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Abstract: Flavobacterium johnsoniae forms a thin spreading colony on nutrient-poor agar using gliding
motility. As reported in the first paper, WT cells in the colony were sparsely embedded in self-
produced extracellular polymeric matrix (EPM), while sprB cells were densely packed in immature
biofilm with less matrix. The colony surface is critical for antibiotic resistance and cell survival. We
have now developed the Grid Stamp-Peel method whereby the colony surface is attached to a TEM
grid for negative-staining microscopy. The images showed that the top of the spreading convex WT
colonies was covered by EPM with few interspersed cells. Cells exposed near the colony edge made
head-to-tail and/or side-to-side contact and sometimes connected via thin filaments. Nonspreading
sprB and gldG and gldK colonies had a more uniform upper surface covered by different EPMs
including vesicles and filaments. The EPM of sprB, gldG, and WT colonies contained filaments ~2 nm
and ~5 nm in diameter; gldK colonies did not include the latter. Every cell near the edge of WT colonies
had one or two dark spots, while cells inside WT colonies and cells in SprB-, GldG-, or GldK-deficient
colonies did not. Together, our results suggest that the colony surface structure depends on the
capability to expand biofilm.

Keywords: focal adhesion complex; extracellular fibers; vesicle; cell-to-cell connections; transmission
electron microscopy; Grid Stamp-Peel method; antibiotics resistance

1. Introduction

Flavobacterium johnsoniae is an aerobic Gram-negative rod-shaped bacterium that uses
gliding motility to move rapidly over solid surfaces and thereby forms thin spreading
colonies on agar [1,2]. The cell surface adhesin SprB forms filaments and is a component of
the motility machinery of F. johnsoniae [3]. The movement of SprB along a closed helical
loop track on the cell surface causes the gliding motility of a cell [4–6]. RemA is also part of
the gliding machinery because it is known to allow some gliding in the absence of SprB [7].
Colony spreading of F. johnsoniae is influenced by modifications of the motility machinery
complex, such as deficiency of SprB or RemA, and by environmental factors, such as the
moisture content of the medium and the type of nutrient available. For example wild-type
(WT) F. johnsoniae forms thin film-like spreading colonies on nutrient-poor agar medium,
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while sprB deletion mutant (sprB) cells form small nonspreading colonies [1]. The upper
surface of WT colonies is convex, whereas the upper surface of sprB colonies is flatter [1].

SprB and other cell surface components of the gliding motility machinery are translo-
cated to the cell surface or secreted by the Bacteroidetes-specific type IX secretion system
(T9SS) [8]. The T9SS includes the core components GldK/PorK, GldL/PorL, GldM/PorM, and
GldN/PorN, which are interconnected with the gliding motility machinery [8–10]. Therefore,
T9SS-deficient mutants, including the gldK mutant, form nonspreading colonies [11]. Other
secreted T9SS cargo proteins include many extracellular or cell surface enzymes, adhesins,
and virulence factors [12,13].

In addition to the cell surface adhesin, T9SS (GldK, GldL, GldM, GldN, SprA, SprE, and
SprT) and gliding motility proteins (GldA, GldB, GldD, GldF, GldG, GldH, and GldI) are
involved in the formation of spreading colonies. The non-gliding bacterium Porphyromonas
gingivalis harbors the T9SS proteins but not these orthologous gliding motility proteins.
GldF and GldG are membrane proteins that appear to interact with GldA to form an ABC
transporter that is required for gliding. In F. johnsoniae, GldG protein was considered to
be necessary for gliding motility [14]. In Flavobacterium psychrophilum, disruption of the
gldG gene results in a dramatic reduction of GldJ abundance and provokes a remarkable
diminution of GldK, GldN, and SprT proteins [15].

Biofilms are known to be communities of surface-attached microorganisms embedded
in a self-produced extracellular polymeric matrix (EPM) [16,17]. In Staphylococcus aureus
and Cutibacterium acnes (previously known as Propionibacterium acnes) biofilms, the cells are
embedded in self-produced EPM containing eDNA and proteins as well as exopolysaccha-
ride [18,19]. In the Flavobacterium genus, the fish pathogen Flavobacterium psychrophilum
forms a biofilm when it colonizes the gill [20–22]. Scanning confocal laser microscopic
observations show that most live bacterial cells are found in the deeper and intermediate
layers, while dead cells predominate in the remaining biofilm zone [21].

Biofilm formation and T9SS activity are related to the pathogenesis of many infec-
tious diseases [14,23–25]. Indeed, biofilms are involved in many chronic human diseases,
including periodontal diseases, some lung diseases, and infectious diseases [26,27].

The T9SS is used to secrete many potent virulence factors of human infectious diseases
of the phylum Bacteroidetes, which includes periodontal pathogens, such as Porphyromonas
gingivalis [8], Tannerella forsythia [Narita Y et al. 2014], and Prevotella melaninogenica [Kondo
Y et al. 2018]. P. gingivalis shares some features with fish pathogens [24,25,28] and F. john-
soniae [8,9]. This makes F. johnsoniae a good model system for studying the behavior of
pathogenic Bacteroidetes bacteria or the evolution of their pathogenicity. Cells of the gliding
bacterium Capnocytophaga gingivalis present in the human oral microbiome carry polymi-
crobial cargoes, including nonmotile bacteria species, to new locations [29], suggesting
that the gliding motility of a bacterium can contribute to the expansion of other species,
including biofilm. Some members of the Bacteroidetes phylum that exhibit gliding motility,
e.g., Capnocytophaga canimorsus, Flavobacterium columnare, and Flavobacterium psychrophilum,
cause infectious diseases in humans and fish [30–33]. These reports suggest that the gliding
motility of the biofilm-forming bacteria might influence their virulence via expansion of
the biofilm.

Biofilm formation thus contributes to the virulence of bacteria and also influences
their resistance to antibiotics [34–37]. To understand the mechanisms by which biofilm
forms and expands, it is necessary to know the physical structure of biofilm in detail.
However, the required structural analyses are lacking, especially for the biofilm formed at
the interface between air and wet solid surfaces by bacteria such as F. johnsoniae (WT).

In the first part of this study, we investigated the internal structure of F. johnsoniae
colonies spreading on nutrient-poor agar media using Epon-embedded thin-sectioning
and transmission electron microscopy (TEM) [38]. In the spreading WT colonies, the cells
were embedded in a self-secreted matrix that contained a thick filamentous network and
vesicles, indicating biofilm formation [38,39]. The cell density close to the bottom of the
colony was higher than in middle regions of the colony. By contrast, in nonspreading sprB
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colonies, the cells were tightly packed and surrounded by fewer intercellular substances,
including vesicles, indicating immature biofilm [38]. However, what is the structure of the
biofilm surface?

In this study, we characterized biofilm expansions involving gliding motility and
revealed the surface structures of F. johnsoniae using a newly developed Grid Stamp-
Peel method. To further investigate whether the biofilm forming ability of a colony is
related to its antibiotic resistance, we performed antimicrobial susceptibility testing for
various mutations.

2. Results
2.1. Grid Stamp-Peel Method

To examine the wet surface of a colony on the agar plate, a glow-discharged carbon
film on a TEM mesh grid was lightly pressed (stamped) onto the colony surface and was
removed together with some surface cells and matrix structures (Figure 1b). The specimen
grid was stained with uranyl acetate and imaged by TEM. This new method, which we
call the ‘Grid Stamp-Peel method’, is a type of negative-stain TEM that allows the surface
structures of biofilm formed on a wet substrate to be imaged.

2.2. The Surface Structure at the Leading Edge of Spreading WT Colonies

Using the Grid Stamp-Peel method, a glow-discharged thin carbon grid (see Materials
and Methods 4.2 for details) was first stamped outside the leading edge of an expanding
WT colony grown on nutrient-poor 1% agar PY2 (peptone-yeast extract) medium (1%
A-PY2) (Figure 1b bottom right, Grid position 1). In this region, single F. johnsoniae cells laid
a path of filaments (Figure 1c), and the area surrounding the cell was sometimes covered
by a poorly-stained filamentous matrix. Images of the ‘grid stamps’ at the leading edge
of the WT colony (Grid position 2–3) revealed that the space between cells was occupied
by a matrix containing extracellular fibers and small (~30 nm) vesicles (Figure 1d–e). In
the translucent area outside the yellow colony body (Figure 1b Grid position 2,d), the
cells were attached to budding vesicles and also surrounded by many secreted vesicles
and filaments. The cells were sometimes dispersed within the matrix (Figure 1d) or made
head-to-tail and/or side-to-side contact. Near the edge of the colony body, more cells made
such contacts, forming thick lines (Figure 1b Grid position 3,e). At the internal surface near
the center of the colony, almost no bacterial cells were found (Figure 1b Grid position 4,f).
The surface structures observed at each grid position are described more precisely in the
following sections.

2.3. Comparison of the Surface Structure at the Edge of WT and Adhesin sprB-Deficient Colonies

The translucent leading edges (Grid position 2) of the WT colonies were intensively
imaged using the grid stamp method and negative-stain TEM. The cells were dispersed
among the matrix (Figure 2a, left) or clustered making head-to-tail and/or side-to-side con-
tact (Figure 2c, left). At higher magnification, the space between cells was covered by many
vesicles and thin extracellular fibers (Figure 2a,c, right). Next, we imaged nonspreading
yellow colonies formed by sprB. These had a well-defined edge and lacked the translucent
region observed for spreading colonies (compare Figure 1a, left, Figure 1b, bottom left, and
Figure 1a, right). At the edge of sprB colonies, the cells gathered but did not form tight
connections (Figure 2d, left). The space between the cells was covered by a small number
of vesicles and thin extracellular fibers (Figure 2b,d, left). The vesicle density (number
of vesicles per unit area; Figure 2b,d, right) was clearly smaller than for the WT colonies
(Figure 2a,c, right). Furthermore, every WT cell had one or two dark spots of high electron
density stained by uranyl acetate (Figures 1c, 2a,c and 3a, arrowheads), but sprB cells did
not (Figure 2d).
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Figure 1. Grid Stamp-Peel peel method and the resulting TEM images of the top surface above the leading tip of a WT F. 
johnsoniae colony. The colony was formed on 1% A-PY2. (a) Colony spreading of F. johnsoniae on 1% agar-PY2 (peptone-
yeast extract) medium (1%A-PY2) in a 9 cm diameter dish (5 days). Left panel, WT; right panel, sprB. (b) The Grid Stamp-
Peel method (grid stamp method). Top panel: Schematic showing a colony being ‘stamped’ by a thin-carbon TEM grid. 
The surface layer of the colony is transferred to the carbon grid by pressing (stamping) the grid onto it. In practice, the 
weight of the grid provides sufficient pressure. Bottom panels: Expanding colony sampled by the grid stamp method (left) 
and a schematic indicating the stamping procedure (right). The F. johnsoniae colony has a yellow body and a surrounding 
translucent fringe as the leading edge. These are colored yellow and blue, respectively, in the diagram. Green circles indi-
cate the position of each grid stamp (Grids 1 to 4). (c–f) TEM of grid stamps 1–4 stained with uranyl acetate. The structure 
of the colony surface varied, depending on the region sampled. (c) A single F. johnsoniae cell outside the extending trans-
lucent colony tip on the agar surface (position of Grid 1). Inset: enlargement (3×) of the indicated area. The leading cells 
laid a path of filaments. (d) Cells at a leading translucent fringe of the colony (position of Grid 2). Cells were interspersed 
among many small vesicles. (e) Cells immediately inside the edge of the colony (position of Grid 3). Cells made head-to-
tail and/or side-to-side contact. (f) Images of the more proximal surface, 2 mm inside the yellow edge of the colony body 
(position of Grid 4). The surface was occupied by a substance containing extracellular fibers and vesicles. No cells were 
found. 
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Using the Grid Stamp-Peel method, a glow-discharged thin carbon grid (see Materi-

als and Methods 4.2 for details) was first stamped outside the leading edge of an expand-
ing WT colony grown on nutrient-poor 1% agar PY2 (peptone-yeast extract) medium (1% 

Figure 1. Grid Stamp-Peel peel method and the resulting TEM images of the top surface above the leading tip of a
WT F. johnsoniae colony. The colony was formed on 1% A-PY2. (a) Colony spreading of F. johnsoniae on 1% agar-PY2
(peptone-yeast extract) medium (1%A-PY2) in a 9 cm diameter dish (5 days). Left panel, WT; right panel, sprB. (b) The Grid
Stamp-Peel method (grid stamp method). Top panel: Schematic showing a colony being ‘stamped’ by a thin-carbon TEM
grid. The surface layer of the colony is transferred to the carbon grid by pressing (stamping) the grid onto it. In practice, the
weight of the grid provides sufficient pressure. Bottom panels: Expanding colony sampled by the grid stamp method (left)
and a schematic indicating the stamping procedure (right). The F. johnsoniae colony has a yellow body and a surrounding
translucent fringe as the leading edge. These are colored yellow and blue, respectively, in the diagram. Green circles indicate
the position of each grid stamp (Grids 1 to 4). (c–f) TEM of grid stamps 1–4 stained with uranyl acetate. The structure of the
colony surface varied, depending on the region sampled. (c) A single F. johnsoniae cell outside the extending translucent
colony tip on the agar surface (position of Grid 1). Inset: enlargement (3×) of the indicated area. The leading cells laid a
path of filaments. (d) Cells at a leading translucent fringe of the colony (position of Grid 2). Cells were interspersed among
many small vesicles. (e) Cells immediately inside the edge of the colony (position of Grid 3). Cells made head-to-tail and/or
side-to-side contact. (f) Images of the more proximal surface, 2 mm inside the yellow edge of the colony body (position of
Grid 4). The surface was occupied by a substance containing extracellular fibers and vesicles. No cells were found.
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WT cells were interspersed or (c) made head-to-tail and/or side-to-side contact. In both cases, the cells were surrounded 
by many small vesicles and filaments. (b,d) sprB cells at the edge of the small nonspreading colony were found inter-
spersed among thin extracellular fibers and a small number of vesicles. One or two dark spots (arrowheads) were seen in 
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Figure 2. Surface structures at the edge of a WT and a sprB colony. Colony surface at the translucent leading edge of a
WT colony was sampled using the grid stamp method (position of Figure 1b, Grid 2), negatively stained, and imaged by
TEM. (a,c) WT and (b,d) sprB colonies on 1% A-PY2. (Left) Low magnification images. (Right) Higher magnification images.
(a) WT cells were interspersed or (c) made head-to-tail and/or side-to-side contact. In both cases, the cells were surrounded
by many small vesicles and filaments. (b,d) sprB cells at the edge of the small nonspreading colony were found interspersed
among thin extracellular fibers and a small number of vesicles. One or two dark spots (arrowheads) were seen in each WT
cell (a,c), but not in sprB cells (b,d).

2.4. Cell Connections at the Translucent Edges of Spreading WT Colonies

The connections between the cells in clusters at Grid position 2 (Figure 1b) were
precisely imaged at higher magnification (Figure 3). Cells with internal dark spots made
head-to-tail and/or side-to-side contacts forming clusters. They were surrounded by a
poorly stained filamentous matrices and vesicles. Head-to-tail contact occurred via a
single connection point at the interface, and the two cells were also connected by very
thin filaments emanating from their surface (Figure 3b,f), suggesting that the filaments
might be involved in cell connectivity. This idea would at least partially explain why single
cells tend to follow cell clusters and the specific paths followed by cell clusters observed
using time-lapse fluorescence microscopy (First part of this paper: Figure 1c upper and
Figure S2a of [38]).
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Figure 3. Cell connections at the translucent edge of a typical spreading WT colony. The colony surface was sampled using
the grid stamp method at Grid position 2 (Figure 1b), and connections between cells in clusters were imaged by negative-
stain TEM. (a) Low magnification image. (b,c) Higher magnification images of the annotated areas in (a). (d–f) Another
cell cluster. (d) Low magnification image. (e,f) Higher magnification images of the annotated areas in (d). (f) Many cells
made head-to-tail and/or side-to-side contacts. Inset: enlargement (1.7×) of the connection indicated by an arrow. The
area surrounding cells was covered by poorly stained filamentous matrices and vesicles as shown in (f). Dark spots of high
electron density in the cells are indicated by arrowheads. One or two dark spots of high electron density are distinguishable
for each cell.

2.5. Surface Structure Inside the Edge of WT Colony Bodies

In the more proximal surface slightly inside the yellow body of WT colonies (Grid
position 3), more cells made close head-to-tail and/or side-to-side contact (Figure 4a).
Dark spots of high electron density were rarely observed or only faintly visible in the cells
(Figures 1e and 4a–c). The bacterial cells were surrounded by a poorly stained filamentous
matrix and vesicles (Figure 4b,c). Occasionally, bacterial cells with a bifurcated end (pole)
were observed (Figure 4d,e). In contrast, cells were rare 2 mm inside the edge of the colony
body (Grid position 4), but the surface was occupied by extracellular fibers of various
diameter (2–8 nm diameter) and large, medium, and small vesicles (Figures 1f and 4f–h).
The large vesicles (150–250 nm in diameter), medium-sized vesicles (~30 nm), and many
visible small vesicles were circular or elliptical (arrows), and the remaining area was
occupied by a matrix containing filaments and particles (Figure 4d–f). The larger (5–8 nm
in diameter) filaments were dispersed in a network of smaller filaments (<2 nm in diameter),
presumably reflecting the presence of a rich EPM covering the top of the WT colony.
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Figure 4. Top surfaces inside the edges of a WT colony body. Colony surfaces were sampled using the grid stamp method
at Grid positions 3 and 4 (Figure 1b) and imaged by negative-stain TEM. (a) Low magnification image of the top surface
slightly inside the edge of the yellow colony body (Grid position 3). Head-to-tail and/or side-to-side close contacts were
formed between a large number of cells. (b) Higher magnification image (3.7×) of the area indicated in (a). (c) Higher
magnification image (3×) of the central area in (b). (d) Higher magnification image (3.7×) of the area indicated in (a).
(e) Higher magnification image (3×) of the central area in (d). (f–h) Top surfaces 2 mm inside the edge of the yellow colony
body (Grid position 4). (f) Low magnification image. Almost no cells were imaged, but several large vesicles are prominent.
(g,h) Higher magnification images. Most areas are occupied by large and small vesicles and extracellular filaments of
various diameters. The large vesicles (150–250 nm in diameter) are indicated by arrows.

2.6. Top Surface Inside the Edge of Nonspreading sprB Colonies

Grid stamp was carried out inside the edge of sprB colonies and imaged by negative-
stain TEM. Like for the WT, thin and thick extracellular fibers and small vesicles were
present (Figure 5). A small number of cells were dispersed among them; the cells did
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not have dark spots of high electron density. A limited number of large round vesicles
(150–250 nm in diameter) and medium-sized round vesicles (~30 nm) were also observed.
In contrast to the spatial variations observed on the surface of WT colonies, the surfaces
inside and at the edge of the nonspreading sprB colonies were similar.
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Figure 5. Colony surface inside the edge of a typical sprB colony imaged using the grid stamp method. (a) Low magnification
image. (b) High magnification image (4.7×) of the annotated square in (a). (c) Medium magnification image of another
area. (d,e) High magnification images (3×) of the annotated squares in (c). Just a small number of cells were observed,
but most areas were occupied by thin extracellular fibers and vesicles. The vesicles had various shapes and sizes: small
vesicles <30 nm, medium-sized vesicles (~ 30 nm), and a limited number of larger circular vesicles (150–200 nm in diameter).

2.7. Surface Structure of Nonspreading gldK Mutant Colonies Deficient in T9SS

T9SS cargo proteins, including SprB, are not translocated to the cell surface in T9SS-
deficient F. johnsoniae mutants [8,11,13]; gldK mutant cells deficient in T9SS form a non-
spreading colony [11]. The surface at the edge of gldK mutant colonies was observed
using grid stamp and negative-stain TEM. The cells made head-to-tail and/or side-to-
side contact (Figure 6), which is similar to the cells of WT colonies but different from
cells of sprB colonies. Thin fibers and vesicles were dispersed around the gldK mutant
cells. However, neither large circular vesicular structures (150–250 mm) nor thick ex-
tracellular fibers (5–8 nm in diameter) were found, in contrast to the WT and the sprB
(Figures 1–5). Furthermore, like for sprB colonies (Figure 2d), the dark spots imaged in WT
cells (Figures 1d, 2a,c and 3, arrowheads) were not observed in the cells at the edge of gldK
mutant colonies (Figure 6b–d).
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Figure 6. Colony surface at the edge of nonspreading gldK mutant colonies imaged using the grid
stamp method. (a) Colony spreading of F. johnsoniae on 1% A-PY2 in a 9 cm diameter dish (cultured
for 5 days). Left panel, WT; right panel, gldK mutant. (b) Low magnification grid stamp negative-
stain TEM image recorded at the edge of a typical nonspreading gldK mutant colony. (c) Higher
magnification image (2.5×) of the annotated area in the preceding panel. (d) Higher magnification
image (5.4×) of the area indicated in (c). (e) Higher magnification image (3.3×) of the central area in
(d). The cells made head-to-tail and/or side-to-side contact, like cells in the WT colony. The space
between the cells was occupied by thin fibers and small vesicles but was without thick fibers (5–8 nm
in diameter) and large vesicles (150–250 nm).

2.8. Surface Structure of Nonspreading gldG Mutant Colonies Deficient in Gliding
Motility Protein

The products of gldA, gldF, and gldG form a complex that functions as an ATP-
dependent transporter that is required for gliding [14]. The gldG mutant cells, deficient in
gliding motility protein, form a nonspreading colony [14]. The gldG mutant colonies were
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examined using grid stamp and negative-stain TEM. At the surface of the colony edge (Fig-
ure 1b, Grid position 2), cells made head-to-tail and/or side-to-side contact (Figure 7b,c),
which is similar to the cells of WT and gldK colonies. The space between the cells was
occupied not only by thin fibers and small vesicles but also by thick fibers (5–8 nm in
diameter) and large vesicles (150–250 nm), which were missing in the images of the gldK
colony (Figure 6d,e). At the top surfaces 2 mm inside the edge of the colony (Figure 1b
Grid position 4), almost no cells were imaged among vesicles, which is similar to the
colonies formed by WT and sprB cells, but a smaller number of thick fibers are prominent
(Figure 7h,i). Thick fibers are found on the colony of WT, sprB, and gldG, but not gldK.
These results suggest that matrix production and cell localization on the colony surfaces
were influenced by both cell surface adhesin SprB-dependent gliding and the T9SS as well
as the gliding motility proteins.
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Figure 7. Colony surface of nonspreading gldG mutant colonies imaged using the grid stamp method. (a) Colony spreading
of gldG mutant on 1% A-PY2 as in Figure 6. (b–e) Colony surfaces were sampled using the grid stamp method at the edge of
the colony body (Grid position 2). (b) Low magnification grid stamp image recorded at the edge of a typical nonspreading
gldG mutant colony. (c) Higher magnification image of the white square in the preceding panel. (d) Higher magnification
image of the square indicated in (c). (e) Higher magnification image of the square in (d). Although the cells made head-to-tail
and/or side-to-side contact like cells in the WT and gldK colonies. The space between the cells was occupied not only
by thin fibers and small vesicles but also by thick fibers (5–8 nm in diameter) and large vesicles (150–250 nm), which are
missing in the images of the gldK colony. (f–i) Top surfaces 2 mm inside the edge of the nonspreading gldG mutant colony
(Figure 1b, Grid position 4). (f) Low magnification image. (g) Higher magnification image of the square in (f). (h) Low
magnification image of another area. (i) Higher magnification image of the square in (h). Almost no cells were imaged, but
small vesicles are prominent. (g–i) Higher magnification images. The area was occupied by small vesicles and fibers.
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2.9. Quantification of Biofilms Formed

When cultured on glass slides immersed in liquid medium, the fish pathogen Flavobac-
terium columnare [40] forms mature biofilms that include extracellular polymeric substances
(EPS) and water channels [21]. To find out whether F. johnsoniae also forms biofilms on
a substrate immersed in liquid medium, the WT and its mutant cells were individually
inoculated onto static nutrient-rich CYE or nutrient-poor PY2 liquid media in 24-well
polystyrene assay plates (Figure 8). The cells grew and formed biofilm on the surface of the
wells. These biofilms were then measured using the crystal violet microtiter biofilm assay to
obtain a quantitative evaluation. Thus, the biofilm forming abilities of all were confirmed,
indicating that F. johnsoniae forms a biofilm on PY2 medium regardless of its T9SS or gliding
ability, as suggested in the first part of this study [38]. In PY2, the amount of biofilm formed
by WT was larger than the amounts formed by T9SS mutants (gldK, gldM, and gldNO),
gliding motility proteins mutants (gldG and gldJ), and adhesin proteins mutants (sprB and
remA) strains, respectively (Figure 8a). However, the biofilm amount formed by WT was
clearly larger than the amount formed by gldL, gldI, and sprE, respectively. In CYE, the
amount of biofilm produced by WT and sprB mutants was clearly larger than the amount
formed by the other mutants, respectively (Figure 8b). It might suggest the specialty of
sprB among the mutants.
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2.10. Antibiotic Susceptibility 
Tetracycline and its derivates are the primary drugs used in periodontal treatment. 

To assess the resistance against antibiotics, F. johnsoniae WT, T9SS mutants (gldK, gldL, 
gldM, gldNO, and sprE), gliding motility proteins mutants (gldG, gldI, and gldJ), and adhe-
sin proteins mutants (sprB and remA) strains were subjected to the disc diffusion method 
on PY2 medium (Figure 9a). The average diameters of the inhibition zones representing 
their susceptibilities were all comparable in size. After five days of culture, isolated 
spreading colonies of F. johnsoniae WT and remA mutant were clearly imaged within the 
inhibition zone (Figure 10, red arrow). Because colonies deficient in mobile cell surface 
adhesin RemA [7] formed several small spreading colonies, the antibiotic resistance of 
remA is suggested, which might reflect differences between adhesin remA and sprB. One 

Figure 8. Crystal violet biofilm assay of WT, T9SS mutants (gldK, gldL, gldM, gldNO, and sprE), gliding motility proteins
mutants (gldG, gldI, and gldJ), and adhesin proteins mutants (sprB and remA) strains. Cells were cultured in (a) PY2 broth or
(b) CYE broth in a 24-well polystyrene plate for 24 h. The cells formed biofilm on the walls of the wells. Bar chart represents
the results of the crystal violet microtiter biofilm assay. Vertical axis: optical density at 595 nm with the standard deviation.
All the tested mutants produced biofilm in both nutrient-poor PY2 and nutrient-rich CYE medium. The amounts of biofilm
produced by WT and sprB mutants are larger than those by the other mutants in CYE. The plate assay was performed
three times for all strains; the averages and standard deviations are indicated. Asterisks denote Student’s t-test significance
compared with WT (* p < 0.05).

2.10. Antibiotic Susceptibility

Tetracycline and its derivates are the primary drugs used in periodontal treatment. To
assess the resistance against antibiotics, F. johnsoniae WT, T9SS mutants (gldK, gldL, gldM,
gldNO, and sprE), gliding motility proteins mutants (gldG, gldI, and gldJ), and adhesin
proteins mutants (sprB and remA) strains were subjected to the disc diffusion method on
PY2 medium (Figure 9a). The average diameters of the inhibition zones representing their
susceptibilities were all comparable in size. After five days of culture, isolated spreading
colonies of F. johnsoniae WT and remA mutant were clearly imaged within the inhibition
zone (Figure 10, red arrow). Because colonies deficient in mobile cell surface adhesin
RemA [7] formed several small spreading colonies, the antibiotic resistance of remA is
suggested, which might reflect differences between adhesin remA and sprB. One or two
very small rigid colonies were found within the inhibition zone of gldM, gldJ, and sprB
mutants (blue arrow). The strains forming colonies within the inhibition zone produced
relatively large amount of biofilm when they were cultured on glass slides immersed in
PY2 medium (Figure 8). All the strains were next subjected to the disc diffusion method on
CYE medium. The diameter of inhibition zone in gldL mutant were larger than those of the
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other mutant strains and WT (Figure 9). After five days of culture, no colony was found
for any of the strains of F. johnsoniae within the inhibition zone on the CYE medium in the
plates, which is in contrast to the results on PY2 medium.
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Figure 9. Antimicrobial effect in disc diffusion assay of WT and the mutants. Measurements of diameters of the inhibition
zones of WT and the mutants against tetracycline. The plates of the disk diffusion test were incubated in (a) PY2 broth
or (b) CYE medium for 2 days at 25 ◦C. The averages and standard deviations were indicated (n = 4). Asterisks denote
Student’s t-test significance compared with WT (* p < 0.05).
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Figure 10. The antibiotic resistance of WT and the mutants in diffusion test. For the disk diffusion test, the PY2 plates
were incubated at 25 ◦C for 5 days. Spreading colonies of F. johnsoniae WT and remA mutant were clearly found as isolated
colonies within the inhibition zone (red arrows), although the colonies of remA were smaller than those of WT. One or two
very small rigid colonies were found within the inhibition zone of gldM, gldJ, and sprB mutants (blue arrows).

3. Discussion

The data presented extend the study reported in Sato et al. [38]. The combined results
lead to the schema for F. johnsoniae biofilm expansion by gliding motility shown in Figure 11.
In the first part of this study (Figures 1–3 of [38]), epon-embedding and thin-sectioning
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revealed that the cell density and EPM in the translucent fringe of spreading WT colonies
is completely different from the cell density and EPM towards the bottom of the yellow
colony body. Further, time-lapse fluorescence microscopy visualized small cell clusters
followed by cells at the leading edge (Figure S2a of [38]). However, it was not clear what
led to the outermost cell clusters. In the present study, grid-stamp negative-stain TEM
showed that single leading cells lay a path of EPM outside the translucent leading edge of
the colonies (Figures 1c and 11). At the translucent edge, cells make head-to-tail and/or
side-to-side contact and are surrounded by thin and thick fibers to form a cluster (Figure 3).
The cells are also attached to and surrounded by many vesicles, which is in good agreement
with the first part of this study suggesting that the cells near the leading edge secrete many
vesicles [38]. In more proximal (inside) surface regions of the colony, more cells made
head-to-tail and/or side-to-side contact forming clusters that were larger than those at the
periphery (Figures 1 and 4a–c). The cells were in close contact, and one of their ends (poles)
was sometimes deformed to fit to the neighboring cells (Figure 4a–e). In addition, they
were further surrounded by poorly stained filamentous matrices. These results suggest
that all the cells in a cluster move in the same direction [38]. The top of the thick colony
body was almost cell-free, but it was covered by EPM, including a filamentous network
interspersed with thick fibers and vesicles (Figures 1f, 4d–f and 11); in agreement, the first
part of this study showed that most cells are embedded in EPM deep inside the colony
body, close to the agar layer [38].
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ure 1c), and the neighboring cells at the colony edge made head-to-tail and/or side-to-side 
contact forming cell clusters with filamentous intercellular connections (Figures 1–3). Be-
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Figure 11. Schema of bacterial biofilm expansion by gliding motility. (Left panel) Outside the spreading lucent edge of WT
colonies, single leading cells lay a path of filaments and vesicles. At the edge of the translucent fringe, many of the cells
present make head-to-tail and/or side-to-side contact, and there are many secreted vesicles. The cells include one or two
dark spots. In the internal yellow body, most cells are distributed at moderate density near the bottom of the colony, and
others are sparsely embedded in EPM in the intermediate layer as shown earlier [38]. In contrast, the top colony surface is
almost cell-free and covered by fibers and vesicles. Dark spots of high electron density are rarely observed or only faintly
visible in the cells. (Right panel) sprB nonspreading colony. In contrast to the WT, the sprB cells are densely packed in the
nonspreading yellow colonies. The somewhat homogenous top surface is almost cell-free and covered by fibers and vesicles,
which is similar to the surface of the WT colony body.

Colony morphology might largely depend on EPM formation in many biofilm-forming
bacteria. Single F. johnsoniae cells laid a path of filaments outside the colony edge (Figure 1c),
and the neighboring cells at the colony edge made head-to-tail and/or side-to-side contact
forming cell clusters with filamentous intercellular connections (Figures 1–3). Because the
specific paths left by such clusters were followed by other cell clusters (Figure 1c, upper
and Figure S2a of [38]), the guides (sign-posts) for cell gliding and further colony spreading
might be EPM, which thus also regulates the colony morphology.

EPM secreted on the culture substrate (Figures 1–4) might both determine the direction
that gliding cells move and induce biofilm formation. Adhesion between the bacterium
and proteins on the medium surface is suggested to be important for the gliding mobility
and biofilm formation on 1% A-PY2 [3]. It would be interesting to see whether the bacterial
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cells are attached directly to the 1% A-PY2 or to a self-secreted substance including proteins
and glycans attached to the agar. Because the biofilm-related social motility of the model
system F. johnsoniae seems to be relevant to the motility of other microorganisms with
similar characteristics, biofilms formed by different bacterial species with gliding motility
should be further studied using the grid stamp method to understand their structures.

Biofilm-induced antibiotic resistance [34] might be related to the structures revealed
here. The antibiotic resistance of various biofilm-forming bacteria is known to increase
when they form biofilms [34]. The following three mechanisms have been proposed to
explain this: (1) limited penetration of the antibiotic; (2) altered chemical microenvironment
within the biofilm; (3) subpopulations of micro-organisms in a biofilm [34]. Because the
biofilm-forming ability (Figure 8) was related to the antibiotic resistance (Figure 10) of
F. johnsoniae, poor penetration of antibiotics across the biofilm matrix might be realized by
the clogged filter-like structure comprised of abundant fibers and vesicles at the surface
(Figure 4b) and inside [38] of colonies, which could greatly reduce the number of cells
targetable by antibiotics. It is similar to the dense EPM with a thin backbone network
formed by Staphylococcus species [18,34]. Further precise analysis of drug permeability
through the biofilm using immuno-EM [18,19] is awaited. In our study, grid stamp TEM
and uranyl acetate staining revealed that bacteria with one or two dark spots have a specific
spatial distribution near the translucent edge of the biofilm colony (Figures 2a,c and 3) but
not elsewhere, suggesting that the biofilm includes multiple cell subpopulations. Such
differences between cells might contribute to drug resistance. Both of F. johnsoniae WT and
remA mutant form spreading colonies on PY2 medium [7]. Since these strains produced
spreading colonies in the inhibition zone of the tetracycline disc diffusion test on PY2
medium (Figure 10), they left from the viable but non-culturable state earlier than the other
strains to form the colonies in the presence of antibiotics. These suggest that the ability
to spread colonies, rather than the capability to secrete proteins, contributes to antibiotic
resistance of the colony. These results also suggest that gliding motility has an advantage
for biofilm expansion even in the presence of antibiotics.

Although we could not identify what the dark spots in WT cells were, such dark
spots were not observed in the colonies formed by sprB (Figures 2b,d and 5) and gldK
(Figure 6b–e) mutant F. johnsoniae cells. SprB is delivered to the cell surface by the T9SS.
This suggests that their formation requires at least SprB-dependent gliding motility. Such
dark spots were hardly observed in the colonies formed by gldG mutant cells (Figure 7b,c).
In F. johnsoniae, disruption of the gldG gene resulted in normal levels of gldJ transcript
but decreased levels of GldJ protein, which is required for gliding motility [14]. These
suggest a working hypothesis that the formation of the dark spots requires the gliding
motility-associated protein GldJ. Because areas highly dense with gliding motility-related
complexes were observed as focal adhesin complexes in Myxococcus xanthus cells [41], the
dark spots we observed might be focal adhesion complexes that include the adhesin SprB.
Further study is awaited to understand whether they are related to cell activities, including
cell motility.

The methodology presented here could also be applied to study biofilm-related chronic
diseases. Many chronic diseases are attributable to biofilm formations, which are some-
times associated with cystic fibrosis or surgical implants and catheters [42–45]. Multiple
diseases, including systemic diseases, can be caused by biofilm-associated pathogens (e.g.,
in endocarditis by pathogens such as Streptococcus sp. and Staphylococcus aureus; in peri-
odontitis by pathogens such as P. gingivalis.) [44,45]. P. gingivalis is considered to be the key
periodontal pathogen involved in the development of periodontitis [46]. Infectious oral
diseases, such as dental caries and periodontitis, are sometimes caused by biofilms called
dental plaques [47,48]. Each plaque in the oral cavity is estimated to contain more than
500 bacterial species, including gliding bacterium species [49]. The grid stamp method can
be applied not only to the biofilms formed at the interface between air and wet substrates
but also to biofilms formed in liquid, e.g., deep in periodontal pockets, and to soft materials.
Because of its speed, the method would assist clinical diagnosis. Developments, including
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the use of a robust SiN-film grid [50,51] would make it possible to obtain a stamp directly
from oral cavity areas thought to be affected by biofilm or dental plaques.

The Grid Stamp-Peel method could also be adapted to allow liquid-phase EM, e.g.,
atmospheric scanning electron microscopy (ASEM), making it possible to image biofilms,
dental plaques, or other soft specimens peeled off by the stamp in liquid, while avoiding the
drying step required for negative-stain TEM. For example, the TEM grid used for stamping
could be replaced by a SiN-film windowed ASEM dish and the surface structure immersed
in aqueous liquid imaged using the inverted SEM employed in this method. The same
technique could be applied to various wet organic and inorganic samples [35,39,50,51].

4. Materials and Methods
4.1. Bacterial Strain and Biofilm Cultivation

F. johnsoniae strains were grown in casitone-yeast extract (CYE) medium at 24 ◦C
(Becton, Dickinson and Co., New Jersey, USA). The details of the bacterial strains and
plasmids used are shown in Table 1 [7,52–54].

Table 1. Strains used in this study.

Strain Description Reference

Cj1827 Wild-type rpsL2 [52]

UW102-57 Spontaneous gldK mutant [53]

CJ1300 gldL::HimarEm1 [54]

FJ113 Spontaneous gldM mutant [54]

CJ1631A gldNO::HimarEm1 [54]

UW102-55 Spontaneous gldJ mutant [53]

CJ1922 sprB deletion mutant [52]

FJ149 Spontaneous sprE mutant [54]

UW102-34 Spontaneous gldG mutant [53]

UW102-41 Spontaneous gldI mutant [53]

CJ1984 remA deletion mutant [7]

To observe colony spreading, F. johnsoniae WT, sprB deletion mutant CJ1922 (sprB)
cells, spontaneous gldK mutant UW102-57 (gldK), and spontaneous gldG mutant UW102-34
(gldG) were grown in CYE medium at 27 ◦C with shaking (175 rpm) overnight. The cells
were collected as a pellet by centrifugation at 800× g for 10 min at 22 ◦C. The pellet was
resuspended in the same volume of washing buffer (10 mM Tris-HCl pH 7.4) by vortexing,
and the suspension was centrifuged at 800× g for 10 min at 22 ◦C. These steps were
repeated twice. The cells were spotted onto peptone yeast (PY2) agar medium (peptone
and yeast extract: Becton, Dickinson and Co., agar: Ina Food Industry Co., Ltd., Nagano,
Japan) in a dish 9 cm in diameter and incubated at 24 ◦C for 5 days [39].

4.2. Carbon-Grid Stamp-Peel Method

Thin flat carbon film supported by a copper mesh grid was rendered hydrophilic
by glow discharge in a reduced atmosphere of air (ca 1 Pa) at 6 mA for 90 sec using a
PIB-20 ion sputter (Vacuum Device Inc., Ibaraki, Japan). Colony surface was lightly pressed
(stamped) by the glow-discharged carbon film grid, and some surface cells and matrix
structures of the colony were removed on the film grid. Sample on the film was washed
with six drops of double distilled water (DDW). The sample side of the grid was placed
onto a drop of 2.0% uranyl acetate for 30 s twice and dried in air.
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4.3. TEM Imaging

The negatively stained sample grids as described above were observed and recorded
with a JEM1230 TEM (JEOL, Tokyo, Japan) at an acceleration voltage of 100 kV, equipped
with Orius SC200 or Bioscan CCD cameras (GATAN, Pleasanton, CA, USA).

4.4. Crystal Violet Biofilm Assay

Three hundred microliters of 100-fold diluted overnight culture was added per well
in 24-well assay plates and incubated for 24 h at 25 ◦C. After removing planktonic bacteria
from the plate, biofilms were evaluated by the crystal violet assay. An amount of 0.3 mL
of 0.5% crystal violet was added to each well of the plate. The plate was incubated for
30 min at 25 ◦C before removing the staining solution, and then it was washed three times
with 350 µL phosphate-buffered saline (PBS, pH 7.5). After removing the washing solution,
300 µL 96% EtOH was added per well to dissolve the biofilm-bound crystal violet by gently
knocking the plate. Absorbance was measured at 595 nm.

4.5. Disk Diffusion Susceptibility Test

F. johnsoniae WT and the mutants were subjected to antimicrobial susceptibility testing
using the Kirby–Bauer disk diffusion method. Strains were grown in CYE medium at 27 ◦C
with shaking (175 rpm) overnight. The cells were centrifuged at 800× g at 22 ◦C for 10 min
and collected as a pellet. The pellet was resuspended in the same volume of washing buffer
(10 mM Tris-HCl pH 7.4) by vortexing, and the suspension was centrifuged at 800× g at
22 ◦C for 10 min. These steps were repeated. The suspension was adjusted to 0.2 at OD600
and inoculated onto PY2 and CYE agars. The tetracycline disc (30 µg, BD-Sensi DiscTM)
was placed on the surface of the prepared medium, and the plates were incubated at 25 ◦C
for 48 h. Thereafter, the inhibition zone diameters were measured.
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WT Wild-type
sprB sprB deletion mutant CJ1922
gldK Spontaneous gldK mutant
gldL gldL::HimarEm1
gldM Spontaneous gldM mutant
gldNO gldNO::HimarEm1
gldJ Spontaneous gldJ mutant
gldG Spontaneous gldG mutant
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gldI Spontaneous gldI mutant
sprE Spontaneous sprE mutant
remA remA deletion mutant
T9SS Type IX secretion system
EPM Extracellular polymeric matrix
TEM Transmission electron microscopy
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