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Abstract: The measurement and control of humidity is a major challenge that affects the sensing prop-
erties of sensors used in high-precision equipment manufacturing industries. Graphene Oxide(GO)-
based materials have been extensively explored in humidity sensing applications because of their
high surface area and functional groups. However, there is a lack of effective bulk-manufacturing
processes for the synthesis of 2D-based nanocomposites with comb electrodes. Moreover, water
intercalation within the layers of 2D materials increases recovery time. This work demonstrates the en-
hanced sensing characteristics of a capacitive/resistive GO-MnZnO nanocomposite humidity sensor
produced using a cost-effective single-pot synthesis process. The in-plane sensing layer consistently
improves sensitivity and reduces response time for a wide range of relative humidity measurements
(10% to 90%). Interdigitated gold electrodes with varying numbers of fingers and spacing were
fabricated using photolithography on a Si/SiO2 for a consistent sensor device platform. The choice of
nanomaterials, dimension of the sensor, and fabrication method influence the performance of the
humidity sensor in a controlled environment. GO nanocomposites show significant improvement
in response time (82.67 times greater at 40% RH) and sensitivity (95.7 times more at 60% RH). The
response time of 4.5 s and recovery time of 21 s was significantly better for a wider range of relative
humidity compared to the reduced GO-sensing layer and ZnMnO. An optimized 6 mm × 3 mm
dimension sensor with a 28-fingers comb was fabricated with a metal-etching process. This is one
of the most effective methods for bulk manufacturing. The performance of the sensing layer is
comparable to established sensing nanomaterials that are currently used in humidity sensors, and
hence can be extended for optimal bulk manufacturing with minimum electrochemical treatments.

Keywords: GO nanocomposite; in-plane humidity sensing; metal-etching; water intercalation

1. Introduction

The research and development of 2D materials in humidity sensing are progressing at
such a rapid pace that the limitations in the technology for measuring minute changes in
electrical parameters are becoming more significant. Manufacturing more sophisticated,
high-precision equipment drastically increases the cost of synthesizing, characterizing,
and testing the materials. Even though there are advancements in material science, the
challenge to thrive effectively with the established materials is an ever-growing subject of
research. One such material to be considered in humidity sensing is graphene, which is
very much compared with recently developing Mxene. The need for more precise humidity
sensing and control is a rising challenge in most industrial applications. Optimized control
of humidity requires versatile sensing characteristics of the humidity-sensing device. The
measurement of water vapor in gas, i.e., hygrometry, is comparatively more complex than
measuring the temperature of the same environment, though both parameters are related
to each other [1]. For example, textile industries require fairly humid conditions to avoid
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the buildup of dangerous electrostatic charges and maintain the quality of output; whereas
dry conditions are necessary for the production of silicon wafers in clean rooms.

Hygrometry is in fact “a branch of applied physics in which the multitude of tech-
niques is an indication of the complexity of the problem, and of the fact that no one solution
will meet all requirements at all times and in all places” [2]. Fast response, high sensitivity,
quick recovery times, longevity, and bulk production are the significant characteristics to be
considered for improving the performance of the sensor. The sensing layer material used
for the humidity sensor plays a major role in sensing characteristics. A wide variety of
materials, including thin-film 2D materials, polymers, metal oxides, and other composites,
have been implemented in humidity sensors [3–7]. Synthesis of thin-film nanomaterial
requires complex processes such as sputtering, laser deposition, electrodeposition, etc. [8,9].
These require cleanroom environments that significantly increase manufacturing costs for
the bulk production of nanomaterials. Advancements in the nano synthesis of materials
have resulted in a drastic improvement in their humidity-sensing properties. However,
various experiments need to be done to improve the long-term stability of the sensing
nano-materials [10,11]. It is found that the electrical properties of various sensor materials
change with doping concentrations, film thickness, and morphological structure of the
materials [12,13]. Flexible humidity sensors are still under development in advancement
for wearable applications, and yet accurate measurements due to bending are affected in
fringe capacitance level [14].

In general, two-dimensional (2D) materials are recognized as promising sensors with
advantages such as high surface area and surface functionality. Ultra-thin materials such
as palladium nanosheets (PdNS) and MXene (2D transition metal carbides, nitrides, and
carbon nitride family) are trending nanocomposite materials for many types of gas and
humidity sensing [15–17]. However, there are limitations to the mass production of nano-
materials with high surface area as well as uniform quality. In recent years, MXenes have
attracted extensive attention in the field of sensors for their hydrophilic surface, large spe-
cific surface area, and high metal conductivity [14]. However, the interaction between layers
is a covalent and ionic bond, making it difficult to prepare them by mechanical stripping.
So, MXene is prepared by selectively etching the relatively weak metal bond M-A, then
peeling off the “A” atomic layer through strong acid or other methods [18]. It can be noted
that the reason why graphene can be successfully prepared in the early stage is that the
layers of graphene are connected by the van der Waals force. As the humidity increases, the
distance between MXene layers increases, increasing the tunnel resistance [19]. By reducing
the humidity, the distance between layers is reduced and the resistance is restored. Thus,
the main mechanism in Mxene is the change of layer spacing [17]. Hence, maintaining the
layer-by-layer spacing in Mxene without water intercalation at high humidity levels is a
major limitation. Generally, MXene is prone to degradation when it encounters oxygen and
water in the air, reducing its long-term stability performance under highly humid environ-
mental conditions [20–22]. This requires more maintenance of material after preparation. In
addition, although some studies reported that MXenes are not toxic, the main components
of MXene are Carbide or Nitride elements [23]. This could limit the sensing of humidity for
biomedical sensing applications. Moreover, MXenes prepared by the bottom-up method
are relatively low, so it is not easy to prepare MXenes in large quantities [23,24]. Thus, bulk
manufacturing of 2D nanomaterials is a continually challenging issue in industries, which
predominantly apply polymers as a sensing material for humidity. However, polymers
lack long-term stability and inevitable hysteresis. Moreover, polymers are being used in
capacitive humidity sensors which require top electrodes. Most polymer-based humidity
sensors operate at room temperature since they are very sensitive to heat. These limitations
in polymers have been compensated using ceramic sensing layers as their sensing principle
is quite similar to that of polymers. It is reported that ceramic sensing materials such
as Graphene Oxide (GO) and Zinc Oxide based humidity sensors are of more interest
for precision-equipment manufacturing applications as well as health monitoring [25,26].
Protons generated through the reaction of water molecules with the GO surface functional
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groups cause the electrical impedance of the material to decrease. This property of GO
contributes to a wide field of research as a humidity-sensing material. Though GO-based
sensors exhibit fast response and recovery times with little hysteresis, they need a high
working voltage (5 V), which may result in high power consumption, especially in the case
of micro-sensor design [27]. Moreover, pure GO is highly sensitive to other gases including
NO2, NH3, and so on. This may affect the overall single-molecule sensitivity of the sensing
layer. There are metals such as Zn, Cu, Sn, Au, and Pt that can be added to GO to modify
the conductivity and consequently the selectivity of gases [28,29]. Few research works
claim that water intercalation in GO contributed to wearing layers at a relative humidity
as low as 30% [30]. In high humidity regions, undoped GO might delaminate because
of swelling layers. The friction of the SiO2/GO interface in an interdigitated electrode
capacitive/resistive sensor is affected, when relative humidity is increased. Hence, the
lifetime stability of sensing material is very much limited. It is observed from the literature
that ZnO is one of the preferred materials because it exhibits superior electrical conductivity,
high thermal, chemical stability, mechanical stability, and low cost due to its abundance
in nature [31]. Few evaluation results show that nanostructured ZnO can enhance water
vapor sensitivity because of increased surface area. Many experimental research works
report doping metal oxides with various transition metals (Mn, Co, Li, etc.,). However,
Mn-doped ZnO nanopowders displayed long-term reproducibility, stability as well as high
sensitivity at room temperature when considered for practical high-performance humidity
sensors [32]. It has also been reported that Mn doping would cause the deformation of
ZnO and lead to higher free electron density on the ZnO surface. With the ionic radii of
Zn2+ ion being 74 pm and that of Mn2+ being 70 pm, the overall size of the MnxZn1−xO
samples decreases with increasing Mn doping concentration. Moreover, the doping of
ZnO with transition elements leads to weak structural disorder, which is due to mass and
size asymmetries of dopants into the host lattice. Hence, nanosynthesis materials still
have challenges to improve long-term stability and effective bulk production. The overall
efficiency of humidity sensing could be enhanced by synthesizing nanocomposites. The
selection of nanocomposites of GO may significantly increase the performance of the sensor,
as GO nanosheets contain rich oxygen groups for good adsorption of water molecules. To
avoid the swelling of the sensing layer at higher humidity levels, the in-plane capacitive
type sensor is preferred over the sandwich-structured capacitive sensor. It is observed that
the time taken for complete desorption of the water molecules in the sandwich structure
is more because of top electrode placing. Hence, it is more effective to cast the sensing
material on the electrode surface as an in-plane capacitive/resistive type humidity sensor.
MnxZn1−xO would form cross-linking between layers of GO to prevent water intercalation
and swelling which is detailed in the final session. Moreover, the conduction of GO at
low relative humidity (RH%) levels shall be improved, with ZnO and Mn doping in the
composite for linear response. This further increases the consistent slope of sensitivity of
the sensor for a wider sensing range of RH% levels.

In this work, a highly stable and sensitive in-plane capacitive/resistive humidity
sensor based on GO-MnxZn1−xO nanocomposite structures, with relatively facile technol-
ogy, is developed through freestanding chemical synthesis. Reduced GO nanoparticles
and MnxZn1−xO nanoparticles were also synthesized for comparison of performances.
All three materials (GO-MnxZn1−xO nanocomposite, GO, and MnxZn1−xO nanoparticles)
were coated on five customized different configurations of interdigitated comb electrodes
(IDE), with a fixed 6 mm × 3 mm area (but a varied number of fingers, width, and spacing)
to choose optimized performance characteristics. The GO-MnxZn1−xO nanocomposite
sensing layer is also tested for different humidity levels and characterized using various
characterization techniques. The enhanced performance of the sensing device is predicated
due to the peculiar characteristic of GO-MnxZn1−xO nanocomposites.
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2. Materials and Methods

Initially, an extensive analysis is carried out to synthesize nanocomposite-containing
GO as an essential compound. Hence, the whole synthesis process is performed at relatively
low-temperature levels (less than 600 ◦C) compared to ceramic metal oxides, which usually
can withstand temperatures above 800 ◦C [3].

2.1. Material Synthesis

Graphene Oxide (GO) is prepared by oxidizing graphite powder using the well-
established modified Hummer’s method.

2.1.1. Preparation of MnxZn1−xO Nanopowder

Zinc acetate (Zn(CH3CO2)2·2H2O) and Manganese acetate ((CH3CO2)2Mn) were taken
as precursors in the sol-gel process in a 1:1 mole ratio. Each precursor is dissolved in 50 mL
of deionized water. These solutions are further dissolved in 30 mL of dimethylformamide
at room temperature and mixed to a clear solution under vigorous stirring. The clear
solution is further stirred for 24 h, maintaining the temperature between 60 ◦C to 70 ◦C.
The gel formation is observed after vaporizing. The gel product is then dehydrated at
150 ◦C for 3 h. Final nanopowder MnxZn1−xO is obtained after thermal decomposition of
the dehydrated gel at a calcination temperature of 350 ◦C for 4 h. The concentration of Mn
in the final product is 37%.

2.1.2. Preparation of GO-MnxZn1−xO Nanocomposite

Here, 2.2 g of Zinc acetate and 0.272 g of Manganese acetate (the molar ratio of Mn to
Zn is 0.1:0.9) were dissolved in GO (already prepared by Hummers’ method) by adding
anhydrous ethanol solution (0.6 g/L). The mixture is stirred and sonicated for about 30 min,
after which the solution contains oxalic acid to metal ion molar ratio of 1:1. This solution
with 55 mL of anhydrous ethanol is slowly dropped into the graphene oxide solution at
50 ◦C, producing a precursor. Finally, the precursor is annealed in argon gas starting from
room temperature to 600 ◦C at the rate of 5 ◦C/min and held for 2 h. The ground finished
end product is a dark grey GO-MnxZn1−xO nanocomposite powder with less than 2% Mn
as a dopant.

2.2. Device Fabrication

Fabrication of IDE with the variation of finger width and distance between fingers
is done by a conventional photolithography technique. A silicon (100) substrate of 4-inch
diameter is used on which a 1 µm-thick SiO2 layer is grown carefully using thermal
oxidation technique at 1000 ◦C for 4 h including different stages of dry and wet oxidation.
The wafer is cleaned with trichloroethylene and isopropyl alcohol followed by acid cleaning
with nitric acid and hydrofluoric acid to remove the oxide layer formed in atmospheric
conditions. Then, gold (100 nm thick) is deposited using thermal evaporation and its
thickness is measured to be an average of 98 nm with roughness less than 2 nm. An
effective photomask pattern is designed with different numbers of fingers, finger widths,
and different spatial wavelengths (λ), as listed in Table 1. A reversal photomask is also
prepared to compare the lift-off process and metal etching. The fabricated sensor is diced
into 6 mm × 3 mm. More than 45 fabricated sensors with varying numbers of fingers are
taken for testing. A 5 µL sample solution of reduced GO, MnxZn1−xO, and GO-MnxZn1−xO
nanocomposite is individually mixed with deionized water and drop cast on fabricated
sensors. The required electrical connections are taken out by using silver conductive paste
and the sensor devices are mounted on copper-toned FR-4 board. Figure 1a,b details the
Confocal images of lift-off electrodes with improper finishing. The metal etching shows
better electrode finishing than the lift-off method, as seen in Figure 1c,d. Hence, electrodes
processed with metal etching are further taken for coating with sensing layers and testing.
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Table 1. Comparison of different combinations of ide for same dimension of 6 mm × 3 mm sensor.

Number of
Electrode Fingers

Finger Width (W)
(mm)

Distance between
Electrodes (S)

(µm)

Spatial Wavelength
λ (mm)

10 0.2 200 0.8

14 0.2 200 0.8

16 0.1 100 0.6

20 0.1 100 0.4

28 0.1 100 0.4
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2.3. Humidity Sensing Test Set-Up

The fabricated humidity sensor is characterized by setting up an in-house controlled
environment of a 1-L volume chamber maintained at a constant temperature of 25 ◦C, with
the reliable data recording. The schematic diagram of the test set-up is presented in Figure 2.
The percentage of relative humidity in the sealed chamber is controlled by an automatic
feedback controller. Atomized water (wet air), from a 2 L desktop humidifier, is mixed with
dry air, before sending it to the controlled humidity chamber in a gas merger as synthetic air.
The humidity level is first set manually to a point till the impedance reading of the sensor
is stable. HTU21D humidity sensor (Measurement Specialties Inc, MEAS, France) with a
resolution of 0.04%RH is used as a reference sensor and as feedback to the digital controller
for sensing current humidity in the chamber [27]. The temperature coefficient for the
reference sensor is −0.15%RH/◦C and the response time is around 5 s. The valve’s position
is determined by the feedback flow controller output. The real-time readings of impedance
are sent through USB to the computer for data logging and the same is measured with
PSM1735 impedance analyzer (Newtons4th Ltd., Mountsorrel Loughborough Leics, UK)
for a wide range of frequencies. Arduino MEGA 2560 (Italy) is used as the main processing
board for interfacing with sensors and computers. The AC impedance of all sensors is
measured at 100 kHz test frequency and the input signal with 1 V magnitude.
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2.4. Equipment Incorporated

The following tools are used to characterize the nanomaterials: (i) Scanning Electron
Microscope with EDS MA15/ EVO 18 (Carl Zeiss Microscopy GmbH, Jena, Germany) is
used to investigate the surface morphology of the nanostructure; (ii) PANalytical X’Pert
Powder X-Ray Diffractometer System (Malvern Panalytical Ltd., Malvern, UK) is used
to obtain XRD patterns; (iii) Scanning Electron Microscope NanoAnalysis INCA Energy
250 Microanalysis System -EDS (Oxford Instruments, Cedex, Saclay, France) is used for
quantitative analysis of synthesized nanomaterials; (iv) Digital Instruments DimensionTM

3100 Atomic Force Microscope(EXW Charlotte, NC, USA) is used for high-resolution
height profiling of the comb electrode; (v) Agilent BA1500 parameter analyzer(Agilent
Technologies, Inc. Santa Clara, CA, USA) is used for current measurement.

The sensor fabrication process is done with the following equipment: (i) oxidation
of p-type(100) silicon wafer was done in the Tempress Omega three heating zone cham-
ber(Omega Engineering, Inc., Norwalk, CT, USA); (ii) Mask Writer Heidelberg—DWL
66 (Heidelberg Instruments Mikrotechnik GmbH, Heidelberg, Germany) is used to pre-
pare positive and negative masks for the lift-off and metal etching processes, respectively;
(iii) Photolithography Mask Aligner Model 5000 (OAI, Milpitas, CA, USA) was used for
lithographing; (iv) E-beam Evaporation BOC Edwards Auto 306 (BOC Edwards, Crawley,
UK) is used to pattern gold for electrodes; (v) 7100-Provectvs (Advanced Dicing Technolo-
gies Inc., Horsham, PA, USA) is used for precise dicing of multiple sensors of 6 mm × 3 mm
each from a 4-inch × 4-inch wafer; (vi) detailed patterns of different dimensions of comb
electrodes are studied using Confocal Microscope Olympus LEXT 3D Measuring Laser Mi-
croscope OLS4000 (Olympus Corporation, Tokyo, Japan); (vii) thickness of oxide layer and
gold electrode layers are measured using Woollam Spectroscopic Ellipsometer M-2000VI
EC-400 (J.A. Woollam Co., Inc., Lincoln, NE, USA) focusing beam angle kept at <70◦.

3. Results and Discussion
3.1. Material Characterization

The Energy Dispersive X-ray Spectrometry (EDS) data reveal the concentration of
MnxZn1−xO and GO-MnxZn1−xO powders, as shown in Figure 3a,b with insets. It is found
that the composition of MnxZn1−xO has 37.7% of Mn. In GO-MnxZn1−xO nanocomposite,
the Mn and Zn constituted 2.23% and 26.39% respectively. In Figure 3b, the Carbon(C)
signal peak originates from GO. The Mn and Zn signals authenticate the presence of the
nanoparticles in the GO sheet. In this composition, the GO constitutes a major value of
71.37%, which is revealed by major peaks in Figure 3b. The XRD study is performed with
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a CuKα source and the wavelength used is 1.54060 Å. Figure 3c displays the HR-XRD of
MnxZn1−xO and GO-MnxZn1−xO peaks. The broadening of the peak near 2θ = 24.5◦ shows
a reduction of GO, hence forming a composite. The peaks are sharper at (100), (002), (101),
(102), (110), and (201) planes. It is found that the samples exhibiting the diffraction peaks of
ZnO and Mn3O4 are in good agreement with JCPDS no.050664 and JCPDS no.080017.
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analysis revealing 37.7% of Mn (b) EDS XRD of GO-MnxZn1−xO nanocomposite (inset) shows SEM
image along with quantitative analysis of GO-MnxZn1−xO nanocomposite; the Mn and Zn constituted
2.23% and 26.39%, respectively, (c) HR-XRD of MnxZn1−xO and GO-MnxZn1−xO nanocomposite.

To analyze the morphological structure of GO, MnxZn1−xO, and GO-MnxZn1−xO
nanocomposite, SEM images are studied. The sheet structure of reduced GO is seen in
Figure 4a. The image of MnxZn1−xO in Figure 4b reveals that the particle sizes are ranging
from 55 nm to 80 nm.
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Equation (1): 
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The SEM image of nanocomposite GO-MnxZn1−xO in Figure 4c shows the MnxZn1−xO
in GO sheets, with particle sizes ranging between 120 nm–140 nm. MnxZn1−xO nanoparti-
cles are tightly adsorbed on GO sheets.

Since the sensing layer is in-plane with the interdigital electrode, the fringing electric
field penetration in the sensing material plays an important role in measuring capacitance
change with relative humidity, which is proportional to comb electrode dimensions [33,34].
Hence, the etching finish of the comb finger is also considered for the overall performance
of the sensor [35]. Therefore, to analyze the surface portfolio of comb structure fabrication,
an AFM image of the metal-etched sensor is taken and shown in Figure 5. In Figure 5a, the
comb step thickness is found to be 35 µm, and Figure 5b reveals the comb edge height of
40 µm. These results show the effective deposition and metal etching of the gold comb,
which may be used for bulk production and also gives an even distribution of electric field
over the sensing layer.
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3.2. Humidity Sensing

In this work, a capacitive/resistive humidity sensing device is designed by drop-
casting the sensing material on a custom-designed IDE. Though the comb electrodes are
designed in five different combinations of numbers of fingers, the spatial wavelength of
less than 0.6 mm gives better performance; hence 28, 20, and 16 finger combs are taken
for further detailed testing. This is because the spatial wavelength is proportional to
the penetration depth of fringing electric fields above IDE [36]. The detailed analysis is
discussed in the final session of this paper.
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To obtain a stable baseline, the device is exposed to 15% RH compressed air for half an
hour. For a change in RH%, the output current changes relatively. This change is considered
response of the device [37]. The response from the device is calculated using Equation (1):

Response =
IRH − Ibase

Ibase
(1)

where Ibase corresponds to current at 15%RH, while IRH is the current at respective measured
RH%. It is observed that the response for 28 fingers GO-MnxZn1−xO (mentioned as GOZn-
MnO in all graphs) nanocomposite is much higher than GO and MnxZn1−xO (mentioned
as ZnMnO in all further graphs). The overall response comparison with corresponding
RH% change is shown in Figure 6a. The response is measured for different RH% (20%
to 90% at a difference of 10%RH), which proves a great achievement of a wide sensing
range of humidity. At 40%RH, GO-MnxZn1−xO nanocomposite enhanced the response
82.67 times more than GO, and 61.28 times more than MnxZn1−xO (plotted in Figure 6b
with a linear fit). This enhancement of response is consistent till the 90%RH range.
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where Cx and C15 are capacitances at current RH% and 15% RH levels respectively and 
%RHx is current RH% under investigation. It is depicted in Figure 8a that GO-MnxZn1−xO 
nanocomposite has the highest sensitivity for 28-finger comb electrode. The sensitivity 
(𝑆 ) is compared with Figure 8b, which reveals that the newly developed nanocomposite 
has 85 times greater sensitivity than GO and 36 times more sensitivity than MnxZn1−xO at 
60%RH for the 28-finger comb electrode. It is evident from Figure 8b that the sensitivity 
varies consistently (fitted with y = a + bx; a= −133; b = 8.28; Adj.R2 = 0.985). 
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Sensitivity is a critical parameter in choosing any sensor. This fabricated sensor
sensitivity is tested for two parameters, namely capacitance and resistance, relative to
the change in RH%. Initially, sensitivity is studied in terms of capacitance for various
ranges of RH%. The variation of capacitance for 28, 20, and 16 finger combs at 100 kHz
frequency and 1 V AC input signal are taken separately for GO-MnxZn1−xO nanocomposite,
MnxZn1−xO, and GO, as shown in Figure 7. Figure 7a shows the enhanced value of
capacitance for 28-finger IDE with GO-MnxZn1−xO nanocomposite, which is 72.2 times
more than MnxZn1−xO and 95.7 times higher than conventional GO at 60%RH, respectively.
Similarly, from Figure 7b,c, it is observed that the GO-MnxZn1−xO nanocomposite sensing
layer has maximum capacitance for a wide range of RH%. The dependence of capacitive
sensitivity of the sensor on the sensing layer to the number of fingers in comb electrodes
concerning a wide range of RH% change is studied. Figure 8a displays the comparison
chart for sensitivity with RH%. The reported data are mean values taken from several
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measurement cycles maintaining a temperature of 25 ◦C, for a 1 V AC signal with 100 kHz
frequency. As per the IUPAC definition, the sensitivity (SC) can be defined as the relative
capacitance difference over the relative humidity difference. To depict sensor sensitivity in
terms of capacitance [27], the formula is defined as in Equation (2):

Sensitivity(SC) =

(
Cx−C15

C15

)
%RHx − %RH15

(2)

where Cx and C15 are capacitances at current RH% and 15% RH levels respectively and
%RHx is current RH% under investigation. It is depicted in Figure 8a that GO-MnxZn1−xO
nanocomposite has the highest sensitivity for 28-finger comb electrode. The sensitivity
(SC) is compared with Figure 8b, which reveals that the newly developed nanocomposite
has 85 times greater sensitivity than GO and 36 times more sensitivity than MnxZn1−xO at
60%RH for the 28-finger comb electrode. It is evident from Figure 8b that the sensitivity
varies consistently (fitted with y = a + bx; a= −133; b = 8.28; Adj.R2 = 0.985).
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and GO for 28-, 20-, and 16-finger comb electrodes in terms of capacitance. (b) Sensitivity (SC) as a
function of RH% for 28 fingers comb electrodes with a linear fit.

As depicted in Figure 9a, the impedance decreases with increasing frequency. The
change in impedance is more pronounced at 100 kHz. Beyond 500 kHz, the variation
in impedance is much smaller because the polarization of water molecules is limited at
higher frequencies [12]. Hence, 100 kHz frequency is chosen as the test frequency for the
sensor [13]. The change in resistance of the sensing material is also taken for the analysis
of the sensor characteristics as represented in Figure 9b. It is observed that the resistance
range changes on a logarithmic scale for an increase of RH%, making the sensor reliable as
a resistive type of humidity sensing. GO-MnxZn1−xO shows a wide change in resistance,
ranging from 2.6 MΩ to 1.4 kΩ at 10%RH to 90%RH, respectively. This proves the enhanced
performance of the nanocomposite is 94.5 times higher than MnxZn1−xO and 97 times
greater than the conventional GO.

As per the IUPAC definition, the sensitivity (SR) can be expressed as the relative
resistance difference over the relative humidity difference. The sensitivity of material in
terms of change in resistance is formulated using Equation (3):

Sensitivity(SR) =

(
(R0−Rh)

Rh

)
%RHx − %RH10

× 100% (3)

where R0 is resistance at 10% RH and Rh is resistance at current RH% under investigation;
while %RHx is current RH% under investigation and %RH10 is 10% relative humidity [32].
Figure 9c interprets the linear rise of the sensitivity (SR) for wide range of change in RH%
(fitted with y = a + bx; a = −6.43; b = 1.02; Adj.R2 = 0.997). Moreover, the new nanocomposite
depicts a 10.74-times enhancement of sensitivity than MnxZn1−xO and 15.5 times more
than that of the GO material.
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Figure 9. (a) Change in impedance with frequency at 50%RH and room temperature of 25 ◦C for
GO-MnxZn1−xO nanocomposite, (b) sensitivity vs. RH% comparison chart for GO-MnxZn1−xO
nanocomposite, MnxZn1−xO and GO for 28-finger comb electrodes in terms of resistance (Ω).
(c) Defined sensitivity (SR) as a function of RH% for 28-finger comb electrode in resistance (Ω) with a
linear fit.

In this research work, the comb electrode dimensional parameters and sensing layer
properties significantly affect response and recovery times. Both response and recovery
times are defined with RH% ranging from 20% to 85% while increasing as well as decreasing
RH%. A detailed comparison of response times and recovery times for GO-MnxZn1−xO
nanocomposite, MnxZn1−xO, and GO for 16-, 20-, and 28-finger comb electrodes in terms of
capacitance is shown in Figure 10a. The length, spacing, and width of the comb electrodes
(IDE) are the same, with the number of fingers changing between 16, 20, and 28.
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Figure 10. (a) Comparison chart for response and recovery time GO-MnxZn1−xO nanocomposite,
MnxZn1−xO, and GO for 16-, 20-, and 28-finger comb electrodes in terms of capacitance. (b) Response
time for humidification from 20%RH to 85%RH (~4.5 s). (c) Recovery time for desiccation from
85%RH to 20%RH(~21 s) for GO-MnxZn1−xO nanohybrid with 28-finger comb electrode.

The spacing of the electrodes is inversely proportional to the capacitance, while the
sensing material dielectric properties and the number of fingers in the comb electrode
are directly proportional to the capacitance of the humidity sensor [28]. This shows the
overall optimized number of fingers as 28, and the sensing material GO-MnxZn1−xO
nanocomposite performed better for further analysis of the response and recovery times.

As per recorder plots, demonstrated in Figure 10b,c, the humidification shows re-
sponse time as ~4.5 s, and desiccation shows recovery time as ~21 s for GO-MnxZn1−xO
nanocomposite with 28 fingers. This is a reliable improvement, compared with conven-
tional GO (response time ~10.5 s and recovery time ~41 s) and MnxZn1−xO (response time
~6 s and recovery time of ~25 s) [31,32]. Hence, the newly prepared nanocomposite shows a
comparable and faster response time for humidity sensing. It has to be noted that humidity
in any given environment cannot change drastically in milliseconds. However, individual
nanomaterials such as GO, MnxZn1−xO are used to detect other gases such as NO2, CO2,
etc., but the responses for gas detection are comparatively lower than humidity sensing [3].
This is because of the physisorption and chemisorption of water molecules in the GO layer
in the GO-MnxZn1−xO nanocomposite.
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The transient response of the GO-MnxZn1−xO nanocomposite-based humidity sen-
sor is illustrated in Figure 11a. The dynamic switching between 20%RH and 85%RH is
performed. The humidity sensor when exposed to air of 85%RH about 20%RH shows a
prompt decrease of capacitance and reaches a relatively stable value and increases instantly
when switched from 20% to 85%RH. An additional five cycles are carried out and the
results show good reproducibility.
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Figure 11. (a) Transient response behavior of GO-MnxZn1−xO nanocomposite-based humidity sensor
with 28-finger comb electrode to dynamic switches between 20%RH and 85%RH (b). Stability of
GO-MnxZn1−xO (after 5 months of aging) in terms of impedance (MΩ) change to time (days) for
various RH% levels.

The stability of the sensor is one of the most important parameters in analyzing
humidity sensing for a long period. When nanomaterials play the sensing role, their
agglomeration is removed by simple mortar and pestle grinding. Considering the stability,
the GO-MnxZn1−xO nanocomposite is aged for more than 5 months and tested repeatedly
under different humidity levels (21%, 35%, 42%, 55%, 70%, 82%, and 90%) for 30 consecutive
days. The impedance is recorded at 100 kHz frequency and shows variations of less than
4% as seen in Figure 11b. This data shows very good consistency for a long period of
testing, which highlights that newly synthesized nanocomposite is liable for bulk industrial
productions. The samples are again dried to observe any peel-off of the sensing layer due
to water intercalation. It is found to be in good condition as tested initially, making the
layer bonding between the silicon substrate and the in-plane sensing layer stronger.

The hysteresis error plays a very important role in the humidity-sensing property
of the sensor as it defines the adaptability of humidity sensors for various environments.
Since GO is hydrophilic, the synthesized GO nanocomposite shows less hysteresis error,
as given in Figure 12. Both capacitance change and impedance change are recorded for
ascending and descending RH% from 10% to 90%. The maximum value of capacitance error
is 0.125 at 40%RH, and a minimum of 0.045 at 90%RH in capacitance, for GO-MnxZn1−xO
nanocomposite as demonstrated in Figure 12a. The inset in Figure 12a shows the hysteresis
error of GO with a maximum error of 0.2 at 60%RH and a minimum of 0.11 at 90%RH while
MnxZn1−xO has a hysteresis error of maximum of 0.12 at 40%RH and minimum of 0.06 at
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90%RH. Similarly, the maximum error in impedance for GO-MnxZn1−xO nanocomposite is
0.105 at 50%RH and a minimum of 0.062 at 90%RH in impedance as shown in Figure 12b.
The inset in Figure 12b shows the hysteresis error of GO as 0.27 maximum at 60%RH and
minimum of 0.17 at 90%RH while MnxZn1−xO shows a maximum hysteresis error of 0.25
at 40%RH and minimum of 0.09 at 90%RH.
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These experimental results demonstrate the excellent performance of an in-plane ca-
pacitive/resistive humidity sensor, coated with an effectively synthesized GO-MnxZn1−xO
nanocomposite sensing layer. The probable reasons behind the performance analysis in
sensing the humidity sensor are the doping of nanocomposite, and the effects of choosing
the dimensions of comb electrode (IDE) for optimizing the measuring parameters, which
are thereby discussed analytically.

4. Discussion
4.1. The Probable Humidity Sensing Mechanism

GO produced through Hummer’s method accounts for a hydrophilic character with
a high density of oxygen functional groups. GO opens the bandgap of graphene which
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is done through versatile defect engineering. On reducing the GO, some oxygen groups
are removed and thus the energy band gap is adjusted by managing the oxygen groups
present [38,39]. The bandgap of pure ZnO is 3.3 eV. To enhance single-molecule sensitivity
and electrical properties, ZnO is modified with transition metals. ‘Mn’ being 3d metal, is
most preferred here since it increases surface area and reduces the particle size of ZnO.
The electron effective mass of Mn is approximately 0.3me (me is free electron mass), when
doped causes a large carrier and injected spins. Figure 13a shows the modified structure of
our GO-MnxZn1−xO nanocomposite.
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near the conduction band.

In the case of synthesized Zn1−xMnxO nanoparticles, a higher concentration of
Mn(37 w%) increased the agglomeration, because of the kinetic equilibrium process. The
high concentration of Mn dopants might be nucleated with oxygen ions by itself and formed
bigger particles as illustrated in Figure 13b. This could be the reason for the incorporation
difficulty of Mn in the ZnO lattice in the Zn1−xMnxO compound [40].

GO is widely known for high electrical resistance, especially at lower values of RH%.
During the first layer of physisorption of water molecules and double hydrogen bonding,
it requires high energy for conduction through proton hopping transfer below 20%RH as
visualized in Figure 13a. However, there is leak conduction, which increases capacitance
even at low RH% [41–43]. Moreover, water intercalation in bulk GO layers is almost double
the thickness at 80%RH [44]. To overcome these limitations, Mn is doped with a Zn lattice
structure which is tailored to the GO structure.

The concentration of Mn in the newly synthesized nanocomposite is taken to less
than 2% mol to tune the energy bandgap in the GO-MnxZn1−xO nanocomposite. The
synthesizing is done at low temperature and the process is a wet chemical method which,
on the formation of MnO2, would eventually lower the effective bandgap [45,46]. Mn
dislodges the Zn atom to create energy states close to the conduction as shown in Figure 13c.
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This may be the reason for the better conductivity of the nanocomposite at low levels of
RH% (the energy gap of GO is approximately 2.2 eV).

With the comparison of reduced GO nanoparticles, Zn1−xMnxO compound, and the
newly synthesized GO-MnxZn1−xO nanocomposite, the added dopants crosslinked GO
with silicon substrate even at high RH%(>85%), thus improving the stability. It further
enhanced the electrical conductivity at low values of RH%(<20%). The ease of measurement
for a wide range of RH% increased, and the longevity of the sensing layer for continuous
monitoring. In addition, it reduces recovery time to nearly half (21 s) compared to pristine
GO (41 s) [47].

4.2. Effect of Comb Electrode Parameters on Sensitivity

The major advantages of interdigital electrodes are fast measurement, being non-
destructive, non-intrusive, and possessing compatibility for continuous measurements [48,49].
At constant temperature, relative humidity, and frequency, it is observed that the dielectric
constant, impedance, as well as sensitivity, varies for the sensor with change in comb width,
comb spacing, and the number of comb fingers [50].

The reduction of interface impedance between the sensing layer and electrodes im-
proves the applied frequency bandwidth for measurement [44,51]. Hence, the cell factor
(Kcell) is taken into consideration for comparing the electrode dimensions that are given by
Equation (4) to Equation (10):

Kcell =
2

L(N − 1)
· K(k)

K(
√

1 − k2)
(4)

where L is the length of an electrode (mm), N is the number of the electrodes of the sensor,
W is the width of an electrode (µm), Kcell is the factor of the cell (m−1) [31].

K(k) is then given by,

K(k) =
∫ 1

0

1√
(1 − t2)(1 − t2k2)

dt (5)

where k = cos
(π

2
· α
)

(6)

α is metallization ratio

The resistivity (Rs) of the sensing layer given by Equation (7) is inversely proportional
to the cell factor Kcell.

Rs =
Kcell
σs

(7)

where σs is the electric conductivity of the sensing medium (S/m).
The total capacitance (Ct), at the interface of the surface of sensor electrodes, and

sensing layer is given by Equation (8),

Ct =
N
4

LWC0 (8)

where C0 is the capacitance per unit area (pF/µm2) given by Equation (9),

C0 =
4ε0εr

NLWKcell
(9)

The impedance of polarization which appears at the contact surface between electrodes
and sensing layer is determined by the following Equation (10):

Zp =
1

jωCt
(10)
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Hence, to choose an effective comb electrode, the effect of various dimensions are
studied and tabulated in Table 2. Moreover, from Equation (9), it is observed that the
width (W), number of fingers (N), and, thereby, in-plane area of the electrode play a major
role in interface capacitance. This could be the reason for obtaining higher values of
interface capacitance Ct (1932 pF and 1995 pF) for 10 and 14 fingers (W = 0.2 mm), while
compared to 16 fingers with width W = 0.1 mm, having a capacitance of 1607 pF. Moreover,
optimizing the in-plane area, with the number of fingers (N) as 28, shows enhanced
overall comb dimensions for effective bulk production methods (such as lift-off and metal-
etching) of sensor electrodes. According to Equation (10), the interface capacitance Ct is
inversely proportional to polarization impedance (Zp). From the above demonstrations,
interface capacitance (Ct) is 2901 pF for 28 finger electrodes, which reduces the polarization
impedance more than 1/1000 times, and confirms the enhanced sensitivity at an operating
frequency of 100 kHz.

Table 2. Comparison of effect of number of fingers in comb electrode (n) on total interface capacitance
Ct (with L = 1.4 mm, W = 0.2 mm for 10 and 14 fingers and L = 1.4 mm, W = 0.1 mm and 16, 20, and
28 fingers, respectively).

Number of Fingers (N) Cell Factor (Kcell) m−1 C0 (pF/µm2) Ct (pF)

10 54.92 2.76 × 10−3 1932

14 38.02 2.85 × 10−3 1995

16 32.95 2.878 × 10−3 1607

20 26.01 2.917 × 10−3 2042

28 18.30 2.96 × 10−3 2901

As far as in-plane sensing is considered, the fringing capacitance is an important
parameter to measure, which is very much dependent on the number of comb fingers
and spatial wavelength [35,47]. The fringing electric field between positive and negative
electrodes with three different pitch lengths p1, p2, and p3 is illustrated in Figure 14.
The penetration depth of the electric field is increased by spatial wavelength (λ), but if
spatial wavelength increases, the total fringing electric field between consecutive electrodes
weakens [44]. This may be the reason for the 28-finger comb electrode having improved
sensitivity in terms of capacitance compared to a lesser number of electrode fingers because
of the strong accumulation of electric field between consecutive electrodes.
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5. Conclusions

GO-Zn1−xMnxO nanocomposite with facile, single-pot processing procedure and ex-
cellent electrical properties for humidity-sensing applications are demonstrated. The func-
tionality of nanocomposite sensing material and sensing platform are orchestrated by theo-
retical studies and practical experimentation, comparing three materials GO, Zn1−xMnxO,
and GO-Zn1−xMnxO with five different dimensions of comb electrode. An optimized
dimension of 6 mm × 3 mm, with 28 fingers, 0.1 mm width, and 0.1 mm spacing reveals the
best performance result for simple photolithographic methods (lift-off and metal-etching).
The electrode deposition layer is far clear and has fewer defects in the metal etching process.
GO-Zn1−xMnxO nanocomposite exhibited 82.67 times greater response at 40%RH and
95.7 times more sensitivity at 60%RH. The capacitance as well as resistance sensitivity show
excellent consistency and are linear for a wide sensing range of humidity (10%RH–90%RH).
GO-Zn1−xMnxO nanocomposite also inhibits very high stability, even after months of
aging. The response time and recovery time are found to be 4.5 s and 21 s respectively. The
device is even tested for hysteresis errors. With these characteristics, the newly developed
humidity sensing device exhibited excellent performance in overall aspects. Thus, the GO-
based nanocomposite has wonderful potential for future bulk production as an in-plane
capacitive as well as resistive humidity sensor for high-precision industries.
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