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Most diabetic patients develop diabetic peripheral neuropathy (DPN). DPN is related to the
increase of inflammatory cells in peripheral nerves, abnormal cytokine expression,
oxidative stress, ischemia ,and pro-inflammatory changes in bone marrow. We
summarized the progress of immune-inflammatory mechanism and treatment of DPN
in recent years. Immune inflammatory mechanisms include TNF-α, HSPs, PARP, other
inflammatory factors, and the effect of immune cells on DPN. Treatment includes tricyclic
antidepressants and other drug therapy, immune and molecular therapy, and non-drug
therapy such as exercise therapy, electrotherapy, acupuncture, and moxibustion. The
pathogenesis of DPN is complex. In addition to strictly controlling blood glucose, its
treatment should also start from other ways, explore more effective and specific treatment
schemes for various causes of DPN, and find new targets for treatment will be the direction
of developing DPN therapeutic drugs in the future.

Keywords: diabetic peripheral neuropathy, immune inflammation, therapy, immune cells, pathogenesis

INTRODUCTION

The prevalence of diabetes mellitus (DM) increased with age. DM is present in 19.9% of 65–79-year-
olds (Saeedi et al., 2019). Diabetic peripheral neuropathy (DPN) is one of the common chronic
complication of diabetes mellitus. Its Clinical Syndrome can be dysfunction of peripheral
neuropathy, influencing the quality of life in the dabetic patients. DPN is a length-dependent
sensory axonal lesion that usually the first manifestation is the sensory disturbance, pain, numbness
or loss of balance (Edwards et al., 2008). DPN leads to the decline of patient’s quality of life. Studies
have shown that although blood glucose control can reduce the incidence of peripheral neuropathy
in type 1 diabetes, it will also increase the incidence of hypoglycemia, and aggressive blood glucose
control can not reduce the incidence of peripheral neuropathy in type 2 diabetes (Group 1993;
Boussageon et al., 2011; Callaghan et al., 2012a). Moreover, although neuropathy associated with
T1DM and T2DM has been classified into the same category, we know that the pathogenesis of these
two diseases is very different (Callaghan et al., 2012b; Eid Sas et al., 2019). It is essential to study the
pathogenesis of DPN. In the past, most studies on DPN were limited to metabolism, genetic
mechanism, and the effect of hypoglycemic drugs (Ferland-Mccollough et al., 2016; Sztanek et al.,
2016; De et al., 2017; Stino and Smith, 2017; Jamwal et al., 2018). Previous drug trials mainly focused
on antioxidants (Ziegler et al., 1999; Ametov et al., 2003; Ziegler et al., 2006), aldose reductase
inhibitors (Hotta et al., 2006; Bril et al., 2009; Ramirez and Borja, 2012), neurotrophic factors (Apfel
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2002; Decroli et al., 2019), GABA analogs (Ermis et al., 2010), cell
metabolic agonists (Evans et al., 2008; Dan, Movsesyan et al.,
2009) and vasodilators (Yuen et al., 2002). These drugs have
limited effect in the clinical treatment of DPN associated with
T1DM and T2DM (Coert, J. et al., 2016). However, with the
further study of DM, the mechanism of immune inflammation is
related to the pathogenesis of DPN. This review mainly focuses
on the immune-inflammatory mechanism of DPN. (Figure 1).

IMMUNOINFLAMMATORY FACTORS AND
DIABETIC PERIPHERAL NEUROPATHY

Tumor Necrosis Factor-α
Figure 2 Hyperglycemia has been shown to activate tumor
necrosis factor-α (TNF-α) secretion from immune cells. TNF-
α causes nerve demyelination and stimulates monocytes and
endothelial cells to secrete inflammatory substances, further
increase nerve damage. DPN patient’s serum tumor necrosis
factor-α (TNF-α) level was significantly higher than that of
patients without DPN and normal controls. The risk of DPN
in diabetic patients with elevated TNF-α was 2.594 times that of
regular TNF-α patients (Mu et al., 2017). The serum tumor TNF-

α of DPN patients was higher than patients without DPN and
normal controls (Duksal et al., 2016). The most conclusive
finding is that streptozocin (STZ) induced diabetes TNF-
α-/-mice will not develop DPN like diabetic mice (Yamakawa
et al., 2011). Hussain et al. found that TNF-α was negatively
correlated with nerve conduction velocity (Hussain et al., 2013).
Shi et al. showed that compared with untreated DPN,
recombinant human TNF-α receptor antibody fusion protein
inhibited TNF-α in STZ induced diabetic rats, partially improving
motor nerve conduction velocity (MCV) and sensory nerve
conduction velocity (SCV), increasing the expression of myelin
basic protein (MBP), and preventing myelin and neural structural
abnormalities (Shi et al., 2013).

Saleh et al. (2011) showed that the expression of TNF-α and
interleukin-6 (IL-6) in the dorsal root ganglia (DRG) induced by
STZ was downregulated in 2 and 5 months after induction, but it
was found in the nerve. In addition, we also found that TNF-α
induced neurite growth via the nuclear factor kappa-B (NF-κB)
pathway in sensory neurons in vitro. However, the growth of this
neurite was markedly impaired in sensory neurons of diabetic rats
(A, A et al., 2011). It is concluded that the decrease of TNF-α in
DRG may lead to the repair and regeneration of DPN -related
nerve injury. Grosick et al. studied the response of macrophage

FIGURE1 | Schematic flowcharts. Schematic flowcharts of the article.

Frontiers in Pharmacology | www.frontiersin.org October 2021 | Volume 12 | Article 7481932

Xue et al. Advances in DPN

https://www.frontiersin.org/journals/pharmacology
www.frontiersin.org
https://www.frontiersin.org/journals/pharmacology#articles


phenotypes to high glucose and typical glucose environments. We
found that in a high glucose environment, macrophages
stimulated by LPS produced high levels of TNF-α and human
macrophage chemoattractant protein-1 (MCP-1), but the effect
of IL-6 was not so strong. However, lipopolysaccharide (LPS)
stimulation did not significantly increase MCP-1 or TNF-α under
normal glucose conditions compared with unstimulated
macrophages. In addition, macrophages exposed to LPS and
IL-10 maintained high TNF-α expression under high glucose
conditions, while macrophages exposed to average glucose
maintained high TNF-α expression; Only LPS stimulation
could increase the secretion of TNF-α (Grosick et al., 2018).

Heat Shock ProteinS
Heat shock protein (HSP) is a chaperone protein synthesized by
the body under stress (Sun and Li, 2003). HSP regulates the
biological activities of various proteins under non-stress
conditions, including regulating DNA replication, gene
transcription, protein transfer of subcellular structure, cell
signal transduction, immune response, growth, development,
and apoptosis (Takahashi et al., 2003). Korngut et al.
demonstrated that STZ induced diabetic mice overexpressed
HSP27 (Korngut et al., 2012). Diabetic animals with high
expression of HSP27 had axonal terminal density and
mechanical sensitivity similar to those in the non-diabetic
control group, which was in contrast with those in the
diabetic non-transgenic control group. In addition, SCV in
diabetic mice with high expression of HSP27 did not slow
down compared with diabetic non-transgenic mice, but MCV
was similar to that in diabetic mice. This study also showed that
over expression of HSP27 in diabetic mice decreased receptor for

advanced glycation endproducts (RAGE) positive sensory
neurons compared with diabetic non transgenic-mice. It is
worth further noting that compared with non-transgenic mice,
the expression of activated caspase-3 as a cytotoxic marker of
diabetes decreased in HSP27 overexpression mice. Elevated levels
of HSP70 may be related to insulin resistance in type 2 diabetic
patients. The number of endothelial progenitor cells decreased,
and their function was impaired in T2DM patients, positively
correlated with atherosclerotic cardiovascular events. These
factors are closely related to complications such as diabetic
peripheral neuropathy (Nakhjavani et al., 2010).

Poly ADP-Ribose Polymerase
Poly ADP-ribose polymerase-1(PARP-1) is a ribozyme with
many regulatory functions and rich content. It can repair the
DNA, maintain genome integrity and regulate the expression of
many proteins, apoptosis, and death at the transcriptional level.
Transplantation of bone marrow from poly ADP-ribose
polymerase (PARP)-/- mice into wild type (WT) mice could
inhibit the occurrence of DPN. On the contrary, when reversed
(bone marrow fromWTmice was transplanted into PARP mice),
PARP−/− mice were vulnerable to DPN. In vitro experiments
supported these results: when WT mice BM-derived cells and
DRG were co-cultured in a high glucose environment, this led to
the fusion of the two cells. This did not occur in a low glucose
environment nor fuse with bone marrow-derived cells from
PARP-/- mice (Terashima et al., 2012). PARP activation plays
a vital role in the pathogenesis of diabetes and its complications.
Activation of PARP in diabetic nerves can cause energy failure
through vascular and non-vascular mechanisms. The activation
of PARP can lead to the shortage of nutrient blood flow and

FIGURE2 | Inflammatory pathways associated with DPN. Hyperglycemia activates inflammatory pathways (TNF-α, NF-κB, HSPs, PARP et al.) and causes cell
damage.
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sensory and motor conduction velocity in the neuro intima and
lead to the degeneration of large and small nerve fibers. The
motor nerve conduction velocity and the formation of sensory
nerve conduction need PARP activation. Motor nerve conduction
velocity and sensory nerve conduction function were less
damaged in PARP deficient diabetic mice (Tesfaye and
Selvarajah, 2012). Additional evidence found that the use of
PARP inhibitor treatment in experimental diabetic patients
could reduce the slowing of MCV and SCV and prevent the
decrease of axon diameter and myelin sheath thickness. It is
worth noting that inhibition of PARP prevents the increase of
TNF-α and nitrotyrosine in the sciatic nerve and spinal cord (Drel
et al., 2010).

Long term exposure to glucose leads to nonenzymatic
glycosylation of peripheral myelin, which leads to further
changes in the interaction between macrophages and myelin.
It is worth noting that macrophages recognize the newly formed
age products in the myelin sheath and internalize and attack it
(Vlassara et al., 1984). Bekircan-Kurt et al. found that Rage was
observed in distal skin biopsies of DPN patients, and the number
of T cells adhering to blood vessels increased (Bekir Ca N-Kurt
et al., 2015). In addition, when RAGE was deleted from diabetic
male mice, it had a partial protective effect on the early
electrophysiological parameters of chronic DPN. In contrast,
insulin treatment had little impact on diabetic mice (De et al.,
2017). IL-6 has a therapeutic effect on DPN. Giving IL-6 1 or
3 times a week had a significant preventive effect on decreasing
MCV and SCV in STZ induced diabetic rats. It also improves heat
sensitivity, reduced abnormal nerve fiber’s proportion, and
prevents myelin thinning (Andriambeloson et al., 2010).
Studies showed that AGE/RAGE signal led to the increase of
NF-κB and IL-6 in DPN (Bierhaus et al., 2004). Advanced
glycation end products (AGE) may accumulate naturally
during aging. Interestingly, soluble RAGE therapy and RAGE
knockout resulted in a decrease in NF-κB (Ravichandran et al.,
2005; Figure 2).

NLRP3
NLRP3 belongs to the pattern recognition receptor of nucleotide-
binding oligomerization domain-like receptors (NLR). NLRs
have nucleotide-binding oligomerization domain (Nacht),
which is supplemented by C-terminal leucine-rich repeats
(LRRs structure) and N-terminal caspase (card) or pyrin
domain. The function of LRRs is ligand sensing and self-
regulation, while card and PYD structures regulate the
interaction of downstream signal hemoproteins. Nacht
structure is the only typical structure of all NLR families and
is activated by ATP-dependent oligomerization. NLRPs subgroup
includes PYD and LRR, and NLRP3 is a part of the NLRs
subgroup. NLRP3 inflammasome is the most characteristic
inflammasome in the NLRs. It comprises NLRP3, autophagy-
related spotted protein (ACS), and cysteine aspartate specific
protease caspase-1. Some scholars believe that the NLRP3
inflammatory body is a receptor of metabolic risk. NLRP3
inflammatory bodies play an important role in many non-
infectious inflammatory diseases, such as gout, atherosclerosis,
and diabetes. LRP3 inflammasome can activate caspase-1, then

cut the precursor forms of inflammatory factors such as in IL-1β
and IL-18, mature them and release them outside the cell, causing
inflammatory response. IL-1β, reactive oxygen species (ROS),
and thioredoxin interacting proteins are associated with the
pathogenesis of type 2 diabetes. Sustained hyperglycemia
induces ROS. ROS directly activates NLRP3 inflammasome or
indirectly activates NLRP3 inflammasome by stimulating
thioredoxin to release thioredoxin interacting protein. This
process further aggravates chronic hyperglycemia and worsens
diabetes. NLRP3 activation is the central link in the inflammatory
mechanism of diabetes.

IMMUNE CELLS AND DIABETIC
PERIPHERAL NEUROPATHY

Lymphocytes
In the pathogenesis of DPN, the immune mechanism should not
be ignored. The cellular immune mechanism with regulatory T
lymphocyte subsets is the most important, which participates in
the negative regulation mechanism of immune-mediated
inflammation.

The cytotoxicity of CD8+ T lymphocytes to Schwann cells is
also involved in the development of DPN. A quantitative
immunohistochemical study was carried out on 20 cases of
DPN sural nerve biopsy specimens to determine whether there
was the infiltration of neural and epicardial lymphocytes in the
diabetic nerve. There were 129 CD3+ cells in each tissue section of
DPN patients and 0–5 cells in normal control. Diabetic nerve
T cells infiltrated mainly CD8+ cells. The activated lymphocytes
expressed immunoreactive cytokines and primary
histocompatibility class II antigens. Infiltrating T cells may
participate in the pathogenesis of diabetic neuropathy through
various mechanisms (Younger et al., 2015).

Myelin protein correlated with the insulin receptors. After
insulin treatment, the expression of myelin protein is up-
regulated, which alleviates the nerve damage. It indirectly
reflects the down-regulation of the insulin receptor, up-
regulation of myelin associated glycoprotein, and down-
regulation of myelin basic protein, which directly inhibited the
myelin sheath formation, thus causing damage to DPN (Younger
et al., 2015).

In addition, the number of pericytes is also involved in
immune regulation, which is inversely proportional to CD4+,
CD8+ T lymphocytes. In mice models lacking pericyte, the
immune-related cells reduced, indirectly confirming that the
peripheral cells participate in the mediated immunity (Hong
et al., 2015).

Microglia
As innate immune cells, microglia can clear cell debris and
foreign bodies and play the critical role of immune
monitoring. Hyperglycemia and reactive oxygen species can
also affect the local microenvironment of spinal cord and
activate microglia. In turn, activated microglia synthesize and
released inflammatory cytokines and neuroactive molecules,
which induce the spinal cord injury-sensitive neurons
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(Couture et al., 2014). Activated microglia release various
neuromodulators and neuroactive substances, such as reactive
oxygen species, nitric oxide, peroxynitrite, prostaglandins, and
pro-inflammatory cytokines, involved in hyperalgesia
neuropathic pain of DPN. The expression of IL-1β and TNF-α
in the spinal cord of STZ diabetic rats increased. The increase of
IL-1β and TNF-α, as well as the thermal and mechanical
hypersensitivity of rats, were inhibited by systemic or spinal
administration of flucytosine, a non-selective metabolic
inhibitor of glial cells, or minocycline, a selective microglia
inhibitor. Systemic or spinal administration of flucytosine or
minocycline inhibited IL-1 β And TNF- α As well as thermal
and mechanical allergies in rats. A recent study found that
atommoxetine (a new effective 5-hydroxytryptamine and
norepinephrine reuptake inhibitor) had a sustained analgesic
effect on STZ induced diabetic rats and could improve their
depressive behavior. It could inhibit the activation of microglia
and the phosphorylation of p38 and c-Jun N-terminal kinase
(JNK) and reduce the inflammatory cytokines (Zhang et al.,
2018).

Macrophages
Due to the reports of many macrophages in DPN, some
researchers used these immune cells as a means of
treatment. Macrophages have two polarization states: M1
and M2 macrophages, which express many inflammatory
factors such as inducible nitric oxide synthase (iNOS), IL-
1β, TNF-α, and anti-inflammatory cytokines such as Arg-1
(Huo et al., 2018), respectively. Under high glucose, M1
macrophages and other immune cells were activated to
express a large number of inflammatory factors, which led
to Schwann cell apoptosis and the occurrence of PDPN.
Studies showed that the inhibition of TNF- α, and the
release of M1 and macrophages into M2 macrophages could
induce the gradual recovery of nerve conduction velocity,
nerve blood flow, and axonal morphology in streptomycin
-induced diabetic rats (Omi et al., 2017).

Macrophages can alleviate some symptoms of DPN in STZ
induced diabetic rats. The researchers used liposomes
encapsulated chlorondronate and found that compared with
untreated diabetic rats, treatment resulted in lower blood
glucose levels, higher serum insulin levels, and reduced
mechanical hyperalgesia. The treatment did not affect heat
sensitivity and body weight (Mert et al., 2009). Strangely,
when liposome-encapsulated chlorophosphonate was used in
combination with the pulsed magnetic field, the treatment
effect was insufficient, while each treatment used alone
affected DPN symptoms (Tufan et al., 2013).

Schwann Cells
Mitochondrial dysfunction in Schwann cells leads to lipid
oxidation, early consumption of myelin, and accumulation of
acylcarnitine lipid intermediates, leading to axonal degeneration
and neuropathy (Viader et al., 2013). In addition, human
Schwann cells exposed to high glucose can reduce the
synthesis of phospholipids, which can be improved by aldose
reductase inhibitors, suggesting that high glucose promotes the

dyslipidemia of Schwann cells (Gonçalves et al., 2017). One study
showed that glucose-stimulated Schwann cells to produce
chemokines CXCchemokineligand-9(CXCL-9), CXCL-10, and
CXCL-11 could induce the aggregation of T cells into diabetic
neuropathy patients, thus promoting the development of
neuropathy. These results also support that Schwann cells may
be involved in the development of painful DPN (Tang et al.,
2013).

THERAPY OF DIABETIC PERIPHERAL
NEUROPATHY

First-Line Therapy
Tricyclic antidepressants include imipramine and
amitriptyline, desipramine and nortriptyline. These blocked
the reuptake of norepinephrine and serotonin by presynaptic
neurons. Another mechanism that may contribute to its
analgesic effect is to secure the uptake of 5HT and
norepinephrine. A case control study showed that tricyclic
antidepressive agents (TCAS) was influential in the treatment
of DPN (Finnerup et al., 2005; Brouwers et al., 2010). Tricyclic
antidepressants are well absorbed by oral administration, and
their lipophilicity makes them widely distributed and easy to
penetrate the central nervous system (CNS). However, due to
the first pass metabolic changes in the liver, the bioavailability
of tricyclic antidepressants is inconsistent. It needs to be
increased to an effective dose, which must be administered
continuously for 6–8 weeks (Max et al., 1992; Finnerup et al.,
2010; Rudroju et al., 2013; Singh, 2014). Side effects include
dry mouth, orthostatic hypotension, constipation, and urinary
retention. In addition, the contraindications of TCAS are
glaucoma and prostatic hypertrophy (Gandarias et al., 1998;
Benbouzid et al., 2008).

Serotonin and noradrenaline reuptake inhibitors:
Simultaneous inhibition of norepinephrine and serotonin
reuptake can reduce DPN-related pain (Iqbal et al., 2018).
We searched 13 studies showing the effect of serotonin and
norepinephrine reuptake inhibitor (SNRI) on DPN. Duloxetine
is the most studied SNRI. Eight randomized controlled trials
showed that duloxetine was effective in the treatment of DPN
(Goldstein et al., 2005; Wernicke et al., 2006; Raskin et al., 2006;
Beard, Mccrink et al., 2008, Ajay D.; Wasan 2009; Joel et al.,
2010; Tanenberg et al., 2011; Boyle et al., 2012; Lunn et al.,
2014).

Calcium channel a2-δ ligands: Pain is one of the main
symptoms of diabetic peripheral neuropathy, which
seriously reduces patient’s quality of life. Studies showed
that the first-line drug for alleviating diabetic peripheral
neuropathic pain was calcium channel a2-δl, a modulator.
Commonly used drugs are pregabalin and Gaba Martin. These
drugs reduce the influx of neurons Na+ and Ca2+ and
indirectly enhance the inhibition of γ-aminobutyric acid
(GABA). It can reduce the activity of the N-methyl-D-
aspartate receptor (NMDA receptor) by consuming the
storage of excitatory neurotransmitter glutamate or blocking
the active site of glutamate (Decroli et al., 2019).

Frontiers in Pharmacology | www.frontiersin.org October 2021 | Volume 12 | Article 7481935

Xue et al. Advances in DPN

https://www.frontiersin.org/journals/pharmacology
www.frontiersin.org
https://www.frontiersin.org/journals/pharmacology#articles


Second-Line Therapy
Opioid analgesics can be used as the first-line clinical treatment,
but due to their safety and potential abuse, many guidelines
consider opioids as the second-line treatment (Finnerup et al.,
2010). Some studies have shown that strong opioids play a
positive role in the treatment of peripheral neuropathy (Huse
et al., 2001; Raja et al., 2002; Morley et al., 2003).

Tramadol is a weak opioid, which can inhibit the reuptake of
norepinephrine and serotonin. Most international guidelines
consider tramadol as second-line therapy (Boureau et al., 2003;
Duhmke et al., 2006).

Immunoinflammatory Therapy
In animal experiments, many methods were used to treat DPN.
The combination of insulin and curcumin or resveratrol in STZ
induced diabetic mice reduced the TNF-α and hypersensitivity in
vivo, which was more evident than insulin or the use of two drugs
alone. Thakur et al. (Thakur et al., 2016) also used virus-mediated
IL-10 to reduce the mechanical and thermal hypersensitivity of
STZ induced diabetic rats. This treatment prevented the increase
of Toll-like receptors4 (TLR4), IL-1, phosphorylated p38, and
phosphorylated protein kinase C levels and decreased NeuN and
HSP70 protein levels in the diabetic control group. It is also
noteworthy that IL-10 treatment prevented the activation of
macrophages in DRG. Under hyperglycemic conditions,
cultured DRGs exposed to TLR4 antagonists could avoid
increasing protein TNF-α and showed a significant increase of
HSP70. In vivo tests, diabetic animals exposed to TLR4
antagonists reduced TLR4 and TNF-α levels and increased
mechanical sensitivity but did not increase heat sensitivity.

Ni et al., 2017) studied the effect of salidroside. Salidroside had
anti-inflammatory properties. When salidroside treated DPN
rats, they found that it decreased mechanical sensitivity only
after 8 weeks of treatment and decreased thermal sensitivity until
8 weeks after 5 weeks. They also found that sensory nerve
conduction velocity improved after 5 weeks of treatment. In
terms of mechanism, the authors found that treatment could
reduce the levels of pro-inflammatory cytokines TNF-α and IL-1
in the spinal cord and sciatic nerve. The study also found that
treatment could reduce the protein expression of the P2X7
receptor in the spinal cord. P2X7 receptor played a role in
mediating neuropathic pain by secreting pro-inflammatory
factors.

Molecular Therapy
Virus vector technology: Viral vector is the most efficient vector
for gene transmission. Except for adenovirus, other viral vectors
can integrate foreign genes into chromosomes by infecting host
cells, which can be used in cells that are difficult to transfect. After
the viral DNA was integrated into the host cell genome, it could
express stable gene therapy potential (Liu et al., 2020). Lentivirus
(LV) belongs to Retroviridae and is a diploid RNA virus.
Lentiviral vectors are vectors based on the genome of
lentivirus, in which multiple sequence structures related to
virus activity are removed to ensure biological safety. Then
exogenous genes are introduced into the genome skeleton.
Tasyurek et al. injected LV carrying human glucagon-like

peptide-1 (GLP-1) gene, which could reduce the blood glucose
level of the T2DM rat model induced by a high-fat diet combined
with streptozotocin, and its triglyceride level returns to normal.
These results showed that LV could effectively transfer potentially
therapeutic genes into islet cells for DPN treatment (Tasyurek
et al., 2018). Adenovirus vectors (AdV) can infect a variety of
human tissue cells. AdV has the advantages of high titer, strong
gene transfection ability, non-integration into the host genome,
and will not affect islet transplantation. At present, it has been
widely used in gene transduction in vitro, vaccination in vivo, and
gene therapy (Jane and Bradbury, 2003). In the treatment of
diabetes, AdV is still in animal experiments. Suzuki et al. (Suzuki
et al., 2004)used AdV to introduce insulin receptor substrate-2
(IRS-2) gene into IRS-2 deficient mice and found that the blood
glucose level of mice returned to normal. The transcription factor
pancreaticoduodenal homeobox-1 gene can be transfected into
mouse islet cells by AdV to participate in islet maturation. In
addition, the pancreatic differentiation transcription factor
neurogenin 3 (Ngn3) could be transfected into mouse
hepatocytes by adv to secrete insulin (Reach, 2001).

Stem cell therapy: Stem cells can differentiate into tissues such
as fat, bone, and cartilage. They have strong self-renewal ability,
multidirectional differentiation potential, and secrete a variety of
cytokines. They have a good application prospect in the treatment
of DPN. Mesenchymal stem cells (MSCs) therapy can improve
the blood glucose level of diabetic patients from the vital point of
diabetes. Bone marrow MSCs and pancreatic MSCs can be
differentiated into Islet β Cells under the regulation of
multiple growth factors and hormones. Then the blood
glucose concentration of diabetic mice could be reduced by
increasing secretion of insulin and C peptides (Lin et al., 2010;
Mu and Li 2015). Transplantation of MSCs can promote the
proliferation of islet cells, increase the number of insulin-
secreting cells, improve the structure of islets, increase the
synthesis and secretion of insulin, and reduce blood glucose
concentration.

Non-drug Therapy
Exercise: Exercise plays an irreplaceable role in the treatment of
diseases. It is the basis of therapy and should run through the
whole process of DPN treatment. Exercise therapy mainly
includes aerobic exercise and anti-resistance exercise. Anti-
resistance exercise has a better therapeutic effect on DPN.
Kluding et al. intervened 17 DPN patients with moderate
intensity, aerobic and anti-resistance exercise under the
guidance and supervision of professional coaches. After
10 weeks of intervention, they carried out self-control. The
research results showed that exercise could alleviate DPN
patient’s pain symptoms, increase the density of nerve fibers
in the epidermis, and improve their neurological symptoms.
Exercise can also protect the nerve injury of DPN patients by
enhancing the ability of nerve regeneration (Kluding et al., 2012;
Singleton et al., 2014). In terms of optimizing the exercise therapy
program, we can work out a safe and effective individualized
exercise program through multidisciplinary cooperation.

Electrotherapy: In recent years, more and more scholars have
pay attention to electrotherapy, including transcutaneous
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electrical nerve stimulation (TENS); Peripheral nerve, nerve root,
spinal cord, deep brain, and epidural motor cortex stimulation;
Pulsed magnetic field and static magnetic field; High-frequency
external muscle stimulation (Pieber et al., 2010). However, among
all electrotherapy measures, only tens are recommended by the
American Academy of Neurology (AAN) for pain treatment of
DPN (Dubinsky and Miyasaki, 2010). Upton GA et al. discussed
the effects of two different intensities of TENS on patients with
DPN. The results showed that the acupuncture-like stimulation
mode of 2 Hz and 200 ms could better alleviate the pain caused by
DPN without adverse reactions (Zotz and De, 2015). Current
studies believe that the theoretical basis of electrical stimulation
improves the microcirculation of DPN patients and increases the
nerve blood flow to alleviate the pain caused by ischemia.
However, Gossrau g et al. conducted a randomized placebo-
controlled experiment. The results showed that the therapeutic
effect of TENS was not better than that of the placebo group, and
the difference was not statistically significant (Gudrun et al.,
2011). TENS has the advantages of safety, noninvasive, simple
operation, and good compliance. However, its exact role is still
controversial, which may be related to the small sample size of
existing studies, short intervention cycle, unclear long-term
efficacy, and lack of evidence-based basis, limiting its clinical
application.

Acupuncture: Acupuncture and moxibustion can improve
nerve conduction and alleviate patient’s clinical symptoms
with DPN. The mechanism may be related to acupuncture,
and moxibustion can improve microcirculation and reduce
ischemia and hypoxia of nerve tissue. Jeon et al. treated 9
outpatients with painful DPN with acupuncture and
moxibustion for 4 weeks. The results showed that acupuncture
and moxibustion could significantly improve the pain symptoms
of patients. They believed that acupuncture and moxibustion
were effective but did not study their mechanism (Jeon et al.,
2014). The relevant systematic evaluation analyzed the effect of
acupuncture and moxibustion on DPN. Although the results
showed that the outcome was better than conventional treatment,
it also pointed out that the development of acupuncture and
moxibustion on DPN was uncertain due to the low quality of
relevant RCT experimental literature included in the study
(Dimitrova et al., 2017).

Complications and Comorbidities Therapy
Most patients with diabetic peripheral neuropathy are
accompanied by depression, anxiety, insomnia, poor
appetite, lower body weight, suicidal ideation, drug abuse.
These complications affect their mental health and have
adverse effects on the treatment and rehabilitation of their

patients, which is not conducive to their physical health.
Compared with patients with uncomplicated diabetes
mellitus, diabetic peripheral neuropathy patients have more
severe pain, and the severity of negative emotions and
comorbidities is more serious. They can be treated with
first-line drugs for DPN, symptomatic pain relief, and relief
of negative emotions.

In addition, for patients with diabetic peripheral neuropathy,
clinical targeted psychological intervention should be carried out
to alleviate patient’s negative emotions. Psychological
intervention should be based on different causes of anxiety
and depression, including cognitive intervention,
environmental intervention, and emotional intervention.
Particular attention should be paid to patient’s family and
social intervention because family warmth, social
understanding, and support are good drugs for treating
psychosomatic diseases.

CONCLUSION

In summary, diabetic peripheral neuropathy is related to many
factors, such as metabolism, immunity, heredity, etc., the etiology
is currently uncertain. In this review, we highlighted the latest
immunological mechanism of DPN and explored their
corresponding potential therapeutic targets. Its complex
mechanism makes it difficult to treat. There is no specific drug
therapy. With the increase of diabetic patients, more and more
patients suffer from the complications of diabetes. This makes the
requirement to control diabetes, and its complications become
more urgent. The pathogenesis of diabetic peripheral neuropathy
needs to be further in-depth and comprehensive research to
achieve more standardized management of diabetic peripheral
neuropathy.
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