce cognitive dysfunction in PAD patients, as previously observed concerning both
quality of life and prognosis. This review highlights the fact that patients suffering from PAD often
demonstrate cognitive dysfunction characterized by reduced performance in nonverbal reasoning,
reduced verbal fluency, and decreased information processing speed and a greater risk for progression
toward dementia. Further, the data presented support that physical exercise, likely through myokine
secretion and microglial anti-inflammatory phenotype enhancement, might participate in the cognition
protection in common clinical settings.

Keywords: peripheral arterial disease; ankle-brachial index; cognitive dysfunction; brain; exercise;
myokines; microglia; BDNF; cathepsin-B; irisin

1. Introduction

Peripheral arterial disease (PAD) is a public health issue resulting in significant morbidity and
mortality. Its prevalence ranges from 4 to 8% in Europe, reaching 13% in 70-year-old patients.
First classified by Fontaine and Leriche in four stages, asymptomatic PAD (stage I); mild claudication
(stage II a); moderate to severe claudication (stage II b); ischemic rest pain (stage III); and ulceration
or gangrene (stage IV); PAD is now classified in intermittent claudication and critical ischemia with
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rest pain and/or tissue damage [1–5]. To avoid local damage which might lead to limb amputation
and to reduce death occurrence, several therapeutic approaches have been tested, including exercise.
Indeed, low exercise capacity is significantly associated with severe comorbidities [6] and exercise
improved both local and general prognosis in patients suffering from PAD, enhancing walking ability
and preventing serious cardiovascular complications [7–10]. At a cellular level, the beneficial effects of
exercise can be explained by improvements in muscle biogenesis, mitochondrial function, and energy
balance [11]. Even in the case of chronic critical limb ischemia, experimental data support that moderate
exercise can reduce skeletal muscle damage, improving functional scores, restoring mitochondrial
respiration and calcium retention capacity, and enhancing anti-oxidant defenses, such as superoxide
dismutase 1 and 2, and catalase [12].

Therefore, exercise, either performed in hospital or out of hospital facilities, is a widely accepted
therapy, ameliorating muscle function and more generally PAD patient’s quality of life [13].

To date, limited data have been reported concerning the relationship between PAD and brain
function and whether exercise might improve cognition in patients with PAD. However, evidence
supports that several types of exercise improve cognitive performance in humans [14,15].

The aim of this review is to highlight the fact that patients suffering from PAD often demonstrate
with cognitive dysfunction and that exercise, likely through myokine secretion and microglial
anti-inflammatory phenotype enhancement, might help to protect the brain function in common
clinical settings.

2. Cognitive Function in Patients with Peripheral Arterial Disease

PAD patients are often viewed as presenting with cognitive dysfunction. Such impaired cognitive
processes are not unexpected since both diseases share common cardiovascular risk factors, such as
hypertension, diabetes, hypercholesterolemia, obesity, sedentary lifestyle, and smoking [5,16–19].
More specifically, inflammation, oxidative stress, mitochondrial, and vascular dysfunction are key
factors in the pathophysiology of both PAD and neurodegenerative diseases [12,20–22]. Thus, although
an experimental study failed to demonstrated brain mitochondrial dysfunction in the setting of aortic
clamping [23], peripheral inflammatory factors released during the ischemic process have been shown
to impair several remote organs, including the brain [24,25] (Figure 1).
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2.1. Main Clinical Data

Recently, confirming experimental data, clinical trials have shown the presence of cerebrovascular
disease in the context of PAD [26–29]. Thus, compared to hypertensives and normotensives patients,
patients with PAD had significantly lower performance on seven tests of nonverbal memory,
concentration, executive function, perception-motor speed, and manual dexterity. However, PAD
patients performed better than stroke patients. These results were independent of age, education,
and depression scores. PAD patients with higher plasma glucose levels and diastolic blood pressure
had a worse performance in cognitive tests [27]. The findings also suggest that the degree of cognitive
dysfunction is associated with increasingly severe indicators of cardiovascular disease.

In 2006, a study investigated the cognitive function of patients with asymptomatic peripheral
arterial disease, without the occurrence of stroke or transient ischemic attacks. The results showed
that the patients scored worse than healthy controls on five cognitive tests (digit span backward, trail
making A and B, and Rey–Osterrieth complex figure copy and delayed recall), related to attention,
verbal working memory, perceptuo-motor speed, visuo-constructive skills, and visual memory [30].

Cognitive function was also studied in patients with PAD or diabetes mellitus who underwent
lower limb amputation. Patients were investigated before amputation and 6 weeks and 4 months after
amputation. No significant differences were found in neuropsychological tests between 6 weeks and
4 months after amputation surgery. However, the patients presented an improvement in cognition
when compared to the results before surgery. The authors suggested that this improvement was
associated with the perceived increase in general health [31]. Another study with patients amputated
due to peripheral vascular disease demonstrated that they performed significantly worse than controls
in certain measures of psychomotor speed and problem-solving or abstract reasoning. The authors
hypothesized that cognitive deficits may be the result of unrecognized concomitant cerebrovascular
diseases, which are part of a generalized pattern of vascular disease [32].

In a study conducted by Gardner et al. [28], patients with PAD were grouped according to their
performance on a mini-mental state examination (MMSE). Patients who scored at least 28 out of
30 points on MMSE underwent an assessment of several aspects, including peak walking time and
health-related quality of life. The group with lower MMSE scores had a lower education level, a greater
prevalence of coronary artery disease, chronic obstructive pulmonary disease, and arthritis, and took
more medications for diabetes. The mean peak walking time was significantly reduced in the group
with lower MMSE scores compared to the group with higher MMSE scores. The group with lower
MMSE scores perceived less ability to perform the high-intensity exercise of climbing stairs, and they
had lower levels of health-related quality of life (Table 1).
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Table 1. Cognitive function in PAD patients.

Reference Study Sample Total Sample Size
and SEX Mean Age Cognitive Measures Cognitive Results

Phillips et al., 1993 [32]
(Arch Phys Med Rehabil.)

Patients with
lower-extremity

amputations secondary to
PAD and healthy

volunteers

37: PAD group (4 women
and 10 men) and healthy
volunteers (9 women and

5 men)

67.4 ± 14.8 and 69.9 ± 9.3

Learning and memory (WAIS-R Digit
Symbol subtest, WMS-R); language
and verbal ability; visuoperceptual

organization and constructional
abilities; problem solving (MCST),

abstract reasoning, and concept
formation; social judgement and

sequential reasoning;
psychomotor function.

The PAD amputee patients performed more
poorly than controls (p < 0.002, one-tailed) on
the WAIS-R Digit Symbol subtest and obtained

fewer categories on the MSCT than did the
controls. There were trends (p < 0.01,

one-tailed) toward lower patient scores on a
number of other neuropsychological tests

including the WAIS-R Vocabulary, Arithmetic,
Similarities, and picture arrangement subtests,
oral fluency (COWAT, orthographic condition),

and the copy administration of the ROCF.

Waldstein et al., 2003 [27]
(Psychosomatic Medicine)

PAD, stroke, hypertensive
and normotensive

patients

107: Normotensive group
(7 women and 16 men),

hypertensive group
(5 women and 15 men),
PAD group (10 women
and 28 men) and stroke

group (6 women and
20 men)

66.3 ± 5.8
70.0 ± 5.7
69.8 ± 7.0
62.3 ± 8.1

Tests for verbal memory (WMS-R)
non verbal memory attention, was

evaluated by recall of geometric
figures using the Visual

Reproductions subscale of the
WMS-R. Trail Making Test Parts A
and B and the Stroop Color-Word

Test for perceptuo-motor speed and
executive functions. Motor speed

and manual dexterity were examined
with the Grooved Pegboard test.

PAD patients performed more poorly than
normotensive patients in tests of non verbal

memory, verbal working memory (p < 0.002),
perceptuomotor speed, attention and mental

flexibility and motor speed and manual
dexterity (p < 0.00001) and compared to
hypertensive patients in verbal memory

(p < 0.002), verbal working memory
perceptuomotor speed, attention and

mental flexibility.
Stroke<PAD<Hypertensive<Normotensive

Mangiafico et al., 2006 [30]
(Age and Ageing).

Asymptomatic PAD
(APAD) - stage I

328: APAD group
(42 women and 122 men)

and Control group
(44 women and 120 men)

70.0 ± 3.4 and 70.3 ± 3.7

Cognitive domains of attention and
verbal working memory (Digit Span

Forward and Backward),
perceptuomotor speed, attention and
mental flexibility (Trail Making Test),
visuoconstructive skills and visual
memory ROCF Copy and ROCF

Delayed Recall and the global
cognitive functioning (MMSE).

Patients with APAD scored significantly worse
(p < 0.0001) than control subjects on five

cognitive tests: Digit Span Backward, Trail
Making A, Trail Making B, ROCF Copy and

ROCF Delayed Recall
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Table 1. Cont.

Reference Study Sample Total Sample Size
and SEX Mean Age Cognitive Measures Cognitive Results

Williams et al., 2014 [31]
(Arch Phys Med Rehab.)

PAD or DM patients with
lower extremity

amputation.

87: Presurgicaly
(1 woman and 28 men)

and postsurgicaly
(6 women and 52 men)

63 ± 10 and 62 ± 8

Neuropsychological Test Score:
executive function (semantic

fluency), auditory-verbal learning
(list learning), and verbal

memory (list recall)

Improvement in overall performance between
presurgery and 6 weeks (p = 0.03) and

presurgery and 4 months (p = 0.06), but no
differences between 6 weeks and 4 months

after amputation.

Gardner et al., 2016 [28]
(Journal of

Vascular Surgery)

Symptomatic PAD:
Patients with a perfect

MMSE score of 30 points
and patients with
score < 30 points.

246: PAD patients with
score of 30 (65 women and
58 men) and PAD patients
with score <30 (61 women

and 62 men)

64 ± 10 and 65 ± 11 MMSE questionnaire

Lower cognitive screening scores were
associated with greater

ambulatory impairment.
Worse cognitive status was associated with

lower scores in multiple dimensions of
health-related QoL;

The group with lower MMSE scores had a
lower education level (p < 0.01), a greater
prevalence of CAD (p = 0.02), (p = 0.01),
and arthritis (p < 0.01), and took more

medications for diabetes (p < 0.01)

Cavalcante et al., 2018 [29]
(Eur. J. Vasc.

Endovasc. Surg.)

Symptomatic PAD
(intermittent claudication
in one or two legs, stage)

130: 29 women and
101 men 67 ± 8

Cognitive function; global,
memory, executive function and

attention by MoCA test

86% of patients were classified as probably
having a cognitive impairment;

Greater memory performance was associated
with greater moderate to vigorous physical

activity leaves (p = 0.044) and walking capacity
(p = 0.033)

CAD: coronary artery disease; COPD: chronic obstructive pulmonary disease; COWAT: Controlled Oral Word Association Test; DM: diabetes mellitus; MCST: Modified Card Sorting Test;
MMSE: mini-mental state examination questionnaire; MoCA: Montreal cognitie assessment; PAD: peripheral arterial disease; QoL: health-related quality of life; ROCF: Rey–Osterrieth
Complex Figure SPMSQ: short portable mental status questionnaire; WAIS-R: Wechsler Adult Intelligence Scale-Revised; WMS-R: Wechsler Memory Scale-Revised.
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2.2. The Ankle-Brachial Index as an Indicator of Cognitive Dysfunction in PAD

The ankle-brachial index (ABI) is very useful in the evaluation of patients with suspected PAD.
The test is based on the systolic pressure measurement from the posterior tibial arteries and dorsalis
pedis of each leg, normalized by the highest brachial pressure of each arm to assess the ankle-brachial
index. The typical cutoff point for diagnosing PAD is ≤0.90 at rest [4]. According to Hart et al., the ABI
was significantly correlated with intramuscular inflammation, oxidative stress, and mitochondrial
reactive oxygen species (ROS) generation [33].

Interestingly, in a cohort study [34], 717 men and women (aged 55 to 74) from the general population
were followed for 10 years. The results indicated that the lower the ABI, the worse the performances in
nonverbal reasoning, verbal fluency, and information processing speed. These data strongly support
that ABI is predictive for cognitive impairment. Accordingly, a relationship between ABI and cognitive
function was found in a cross-sectional survey in elderly Chinese people, after logistic regression
and adjustment for age and sex. The presence of cardiovascular diseases (stroke, hypertension,
myocardial infarction) and cognitive impairment was positively associated with low ABI [35]. Finally,
Espeland et al. demonstrated that in an older cohort of non-demented sedentary individuals, lower
ABI was independently correlated with cognitive function and associated with greater 2-year risk
for progression to mild cognitive impairment or probable dementia [36]. This association between
ABI and cognitive impairment was confirmed in a cross-sectional study where aging resulted in a
higher proportion of individuals with low ABI or cognitive impairment [37]. Further, individuals with
low ABI had a higher frequency of cerebral lacunar infarcts, intracranial stenosis, cortical thinning,
and lower verbal memory performance [38]. In a systematic review and meta-analysis, ABI proved to
be an accessible tool for patients with stroke, demonstrating an association between low ABI (≤0.9)
and recurrent stroke and future vascular events [39]. Thus, originally proposed for the noninvasive
diagnosis of PAD, ABI might be a simple measure to assess whether PAD patients would be more
likely to develop cognitive impairments. Together, these results suggest that ABI is an indicator not
only of PAD, but also of cognitive function (Figure 2) and ABI determination might further support
exercise as a therapeutic approach.
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3. Implications of Myokines in the Beneficial Effects of Exercise on Brain Function in Peripheral
Arterial Disease Patients

The regular practice of physical exercise is one of the most effective treatments for patients
with intermittent claudication [40]. Physical exercise is a good and low-cost non-pharmacological
therapeutic strategy, minimizing the effects of ischemia-reperfusion injury and improving the clinical
and mental state of the patients. Among the positive effects of physical exercise are the reduction of
inflammatory factors and oxidative stress, increased angiogenesis, and improvement of endothelial
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and cognitive function. According to Cavalcante et al. [29], cognitive performance in patients with
PAD is positively associated with walking ability and moderate to vigorous intensity physical activity.

Skeletal muscle accounts for approximately 40% of the total body mass and evidence indicates
that, besides its locomotor function, skeletal muscle secretes cytokines or other peptides that may
exert paracrine, or endocrine effects in distant organs [41–43]. Such myokine secretion is generally
enhanced by exercise and they may play important anti-inflammatory, neuroprotective and neurogenic
roles [43–45]. Additionally, a preferential shift toward a microglial anti-inflammatory phenotype likely
participates in exercise-induced protection of the cognitive function in PAD patients.

3.1. Involvement of Myokines in Exercise-Induced Protection of the Cognitive Function

Studies have shown that anti-inflammatory cytokines, such as IL-6, IL-1RA, and IL-10, are
increased after exercise. Physical exercise also induces the expression of brain-derived neurotrophic
factor (BDNF) mRNA in the hippocampus, an important factor responsible for neuron survival,
maturation, proliferation, and plasticity, thus playing a significant role in learning and memory [46,47].

Moon et al. [48] suggested that cathepsin-B may be an important mediator of the effects of
physical exercise on cognition. After 12 weeks of exercise, cathepsin-B levels increased in mice plasma
and muscle, and the cathepsin-B treatment in neuronal cells increased BDNF expression. Further,
cathepsin-B knockout mice showed no improvement in neurogenesis and spatial memory, as compared
to control mice. Importantly, similar results were found in rhesus monkey and humans, correlating the
increase of cathepsin-B plasma levels with cognition improvement [48].

Irisin appears also as an exercise-induced myokine, released upon the cleavage of the
membrane-bound precursor protein fibronectin type III domain-containing protein 5 (FNDC5).
It is associated with homeostasis processes such as glucose metabolism, insulin sensitivity, and fat
browning [49]. Recently, irisin demonstrated an important role as a neurotrophic factor promoting
survival, maintenance, and function of neuronal cells [50]. Wang et al. [51], showed that irisin protected
the neurons, reduced the release of IL-1β and IL-6, and reduced the expression of cyclooxygenase 2
(proinflammatory factor) in cultured astrocytes exposed to β-amyloid. Accordingly, Lourenco et al. [52]
showed that an intra-cerebroventricular infusion of amyloid-β oligomers (AβOs) induced significant
reductions of FNDC5 mRNA expression in mice hippocampus. Similarly, impaired maintenance of
hippocampal long-term potentiation and memory were observed in knocked down FNDC5/irisin mice.
However, when AβOs mice received an intravenous injection of FNDC5, hippocampus FNDC5 levels
increased and memory was protected. Reduced levels of FNDC5/irisin in the brain and cerebrospinal
fluid in patients with Alzheimer’s disease further support the implication of such defective signaling
in humans.

Concerning exercise/irisin relationships, some controversies still exist. Physical exercise protected
AβOs mice from cognitive dysfunction and increased the hippocampal levels of FNDC5/irisin,
as compared to sedentary mice [52]. Consistently, mice performing physical exercise for 2 weeks prior
to cerebral ischemia demonstrated better scores on a neurological function test. Further supporting
the neuroprotective effects of irisin, such beneficial effects of physical exercise were abolished when
blocking irisin one hour before cerebral ischemia [53].

However, since the original study by Bostrom et al. showing that exercise increases irisin in mice
and humans [54], others proposed negative evidence of a possible expression and concentrations of
irisin in skeletal muscles and serum during exercise or training [55,56] and the physiological role of
FNDC5/irisin in mediating responses to exercise was challenged [57]. Nonetheless, several publications
supported exercise-related changes in irisin [58]. For example, an exercise-related increase in irisin
resulted in BDNF expression in the hippocampus [59] and Küster et al. [60] observed a positive
correlation between irisin, BDNF levels, and cognition in older adults at risk of dementia after 10 weeks
of physical exercise. Accordingly, physical exercise-induced cognitive improvement together with
increased neurogenesis and BDNF, FNDC5 levels, and synaptic proteins in the hippocampus of 5XFAD
transgenic mice, a model for Alzheimer’s disease [61]. It is therefore likely that the high expression of
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the irisin precursor FNDC5 in the brain, including in the cerebellar Purkinje cells, the hypothalamus
and hippocampus might participate in the beneficial effects of exercise on brain and neurodegenerative
diseases [62].

The type of exercise might modulate irisin /brain interactions. Irisin appeared to not be involved
in resistance training because it failed to activate PGC-1α1, a transcription regulator upstream of the
FNDC5 [62]. The timing of blood withdrawal might also be essential since elevated irisin has been
shown to be transient during exercise in young men and women [63]. This might also explain some
discrepant data previously reported [53–63]. Ongoing identification of irisin receptors and detailed
signaling pathways triggered during exercise will be useful to increase our knowledge and allow us to
optimize irisin activity modulation.

Interleukin 6 (IL-6) has been described as a double-edged sword, which may present pro-
or anti-inflammatory effects, and consequently neurodegenerative or protective actions [64,65].
Mainly defined as a proinflammatory cytokine, IL-6 was the first myokine found to be secreted
into the bloodstream in response to muscle contractions, with a considerable increase in plasma up to
100-fold in response to exercise [66,67].

The role of IL-6 in the brain is rather complex. IL-6 differentially influences microglia, mediating
neuroprotective [68] and neurotoxic microglial responses [69]. It exerts neurotrophic actions and is also
a mediator of acute inflammation [70]. A number of studies have reported elevated levels of IL-6 during
central nervous system (CNS) disorders [65], but on the other hand Ma and co-workers [71], demonstrated
that IL-6 reduced neuronal cytosolic Ca2+ overload, mitochondrial membrane depolarization,
and neuronal induced by NMDA, demonstrating that IL-6 has a neuroprotective property. Similarly,
the IFN-γ and IL-6 in an acute neuro-inflammatory environment are neuroprotective via ERK and/or
STAT3 [72]. Gmiat et al. found that a single bout of high-intensity circuit training was able to improve
concentration and spatial memory in young women, and that irisin and IL-6 releases from exercise
(respecting intensity and periods of adequate rest and nutrition) might be considered as a sensor
stimulating BDNF synthesis [73]. Starkie et al. demonstrated that exercise and IL-6 infusion inhibit
TNF-α production, suggesting that IL-6 might mediate anti-inflammatory activity during exercise [74].

Myostatin, another important myokine, is a member of the TGF-β superfamily, and its inactivation
induces skeletal muscle hypertrophy in mice and humans. Myostatin also regulates the maintenance of
metabolic homeostasis and modulation of adipose tissue function and mass [75–77]. Myostatin could
be expressed in different brain regions, but its function in the brain is still unknown [75]. Interestingly,
Lin et al. [78] demonstrated that myostatin levels were elevated in the gastrocnemius muscle and
that the extent of muscle mass loss was associated with the severity of cognitive deficits in transgenic
mice mimicking Alzheimer’s disease. Myostatin knockdown in the gastrocnemius increased grip
strength and muscle mass and improved memory in such transgenic mice. The authors concluded
that cognitive dysfunction may be mediated or triggered by myostatin expression and suggested that
myokine modulation may be a therapeutic intervention against muscular and cerebral dysfunctions
(Figure 3).
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3.2. Microglial Anti-Inflammatory Phenotype and Exercise

Recently, another topic has been attracting interest in the scientific community. It is the study of
the microglial anti-inflammatory phenotype. Microglia is a highly plastic group of immune cells that
reside in the CNS. The classic microglia activation is pro-inflammatory, characterized by the release of
TNF-α and IL-1β, inducing neuro-inflammation and reduction in hippocampal neurogenesis [79–81].
However, some studies suggest that microglia is also capable of repairing tissue damage by producing
anti-inflammatory cytokines, such as TGF-β; growth factors, such as IGF-1 and BDNF [81]. The biphasic
pro or anti-inflammatory role of microglia is dictated by the type of expressed phenotype. During the
pro-inflammatory response, microglia expresses the M1 phenotype, while in the anti-inflammatory
response the M2 phenotype is expressed. This biphasic response of microglia is linked to other cerebral
cells, including astrocytes, oligodendrocytes, and neurons [82].

Beneficial effects of voluntary running in aged mice were related to the induction of a
neuroprotective phenotype in microglia; and the proportion of BDNF positively co-labeled
with microglia was correlated with the number of neurons [83]. Similar results were found by
Kohman et al. [84], demonstrating that running increased the proportion of microglia expressing
IGF-1 and the survival of neurons, suggesting that exercise shifts toward microglia pro-neurogenic
phenotype allowing neuroprotection. Further, in a chronic cerebral hypoperfusion model, 28 days
of exercise transformed the microglial phenotype from M1 to M2, improving the cognitive function
in rats [85]. Further supporting the beneficial effect of exercise on microglia, a recent study showed
that 4 weeks of physical exercise reduced the M1 phenotypic markers (CD32, CD86, and iNOS) and
increased the M2 phenotypic markers (ARG1, TGF-β, and CD206) in the hippocampal microglia
of an Alzheimer’s disease model. This was accompanied by a reduction in inflammatory factors,
such as IL-1β and TNF-α, and by an increase in anti-inflammatory factors, such as IL-4 and IL-10.
In addition, exercise reduced neuronal loss, oxidative stress, apoptosis, and pro-apoptotic cascade in
the hippocampus. Exercise also improved the cognition, as inferred by better scores in three different
tasks (Barnes maze task, passive avoidance test, and novel object recognition test) [86]. Similarly,
intravenous administration of irisin 30 min after cerebral ischemia inhibited the activation of microglia,
oxidative stress, and neuroinflammation in mice [53]. Finally, environmental enrichment with toys,
tunnels, and running wheels, allowed the analysis of the importance of microglia in the neurogenesis
of adult hippocampus. The activation of microglia was associated with hippocampal neurogenesis
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after 6 weeks of environmental enrichment [87]. Taken together, these studies suggest that physical
exercise might modulate the activation of microglia with a protective impact on neurogenesis.

4. Exercise Characteristics and Improvement in Cognitive Function

Which kind of exercise might be the most beneficial in order to improve the cognitive function
remains to be investigated in PAD. The effects of exercise training on intermittent claudication have
been recently reviewed and, clearly, physical exercise either supervised and/or home-based improved
PAD patient performance and quality of life. Several types of exercise were beneficial but exercising
3-5 times a week for 30–50 min was often used and demonstrated increased walking time without
pain and increased exercise capacity [88,89]. In a study including 114 PAD patients, 3 types of physical
exercise, supervised physical exercise, "home-based", and resistance programs, performed 3 times
a week for 12 weeks were investigated. Even home-based exercise training improved circulating
markers of antioxidant capacity, angiogenesis (VEGF), endothelium-derived inflammation (E-selectin),
and blood glucose concentration [90]. Regarding intensity, a body of evidence suggests that higher
exercise intensities may maximize the health outcomes of PAD patients [91]. Accordingly, a systematic
review and meta-analysis supported that patients with PAD tolerated vigorous exercise intensity
and intermittent aerobic exercise, the intensity being based on the occurrence of claudicating pain.
Exercise duration of 24 weeks generated positive effects, the better exercise-induced responses being
obtained in patients with mild pain [92].

Thus, one might propose that exercise protocols that are effective on PAD symptoms should
also be effective on cerebral functions, following a dose–response relationship. Indeed, in patients
with known cardiovascular diseases such as heart failure and stroke, the degree of improvement in
cognitive performance was related to exercise duration, frequency, and intensity. Further, combined
interventions might be more efficient than endurance and resistance training alone [93].

Interestingly, although irisin increased similarly in young men and women during exercise [63],
we are not aware of studies investigating specifically potential gender differences in the relationship
between PAD, exercise, and cognitive function. Nevertheless, a recent work stressed the role of gender
in memory function, suggesting that exercise protocol should be further personalized [94].

5. Conclusion

In conclusion, PAD and ischemia-reperfusion damage are not restricted to the lower limbs,
and significant deleterious effects can be observed in the brain. Particularly, PAD patients often present
with cognitive dysfunctions, related to their PAD degree as inferred from the relationship between the
ankle brachial index and the cognition level. The mechanisms and pathways that link the periphery and
the CNS are still under investigation, but oxidative stress and inflammation appear to play key roles.

Physical exercise can already be considered as an efficient therapeutic option, reducing PAD-related
cognitive dysfunctions, potentially through exercise-induced myokine secretion and microglial
anti-inflammatory phenotype enhancement. Reduction in cardiovascular risk factor, improved
endothelial function, decreased inflammation and oxidative stress should also participate in the
beneficial effects of exercise in patients suffering from PAD.
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