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Background: Early diagnosis of tumor metastasis is crucial for clinical treatment. Artificial intelligence (AI) has
shown great promise in the field of medicine. We therefore aimed to evaluate the diagnostic accuracy of AI
algorithms in detecting tumor metastasis using medical radiology imaging.
Methods:We searched PubMed andWeb of Science for studies published from January 1, 1997, to January 30,
2020. Studies evaluating an AI model for the diagnosis of tumor metastasis from medical images were
included. We excluded studies that used histopathology images or medical wave-form data and those
focused on the region segmentation of interest. Studies providing enough information to construct contin-
gency tables were included in a meta-analysis.
Findings: We identified 2620 studies, of which 69 were included. Among them, 34 studies were included in a
meta-analysis with a pooled sensitivity of 82% (95% CI 79�84%), specificity of 84% (82�87%) and AUC of 0¢90
(0¢87�0¢92). Analysis for different AI algorithms showed a pooled sensitivity of 87% (83�90%) for machine
learning and 86% (82�89%) for deep learning, and a pooled specificity of 89% (82�93%) for machine learning,
and 87% (82�91%) for deep learning.
Interpretation: AI algorithms may be used for the diagnosis of tumor metastasis using medical radiology
imaging with equivalent or even better performance to health-care professionals, in terms of sensitivity and
specificity. At the same time, rigorous reporting standards with external validation and comparison to
health-care professionals are urgently needed for AI application in the medical field.
Funding: College students' innovative entrepreneurial training plan program .
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1. Introduction

Tumor metastasis, including lymph node metastasis (LNM) and dis-
tant metastasis (DM), contributes to cancer-related death. Regarding
tumor classification, N andM staging are essential for both the treatment
strategy, like the plan for surgery and chemoradiotherapy, and prognosis
prediction [1,2]. Thus, it is crucial to conduct a complete and accurate
pre-operative clinical evaluation of tumormetastasis.

Medical imaging is commonly used to visualize tumor dissemina-
tion and quantify the severity, providing valuable information for
diagnosis, staging and treatment decision [3] with satisfactory diag-
nostic accuracy. For example, the sensitivity and specificity of
contrast-enhanced ultrasound (CEUS), multidetector computed
tomography (MDCT), magnetic resonance imaging (MRI), and fluoro-
deoxyglucose (FDG) positron emission tomography (PET)/CT in the
detection of colorectal cancer liver metastasis was 80�97% [4], which
is similar in other diseases [5,6]. However, owing to the uncoordi-
nated ratio of doctors to patients and the difficulty of radiological
diagnosis, making a correct and timely diagnosis from medical imag-
ing is challenging [7].

Artificial intelligence (AI) has already shown great promise to
address this problem through automated diagnosis from medical
imaging [8,9]. In the 1980s, artificial neural networks (ANNs) were
developed [10], resulting in a surge of machine learning (ML) based
on statistical models. In the 1990s, various ML models were succes-
sively proposed, such as support vector machines (SVM) [11] and
random forests (RF) [12]. It is not until 2006 that deep learning (DL),
a new branch of ML, gained great attention [13,14]. Since then, DL,
such as convolutional neural networks (CNN) and deep neural net-
works (DNN), has been applied in many fields, including photo
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Research in context

Evidence before this study

The accurate diagnosis of tumor metastasis without misdiagno-
sis and missed diagnosis is a challenging task. Artificial intelli-
gence (AI) has already shown great promise for automated
diagnosis from medical imaging with rapid speed and high
accuracy. There is an urgent need for the application of such
diagnostic technologies for the detection of tumor metastasis
from medical radiology imaging. We searched PubMed and
Web of Science for studies published from Jan 1, 1997, to Jan
30, 2020, with no restrictions on regions, languages, or publica-
tion types. Studies were included if they evaluated an AI model
for the diagnosis of tumor metastasis from medical images. We
found one systematic review comparing performance of AI
algorithms with health-care professionals for all diseases, but
we did not find systematic reviews focusing on tumor
metastasis.

Added value of this study

To the best of our knowledge, this systematic review and meta-
analysis is the first to show that AI algorithms were beneficial
for the diagnosis of tumor metastasis from medical radiology
imaging across a broad range of primary tumors and metastasis
sites. During the process, we also found several common meth-
odological defects that should be considered by algorithm
developers. High-quality evidence with externally validated
results and comparison to health-care professionals are
urgently needed for studies on AI application in the medical
field.

Implications of all the available evidence

AI algorithms were beneficial for the diagnosis of tumor metas-
tasis from medical radiology imaging. The methodology and
reporting of studies on the AI application in the medical field is
often flawed. Normative and rigorous reporting standards
should be established to enable the results to be more credible.
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captioning, automatic speech recognition, image recognition, natural
language processing, drug discovery and bioinformatics [15�19].
Over the past few decades, due to the progress of high-throughput
technologies, biomedical data like genome sequences and medical
images has experienced explosive growth [20]. With the promising
performance of AI in big data and image processing [21,22], more
and more people anticipate similar success in the medical field, espe-
cially in medical imaging. AI can automatically detect details in medi-
cal images, and thus make a quantitative assessment rather than the
subjective visual assessment by clinicians. Moreover, human experts
may leave out some small metastases, resulting in a missed diagnosis
[23�25].

Considering high expectations and demands for AI diagnosis tools
in the clinical practice, it is time to review the evidence supporting
AI-based diagnosis systematically. In this systematic review and
meta-analysis, we were the first to evaluate the diagnostic perfor-
mance of AI algorithms in tumor metastasis from medical radiology
imaging, aiming to guide clinical practice.

2. Methods

2.1. Search strategy and selection criteria

In this systematic review and meta-analysis, we searched for studies
that developed or validated an AI model for the diagnosis of tumor
metastasis (LNM and DM) frommedical radiology imaging. We searched
PubMed and Web of Science for studies published from January 1, 1997,
to January 30, 2020, with no restrictions on regions, languages, or publi-
cation types. A major milestone that happened in 1997may explain why
this starting time was chosen. In 1997, IBM's "Deep Blue" computer
defeated the world chess champion Kasparov. After that, artificial intelli-
gence began its positive development. [26] Full search terms and search
strategies are provided in the Appendix Section 1.

Reviewers (QZ and LY) screened titles and abstracts of the search
results. Uncertainties about inclusion were resolved by the other
reviewer (BZ). Studies were included if they evaluated an AI model
for the diagnosis of tumor metastasis from medical images with all
forms of diagnostic outcomes, such as accuracy, precision, Dice-ratio
and recall, etc.. There were no limits on the participants, the type of
tumor metastasis, or the intended context for using the model. For
the study reference standard to identify whether there is the pres-
ence of metastasis, we accepted clinical notes, expert opinion or con-
sensus, and histopathology or laboratory testing.

Giving for radiology images were most widely used in clinical
practice to diagnose tumor metastasis, we excluded studies that used
histopathology images or medical wave-form data and those focused
on the region segmentation of interest to make our study more con-
sistent. We extracted binary diagnosis accuracy data, so ternary diag-
nosis outcomes were excluded because it had some difference when
constructing contingency tables by binary outcomes. Studies that
used pre-treatment images to predict conditions of lymph nodes
after treatment (e.g. radiotherapy and chemotherapy) were not
included because our focus is “diagnosis” other than “prediction”.
Studies based on animals or nonhuman samples or those presented
duplicate data were also excluded.

This systematic review was done following the recommendations
of the PRISMA statement [27]. The research question was formulated
according to previously published recommendations for systematic
reviews of prediction models (CHARMS checklist) [28].
2.2. Data collection

Three reviewers (QZ, LY and JL) extracted data independently
using a predefined data extraction sheet, and uncertainties were
resolved by another reviewer (BZ). We extracted binary diagnosis
accuracy data and constructed contingency tables, which included
true-positive (TP), false-positive (FP), true-negative (TN), and false-
negative (FN) results if the study provided enough information. Sen-
sitivity and specificity results were calculated from contingency
tables.

To evaluate the performance of the AI model, we conducted a
meta-analysis from studies providing enough information to con-
struct contingency tables. If a study provided several contingency
tables for different algorithms or primary tumors, we treated them as
independent items.

The quality of the included studies was evaluated by the
reviewers (QZ and KG) and conformed to the revised version of the
Quality Assessment of Diagnostic Accuracy Studies (QUADAS) [29].
2.3. Statistical analysis

Receiver operating characteristic (ROC) curves were constructed
to evaluate the accuracy of the AI model. The ROC figures provide
average sensitivity and specificity across included studies with a 95%
confidence interval (CI) of the summary operating point. The ROC fig-
ures also provide the 95% prediction region representing the confi-
dence intervals for forecasts of sensitivity and specificity in a future
study. Areas under the ROC curve (AUCs) with 95% CI were also calcu-
lated. Odds ratio (OR) and 95% CI for each study was calculated to
estimate the performance of the AI algorithms.



629 duplicates removed

1991 records screened

93 full-text articles assessed for eligibility

69 studies included in qualitative synthesis

34studies included in meta-analysis

2620 records identified
1205 from PubMed
1415 from Web of Science

35 excluded
cannot make contingency table

24 excluded
12 no classification task
2 no artificial intelligence model
2 no outcomes
4 not only imaging
4 ternary diagnosis outcomes

1898 excluded
1773 irrelevant topics
48 histopathology images
40 clinical data
5 waveform data graphics
28 primary tumor & metastasis
4 predict condition of LNs

Fig. 1. Study selection.
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We calculated heterogeneity between studies using the x2 test
(threshold P = 0¢1), which was quantified using the I2 statistic. We
also conducted the subgroup analysis and regression analysis to iden-
tify the sources of heterogeneity. Random effects models were used
during the process. P value of 0¢05 or less was considered to indicate
a statistically significant difference.

Two separate analyses were performed according to different
algorithms and whether studies were externally validated. Following
its development, we divided AI algorithms into ML algorithms (ANN,
KNN, SVM, RF, logistic regression and decision tree) and DL algo-
rithms (CNN, DNN and DCNN). External validation means studies
were validated by out-of-sample dataset.

To compare diagnostic performance between AI algorithms and
health-care professionals, we did another separate analysis for stud-
ies providing contingency tables for both health-care professionals
and AI algorithm using the same sample. We evaluated the quality of
included studies according to QUADAS-2 by RevMan (Version 5.3).
Stata (Version 15.0) was used in the ROC curves, the calculation of
AUC, subgroup analysis, Deeks’ Funnel Plot Asymmetry Test and for-
est plots. Data analysis was performed by BZ. This study is registered
with PROSPERO, CRD42020172924.

2.4. Role of the funding source

Our study was funded by the College Students' Innovative
Entrepreneurial Training Plan Program (No.201901249). The funder
of the study had no role in study design, data collection, data analysis,
data interpretation, or writing of the report. The corresponding
authors had full access to all the data in the study and had final
responsibility for the decision to submit for publication.

3. Results

Fig. 1 summarized our literature search for eligible studies. Our
search identified 2620 records, of which 1991 were screened after
removing 629 duplicates. 1898 articles were excluded as they did not
meet the inclusion criteria. 93 full-text articles were assessed for eli-
gibility and 24 articles were excluded when scanning the full text. As
a result, 69 studies were included in the systematic review. Among
the 69 studies, 34 studies provided enough information to construct
contingency tables and calculate test performance parameters, and
were therefore included in the meta-analysis.

These 69 studies described 72 patient cohorts. In these studies,
target conditions were divided into LNM (45 studies) and DM (26
studies) (2 studies involved both LNM and DM), which included bone
metastasis (13 studies), brain metastasis (3 studies), liver metastasis
(4 studies), lung metastasis (2 studies) and others (4 studies). Primary
tumors comprised breast cancer (10 studies), head and neck cancer (9
studies), gastric cancer (7 studies), lung cancer (6 studies), colorectal
cancer (5 studies), prostate cancer (3 studies) and other primary
tumors (6 studies). Thirteen studies did not report this. In addition,
10 studies contained several different primary tumors. Study charac-
teristics are shown in Tables 1, 2 and 3. All included studies used ret-
rospective data and were not open-access. Seven studies excluded
low-quality images which meant that the location and size of the
lesion on the images did not match that seen at pathologic examina-
tion or one or two of the most representative images were selected
for each patient, while 62 studies did not report this. Comparison
between AI models and health-care professionals by the same test
set was only provided in 8 studies. As for the verification of the
model, 7 studies collected out-of-sample dataset to do an external
validation, and the others were internally validated. Furthermore,
different algorithms including DL (23 studies) and ML (34 studies)
were included in the systematic review. Four studies used both DL
and ML algorithms and 5 studies did not report the detailed types of
algorithms.
We accepted all forms of the reference standard for the diagnosis
of metastasis. Forty-three studies used histopathology; 21 studies
used varying models of expert evaluation; 10 studies used other
imaging types to confirm the diagnosis; 7 studies used existing clini-
cal notes; 4 studies used clinical follow-up, and 1 study did not report
this. A part of studies applied several different references.

A total of 34 studies and 123 contingency tables were included in
the meta-analysis. In these studies, primary tumors included breast
cancer (7 studies), head and neck cancer (7 studies), gastrointestinal
cancer (4 studies), lung cancer (5 studies) and others (3 studies). 4
studies had several different primary tumors; 4 studies did not report
this. There were 25 studies targeting LNM and 10 studies targeting
DM (1 study related to both LNM and DM). None of the 8 studies
included in the systematic review with comparison between AI mod-
els and health-care professionals were excluded in the meta-analysis.
After removing 3 from the 7 studies included in the systematic
review with external validation because of the lack of contingency
tables, only 4 studies were used for the meta-analysis.

In addition, we investigated the international research situation of
this subject, finding that the studies mostly concentrated on China,
America and Japan, with 31, 11 and 11 studies respectively. Included
studies were also widely distributed in South Korea and Europe.
South America, Australia and the Middle east had some sporadic dis-
tribution as well (Fig. 2).

The quality of studies included in the meta-analysis was assessed
by the QUADAS-2 score [29] (Supplementary figure 1). Three and 5
studies showed a high risk respectively for patient selections and ref-
erence standards because these studies did not clarify whether
enrolled patients were consecutive or use non-histopathology meth-
ods as reference standard, which we think were acceptable. So, these
studies were not excluded.



Table 1
Participant demographics for the 69 included studies.

First author and year Participants
Inclusion criteria Exclusion criteria Patient/Sample Positive Patients(samples)/

Negative Patients(samples)
Mean age (SD; range), year Percentage of male

participants

Mitsuru Koizumi et al.
(2020) [40]

NR Skeletal metastasis did not meet
the criteria of the term ‘dis-
seminated’; no skeletal
metastasis

54/54 54(NR)/0(NR) NR NR

Jing Li et al. (2020) [41] Patients underwent gastrectomy
plus lymph node dissection
and were diagnosed gastric
adenocarcinomas; patients
were scanned with GSI mode;
without any local or system-
atic treatment before CT scans
and surgery; with definite
postoperative pathologic data.

Invisible lesion on CT images;
with a minimum diameter of
tumor less than 5 mm insuffi-
cient to outline a valid ROI;
insufficient stomach disten-
sion; poor image quality for
post-processing.

204/NR 122(NR)/82(NR) Training set:59(12;28�81)
Test set:59(11;28�74)

Training set:72%
Test set:72%

L. Zhang et al. (2020)
[42]

NR NR 51/NR 32(NR)/19(NR) NR 47%

Li-Qiang Zhou et al.
(2020) [43],*

Patients with histologically con-
firmed primary breast cancer
who underwent surgery; T1 or
T2 primary breast cancer with
clinically negative LNs and no
preoperative therapy; stan-
dard preoperative breast US

T3 or T4 stage; physically posi-
tive LNs; imaging positive LNs;
physically and imaging posi-
tive LNs; preoperative ther-
apy; low quality US images

Cohort1: 756/974
Cohort 2:78/81

Training set:343(441)/337(436)
Testing set:
internal validation:37(49)/39
(48)

external validation:40(43)/38
(38)

Training set:48(NR;24�81)
Test set:
internal validation:50
(NR;25�82)

external validation:46
(NR;30�74)

NR

Endre Grøvik et al.
(2020) [44]

The presence of known or possi-
ble metastatic disease; no
prior surgical or radiation
therapy; the availability of all
required MRI sequences;
patients with �1 metastatic
lesion

NR 156/156 156(156)/0(0) 63(12;29�92) 33%

Yu Zhao et al. (2019)
[45]

Patients with metastatic castra-
tion-resistant prostate cancer

NR 193/NR 193(NR)/0(NR) 69.6(7.9;NR) NR

Jie Xue et al. (2019) [46] Definitely histopathological
results of the primary tumor
lesion; patients with only met-
astatic lesions in brain; with
an age over 18 years old; 3D
T1 MPRAGE sequence was
acquired.

Unqualified imaging quality of
3D T1 MPRAGE; data missing;
skull metastases and menin-
geal metastases

Dataset 1:1201/1201
Dataset 2:231/231
Dataset 3:220/220

Dataset 1:1201(1201)/0(0)
Dataset 2:231(231)/0(0)
Dataset 3:220(220)/0(0)

Dataset 1:58(18;NR)
Dataset 2:60(18;NR)
Dataset 3:59(15;NR)

Dataset 1:57%
Dataset 2:53%
Dataset 3:52%

Bettina Baessler et al.
(2019) [47],*

Patients with retroperitoneally
metastasized testicular germ
cell tumors prior to post-che-
motherapy LN dissection

Absence of contrast-enhanced
CT imaging data after chemo-
therapy and prior to post-che-
motherapy LN dissection;
insufficient image quality;
insufficient matching of histo-
pathology to the individual
LNs

80/204
Training set:63/120
Testing set:
internal validation:19/23
external validation:41/61

44(107)/36(97)
Training set: NR(60)/NR(60)
Testing set: NR(15)/NR(8)
Validation set: NR(25)/NR(36)

LNM:34(13;NR)
N-LNM:36(10;NR)

NR

(continued on next page)
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Table 1 (Continued)

First author and year Participants
Inclusion criteria Exclusion criteria Patient/Sample Positive Patients(samples)/

Negative Patients(samples)
Mean age (SD; range), year Percentage of male

participants

Xiaojun Yang et al.
(2019) [48],*

Preoperative contrast-enhanced
CT images within 2 weeks
before surgery; histologically
confirmed primary invasive
breast cancer; SLN biopsy (and
ALND); pathologically results
after operation confirmed SLN
metastasis

Neoadjuvant therapy before CT
examination and surgery;
poor visualization of the
tumor for segmentation due to
serious artifacts caused by
metallic foreign bodies on the
breast; tumor was too small to
be seen on CT images; incom-
plete clinicopathological data

348/348
Training set:184/184
Testing set:164/164

Training set:71(71)/113(113)
Testing set:63(63)/101(101)

Training set: SLN-P:52(9;NR);
SLN��N:50(11;NR)

Testing set: SLN-P:50(10;NR);
SLN��N:53(10;NR)

NR

Yuan Gao et al. (2019)
[49]

NR No metastatic LNs revealed by
CT; with preoperative neoad-
juvant radio-chemotherapy;
complicated with abdominal
infection; pathological group-
ing different from CT group-
ing; LN adhesions

602/38,495 NR 62(NR;20�91) 72%

David Coronado-Gutier-
rez et al. (2019) [50],*

Positive metastatic nodes by
ultrasound-guided FNA or
CNB; Negative metastatic
nodes determined by
histopathology

Surgical biopsy showed positive
result after not suspicious
nodes in ultrasound exam or
negative results of ultrasound-
guided FNA or CNB; Patients
refused to receive SLNB

127/118 NR(53)/NR(65) 54.6 (NR;26~91) NR

Yukinori Okada et al.
(2019) [51]

NR NR 56/NR 56(NR)/0(0) 59 (12.7;NR) 0

Jeong Hoon Lee et al.
(2019) [52],*

NR NR 202/995 NR(348)/NR(647) NR NR

Jansen et al. (2019) [53] NR Based on visual evaluation, DW-
MRI failed to register on the
DCE-MR series

111/111 72(NR)/39(NR) NR NR

Chuangming Li et al.
(2019) [54],*

Patients had breast cancer con-
firmed by histology; under-
went a DCE-MRI scan before
tumor resection or biopsy;
received tumor resection and
SLNB within 1 week after MRI
examination

MRI examination data were
incomplete, or image quality
was poor

62/62 35(NR)/27(NR) SLN-P:48.14 (8.35; NR)
SLN��N:49.78 (12.53; NR)

NR

M. Dohopolski et al.
(2019) [55]

Patients with oropharyngeal
squamous cell carcinoma;
underwent neck dissections;
had preoperative PET and CT
imaging

NR 129/543 NR NR NR

Yige Peng et al. (2019)
[56],*

NR No detailed metastases
information

48/NR 24(NR)/24(NR) NR NR

Qiuxia Feng MD et al.
(2019) [57],*

Definitive diagnosis by
histopathology

Neoadjuvant chemotherapy or
radiotherapy or endoscopic
resection; end-stage disease or
severe complications preclud-
ing surgery; disease that could
not be detected on imaging;
poor imaging quality or poor
gastric resection

490/NR 279(NR)/211(NR) 61.8(10.4; NR) Training and validation
set: 73% Test set: 77%

(continued on next page)
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Table 1 (Continued)

First author and year Participants
Inclusion criteria Exclusion criteria Patient/Sample Positive Patients(samples)/

Negative Patients(samples)
Mean age (SD; range), year Percentage of male

participants

Thoma Schnelldorfer
et al. (2019) [58]

Underwent a laparoscopic oper-
ation with the initial intent for
either resection or palliation of
the underlying malignancy;
Video recordings of the opera-
tion were available

Malignancy originating from
esophageal, hepatic and colo-
rectal malignancies

35/35 20(20)/15(15) 67 (NR;44~85) 66%

Samir D. Mehta et al.
(2019) [59],*

Underwent CT of the abdomen
and pelvis or radiographs of
the lumbar spine and DEXA
studies; CT studies/ lumbar
spine radiographs were per-
formed not more than 1 year
prior to the DEXA study

NR 200/NR 45(NR)/155(NR) Case: 70.5 (NR;63.9~76.7)
Control: 62 (NR;53.5~69)

Case: 78%
Control: 83%

Yoshiko Ariji, et al.
(2019) [60],*

Underwent intravenous contrast
enhanced CT and dissection of
cervical lymph nodes

NR 45/441 NR(127(/NR(314) 63 (NR;33~95) 53%

Yunpeng Zhou et al.
(2019) [61]

Definite lymph node metastasis
reported by preoperative
imaging

With a history of abdominal pel-
vic surgery, and pelvic radio-
chemotherapy

301/12,060 301(NR)/0(NR) 59.5(NR; NR) 75%

Yu Li et al. (2019) [62],* Received radical colectomy with
lymph node dissection;
Patients with colon cancer
diagnosis; Patients with no
history of previous or coexist-
ing other malignancies;
Patients who underwent pre-
operative enhanced CT for
local colon cancer staging and
for liver metastasis diagnosis;

Patients who underwent treat-
ment (radiotherapy, chemo-
therapy or
chemoradiotherapy) before
the baseline CT examination;
Poor image quality; Patients
with liver metastasis who did
not receive synchronous
resection of the primary tumor
and liver metastasis

48/NR 24(NR)/24(NR) LNM: 63.3 (11.21; NR)
Non-LNM: 59.71 (13.86; NR)

63%

Zhiguo Zhou et al.
(2019) [63],*

NR NR 129/543 Training set: NR (91)/NR (287)
Test set: NR (39)/NR (126)

NR NR

eMine acar et al. (2019)
[64]

Sclerotic lesions >2 cm in
patients with at least three
sclerotic metastatic lesions;
sclerosis areas of the bones
that located on the surface of
the joint and/or on the surface
of the other side of the joint;
osteophytes not considered as
metastasis.

No bone metastasis; <3 bone
metastasis; no sclerotic metas-
tasis; uptake<liver uptake

75/257 NR(153)/NR(104) 69(9; NR) NR

Fang Hou et al. (2019)
[65],*

NR NR 28/573 Training set: NR (21)/NR (293)
Test set: NR (25)/NR (234)

NR NR

Yoshiko Ariji et al.
(2019) [66],*

Oral squamous cell carcinoma;
underwent neck dissection;
pathology confirms cervical
lymph node metastasis

NR 54/143 (LN) 703 (image) NR (33)/NR (110) 64(NR; NR) 52.94%

(continued on next page)
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Table 1 (Continued)

First author and year Participants
Inclusion criteria Exclusion criteria Patient/Sample Positive Patients(samples)/

Negative Patients(samples)
Mean age (SD; range), year Percentage of male

participants

Xiaojuan Xu et al. (2019)
[67]

Patients who received standard
FIGO surgical staging for endo-
metrial cancer between Janu-
ary 2011 and December 2017

Patients without DCE-MRI 2
weeks before surgery; patients
with serious MR artifacts and
without uniform MR scanner;
patients missing clinical char-
acteristics data and endome-
trial biopsy histological
information; patients with any
preoperative therapy; patients
suffering from other malig-
nant tumor diseases
concurrently

200/NR 67(NR)/133(NR) Training cohort: pN(+):55.7(NR;
NR)

pN(-):55.7 (NR; NR)
Test Cohort: pN(+):57.4(NR; NR)
pN(-):51.7(NR’; NR)

NR

Jiaxiu Luo et al. (2018)
[68],*

NR NR 172/NR 74(NR)/98(NR) NR NR

Richard Ha et al. (2018)
[69]

NR NR 275/275 133(133)/142(142) NR NR

B.H. Kann et al. (2018)
[70],*

NR NR 270/653 NR (380)/NR (273) NR NR

Jeong Hoon Lee et al.
(2018) [71],*

NR NR 804/812
cohort1:604/612
cohort2:200/200

Training set: NR (286)/NR (263)
Validation set: NR (33)/NR (30)
Test set: NR (100)/NR (100)

Training & Validation set:44
(NR;13�84)

Test set:55(NR;10�81)

Training & Validation
set:30.6%

Test set:27%
Yun Lu et al. (2018) [72] NR NR Training set:351/28,080

Test set:414/36,000
Training set:351(28,080)/0(0)
Test set: NR

NR NR

Jos�e Raniery Ferreira
Junior et al. (2018)
[73],*

NR No standard contrast-enhanced
CT protocol; did not present all
clinical data; presented other
opacities attached to the
tumor

68/NR LNM: Test set:23(NR)/29(NR)
Validation set:9(NR)/7(NR)
DM: Test set:8(NR)/44(NR)
Validation set:5(NR)/11(NR)

Test set:66.6(9.1;41�85)
Validation set:64.88(9.1;41�79)

Test set:57.7%
Validation set:62.5%

Tzu-Yun Lo et al. (2018)
[74]

NR NR 70/75 70(75)/0(0) NR NR

Jin Li et al. (2018) [75] NR NR NR/619 Original data: NR(307)/NR(312)
augmented data: NR(1535)/NR
(1560)

NR NR

Mohamed Amine Larh-
mam et al. (2018) [76]

NR NR NR/153 NR (87)/NR (66) NR NR

Yan Zhong et al. (2018)
[77],*

Underwent surgical resection
and systematic LN dissection
according to the American
Thoracic Society criteria; had
no enlargement of the hilar or
mediastinal LNs at CT
(enlargement defined as short
axis of a node � 10 mm on axis
images) and clinical N0; no
distal metastasis

IV administration of contrast
material; unsatisfactory image
quality due to respiratory arti-
fact during the examination
that may have disturbed fea-
ture extraction; and surgical
resection not performed
within 90 days of thin-section
CT

492/492 78(78)/414(414) 61.4(9.7; NR)
N-LNM:61.28(9.8; NR)
LNM:61.71(9.62; NR)

35%
N-LNM:32%
LNM:50%

Wang, H et al. (2017)
[78],*

NR NR 168/1397 NR (127)/NR (1270) 61(NR;38�81) 54%

Mitsuru Koizumi et al.
(2017) [79],*

NR NR 265/265 124(124)/101(101) NR NR

Juan Wang et al. (2017)
[80]

NR NR 26/NR 26(NR)/0(NR) 58(14; NR) 54%

(continued on next page)
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Table 1 (Continued)

First author and year Participants
Inclusion criteria Exclusion criteria Patient/Sample Positive Patients(samples)/

Negative Patients(samples)
Mean age (SD; range), year Percentage of male

participants

Zhi-Long Wang et al.
(2017) [81]

NR Pathologically proven adenocar-
cinoma, small cell carcinoma,
mixed cancer, or other dis-
eases; other preoperative
therapies simultaneously;
esophageal multiple primary
carcinoma; death within
30 days after surgery;
enhanced CT data before pre-
operative chemotherapy not
obtained or images not inter-
pretable; non-suitability for
radical esophagectomy

131/NR 51(NR)/80(NR) 58(NR;42�75) 77.90%

Tuan D. Pham et al.
(2017) [82],*

Biopsy-proven primary lung
malignancy with pathological
mediastinal nodal staging;

Patients with nodal biopsy more
than three months from CT

148/NR Test set: NR (133)/NR (138) 69.4(NR;36�84) 63%

Qi Zhang et al. (2017)
[83],*

Underwent axilla conventional
US and RTE simultaneously

Take neoadjuvant therapy before
SLNB or ALND

158/161 NR (92)/NR (69) 55.2(5.2;21�81) NR

Yu-wenWang et al.
(2016) [84],*

NR A relatively large (minimal axial
diameter up to 10 mm)
necrotic node, which did not
promptly respond to RT

Stage I: 335/663
Stage II: 210/410

Stage I: NR (337)/NR (326); Stage
II: NR (211)/NR (199)

NR NR

Ali Aslantas et al. (2016)
[85],*

NR NR 60/130 39(34)/21(96) 57(NR;30�87) 60%

Aneta Chmielewski et al.
(2015) [86],*

Underwent surgical treatment
for invasive breast cancer with
axillary lymph node
evaluation

NR 77/105 NR (24)/NR (81) NR 0

Mitsuru Koizumi et al.
(2015) [87],*

NR NR 426/NR 152(NR)/274(NR) NR NR

Mitsuru Koizumi et al.
(2015) [88]

NR Patient showing segmentation
error on BONENAVI version 2

394/NR 142(NR)/252(NR) NR NR

Nesrine Trabelsi et al.
(2015) [89]

NR NR 11/NR 11(NR)/0(NR) NR NR

Xuan Gao et al. (2015)
[90]

NR NR 132/768 NR NR 60.60%

Osamu Tokuda, et al.
(2014) [91],*

NR Benign conditions; did not
undergo follow-up examina-
tions; younger than 20 years
of age

406/3248 90(235)/316(3013)
Prostatic cancer: NR(104)/NR
(464); Breast cancer: NR(42)/
NR(830); Males with other
cancer: NR(56)/NR(1168);
Females with other cancers:
NR(33)/NR(551)

66(NR;27�92) 55%

Ari Seff et al. (2014) [92] NR NR Mediastinal LN:90/389(LN)
Abdominal:86/595(LN)

Mediastinal LN:NR(960Candi-
dates)/NR(3208Candidates)

Abdominal: NR(1005Candi-
dates)/NR(3484Candidates)

NR NR

Zhi-Guo Zhou et al.
(2013) [93],*

NR NR 175/175 134(NR)/41(NR) 59.8(NR;30�85) 71%

Seungwook Yang et al.
(2013) [94],*

NR Excessive motion artifacts 26/90 Test Set: black-blood:26(53)/0
(443); MP-RAGE:26(53)/0
(5788)

NR NR

(continued on next page)
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Table 1 (Continued)

First author and year Participants
Inclusion criteria Exclusion criteria Patient/Sample Positive Patients(samples)/

Negative Patients(samples)
Mean age (SD; range), year Percentage of male

participants

Jianfei Liu et al. (2013)
[95]

NR NR 50/NR Training set: NR; Test set:44
(102)/NR

NR NR

Yoshihiko Nakamura
et al. (2013) [96]

NR NR 28/NR 28(95)/0(NR)` NR NR

Chuan-Yu Chang et al.
(2013) [97]

NR NR 6/177 All positive NR NR

Johannes Feulner et al.
(2013) [98]

NR NR 54/1086 NR(289)/NR(NR) NR NR

Chao Li et al. (2012) [99] NR NR 38/NR 27(NR)/11(NR) NR NR
Hongmin Cai et al.
(2012) [100]

NR NR 228/NR NR 58(NR;19�86) 61%

Shao-Jer Chen et al.
(2012) [101]

NR NR 37/149 13(55)/24(94) LN:64(10;44�77)
N-LN:47(13;15�68)

LN:61.5%
N-LN:41.7%

Xiao-Peng Zhang et al.
(2011) [102],*

Patients received radical gastrec-
tomy and D2 lymph nodes dis-
section; Preoperatively
examined with multi-detector
row CT; Confirmed as gastric
cancer by postoperative
histopathology

Received preoperative neoadju-
vant therapy; Distant metasta-
sis was found in the
preoperative examination or
in the operation

175/NR 134(NR)/41(NR) 59.8 (NR;30~85) 71%

Matthias Dietzel et al.
(2010) [103]

Invasive breast lesions with his-
topathological verification
after bMRI

With a history of breast biopsy/
interventions (surgical or min-
imally invasive) and chemo-
therapy/radiation therapy up
to 12 months before bMRI;
Histopathological grading not
possible

194/NR 97(NR)/97(NR) 60.6 (12.1; 25~87) NR

May Sadik et al. (2008)
[104],*

Underwent whole-body bone
scintigraphy with a dual-
detector r-camera; Patients
with a complete set of techni-
cally sufficient images; At least
1 yr follow-up bone scan

Patients with a urine catheter,
large bladder, sternotomy or
fracture that could be mislead-
ing for the CAD system

NR/869 NR(297)/NR(572) Training set: 66 (NR;25~92)
Test set: 65 (NR;43~86)

Training: 65%
Test: 69%
All: 62%

Junji Shiraishi et al.
(2008) [105]

NR NR 97/103 NR(26);NR(77) NR NR

Junhua Zhang et al.
(2008) [106],*

NR NR 112/210 NR(114)/NR(96) 53 (17;17~81) NR

Rie Tagaya et al. (2008)
[107],*

NR NR 91/91 Training set:6(6)/3(3)
Test set:60(60)/22(22)

NR NR

K. Marten et al. (2004)
[108]

Patients with pulmonary metas-
tasis; undergoing clinical stag-
ing and follow-up CT
examinations of the chest

NR 20/135 20(NR)/0(NR) 62.4(NR;NR) NR

Abbreviation: NR=not reported. CT=computed tomography. GSI=Gemstone spectral imaging. LN= Lymph node. US= ultrasound. 3D-T1-MPRAGE images=Three-dimensional T1 magnetization prepared rapid acquisition gradient echo. SLN=
sentinel lymph node. ALND= axillary lymph node dissection. FDG-PET/CT= fluoro-deoxy glucose positron emission tomography with CT. MRI= magnetic resonance imaging. FNA= fine needle aspiration. CNB= core needle biopsy. DW-MRI=
diffusion-weighted magnetic resonance imaging. DCE-MR= contrast-enhanced magnetic resonance imaging. OPSCC= oropharyngeal squamous cell carcinoma. DEXA=Dual-energy X-ray absorptiometry. HNC=head and neck cancer. DCE-
MRI= dynamic contrast enhanced MRI. FIGO=International Federation of Gynecology and Obstetrics. RTE=real-time elastography. NPC=nasopharyngeal carcinoma. CAD=computer-assisted diagnosis.
* 34 studies included in the meta-analysis.
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Table 2
Model training and validation for the 69 included studies.

First author and year Metastasis type Target condition Primary tumor Reference standard Type of internal validation External validation

Mitsuru Koizumi et al. (2020)
[40]

DM Disseminated skeletal metastasis prostate cancer(n = 12), GC=
(n = 12), breast cancers
(n = 15), miscellaneous cancers
(n = 10)

Expert consensus NR YES

Jing Li et al. (2020) [41] LNM LNM in GC GC Histopathology; follow up Resampling method NO
L. Zhang et al. (2020) [42] DM Lung metastasis in STS STS Histopathology Random split sample validation NO
Li-Qiang Zhou et al. (2020) [43],* LNM Clinically negative axillary

lymph node metastasis in pri-
mary breast cancer

Breast cancer Histopathology NR YES

Endre Grøvik et al. (2020) [44] DM Detection and Segmentation of
Brain Metastases

Lung (n = 99), breast (n = 33),
melanoma (n = 7), genitouri-
nary (n = 7), gastrointestinal
(n = 5), and miscellaneous-
cancers (n = 5)

Expert consensus NR NO

Yu Zhao et al. (2019) [45] DM& LNM Bone metastasis, lymph node
metastasis in prostate cancer

Metastatic castration-resistant
prostate cancer

Expert consensus NR NO

Jie Xue et al. (2019) [46] DM Detection and Segmentation of
Brain Metastases

Lung, Breast, Kidney, Other
organs (rectum, colon, mela-
noma, ovary and liver)

Expert consensus Resampling method NO

Bettina Baessler et al. (2019)
[47],*

LNM LNM in NSTGCT patients NSTGCT Histopathology Resampling method NO

Xiaojun Yang et al. (2019) [48],* LNM SLNM in Breast Cancer Breast cancer Histopathology Resampling method NO
Yuan Gao et al. (2019) [49] LNM PGMLNs in GC GC Histopathology; expert

consensus
Resampling method NO

David Coronado-Gutierrez et al.
(2019) [50],*

LNM Metastasis in the axillary lymph
node

Breast cancer Histopathology Resampling method NO

Yukinori Okada et al. (2019) [51] DM Bone metastasis Breast cancer Based on CT, MRI and clinical
findings: expert consensus

NR NR

Jeong Hoon Lee et al. (2019)
[52],*

LNM Metastasis in the cervical lymph
node

Thyroid cancer Histopathology by FNA and/or
surgery

Random split sample validation NO

Jansen et al. (2019) [53] DM Liver metastasis NR Expert consensus NR NO
Chuangming Li et al. (2019)
[54],*

LNM Sentinel lymph node metastasis Breast cancer Histopathology; expert
consensus

NR NO

M. Dohopolski et al. (2019) [55] LNM Small Lymph node metastasis Oropharyngeal squamous cell
carcinoma

Histopathology NR NO

Yige Peng et al. (2019) [56],* DM Distant metastasis in STS STS Biopsy or CT and/or PET images NR NO
Qiuxia Feng MD et al. (2019)
[57],*

LNM LNM in GC GC Histopathology NR NO

Thoma Schnelldorfer et al.
(2019) [58]

DM Distinguish metastasis in the
peritoneal from the benign
lesions

Gastric adenocarcinoma: 19.
Pancreatic adenocarcinoma:
11; Gallbladder carcinoma: 2.
Metastatic pancreatic neuro-
endocrine tumor, jejunal ade-
nocarcinoma, ampullary
adenocarcinoma: 1 each

Histopathology NR NO

Samir D. Mehta et al. (2019)
[59],*

DM Osteoblastic metastases involv-
ing one or more vertebral bod-
ies from L1 to L4

NR Clinical notes Random split sample validation NO

Yoshiko Ariji, et al. (2019) [60],* LNM Metastasis in the cervical lymph
node

Oral cancer Histopathology Resampling method NO

Yunpeng Zhou et al. (2019) [61] LNM LNM in rectal cancer Rectal cancer Expert consensus NR NO
Yu Li et al. (2019) [62],* DM Metastasis in the liver of the pre-

operative CT
Colon cancer Histopathology Resampling method NO

Zhiguo Zhou et al. (2019) [63],* LNM LNM in HNC HNC Histopathology NR NO

(continued on next page)
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Table 2 (Continued)

First author and year Metastasis type Target condition Primary tumor Reference standard Type of internal validation External validation

eMine acar et al. (2019) [64] DM Differentiating metastatic and
completely responded sclerotic
bone lesion in prostate cancer

Prostate cancer Expert consensus Resampling method NO

Fang Hou et al. (2019) [65],* LNM LNM NR Histopathology NR NO
Yoshiko Ariji et al. (2019) [66],* LNM LNM in Oral squamous cell

carcinoma
Oral squamous cell carcinoma Histopathology NR NO

Xiaojuan Xu et al. (2019) [67] LNM LNM in EC EC Histopathology NR NO
Jiaxiu Luo et al. (2018) [68],* LNM SLNM in breast cancer Breast cancer Histopathology NR NO
Richard Ha et al. (2018) [69] LNM LNM in breast cancer Breast cancer Biopsy; follow up Resampling method NO
B.H. Kann et al. (2018) [70],* LNM LNM in HNC HNC Histopathology Resampling method NO
Jeong Hoon Lee et al. (2018)
[71],*

LNM LNM in thyroid tumor Thyroid tumor FNA and/or laboratory tests Random split sample validation NO

Yun Lu et al. (2018) [72] LNM Pelvis LNM in rectal cancer Rectal cancer Expert consensus Random split sample validation YES
Jos�e Raniery Ferreira Junior et al.
(2018) [73],*

DM& LNM LNM and distant metastasis in
lung cancer

Lung cancer Clinical notes Resampling method NO

Tzu-Yun Lo et al. (2018) [74] LNM LNM in HNC HNC Clinical notes Resampling method NO
Jin Li et al. (2018) [75] LNM LNM in Colorectal Cancer Colorectal Cancer Expert consensus NR NO
Mohamed Amine Larhmam et al.
(2018) [76]

DM Spine metastasis NR Single expert Resampling method NO

Yan Zhong et al. (2018) [77],* LNM Occult mediastinal LNM of lung
adenocarcinoma

Lung adenocarcinoma Histopathology Resampling method NO

Wang, H et al. (2017) [78],* LNM Mediastinal LNM of non-small
cell lung cancer

Non-small cell lung cancer Histopathology Resampling method NO

Mitsuru Koizumi et al. (2017)
[79],*

DM Skeletal metastasis in prostate
cancer

Prostate cancer BS&CT expert consensus; follow
up; and/or biopsy

NR YES

Juan Wang et al. (2017) [80] DM Spinal metastasis 15 lung, 5 thyroid, two liver, 1
breast, 1 prostate, 1 esopha-
gus, 1 urinary tract

Biopsy Resampling method NO

Zhi-Long Wang et al. (2017) [81] LNM LNM in esophageal cancer with
preoperative chemotherapy

Esophageal cancer Postoperative pathological
results

Random split sample validation NO

Tuan D. Pham et al. (2017) [82],* LNM Mediastinal lymph nodes in lung
Cancer

Lung cancer Histopathology Resampling method NO

Qi Zhang et al. (2017) [83],* LNM Axillary lymph node metastasis
in breast cancer

Breast cancer Histopathology Resampling method NO

Yu-wenWang et al. (2016) [84],* LNM Metastasis in the retropharyng-
eal lymph nodes

NPC MRI follow-up Random split sample validation NO

Ali Aslantas et al. (2016) [85],* DM Bone metastatic Chest, prostate, lung cancers Single expert (laboratory tests,
and other accessible radio-
graphic images)

Resampling method NO

Aneta Chmielewski et al. (2015)
[86],*

LNM Axillary lymph node metastasis
in breast cancer patients

Breast cancer Imaging-pathology gold stand-
ards: FNA, biopsy, LND, normal
image with long term follow-
up

Resampling method NO

Mitsuru Koizumi et al. (2015)
[87],*

DM Metastasis in bone Prostate cancer, lung cancer,
breast cancer, and other
cancers

Radiology (CT, MR or PET/CT),
follow-up scan and patients'
clinical course

NR YES

Mitsuru Koizumi et al. (2015)
[88]

DM Metastasis in bone Prostate cancer, lung cancer,
breast cancer, and other
cancers

Radiology (CT, MR or PET/CT),
follow-up scan and patients'
clinical course

NR YES

Nesrine Trabelsi et al. (2015)
[89]

DM Metastasis in liver NR NR NR NO

Xuan Gao et al. (2015) [90] LNM Mediastinal lymph nodes in lung
cancer

Lung cancer Histopathology Random split sample validation NO

(continued on next page)
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Table 2 (Continued)

First author and year Metastasis type Target condition Primary tumor Reference standard Type of internal validation External validation

Osamu Tokuda, et al. (2014)
[91],*

DM Bone metastasis Prostatic cancer (N = 71), breast
cancer (N = 109), other cancers
(N = 226)

All bone-scan images, including
the follow-up scans, expert
consensus; laboratory tests;
(OR) biopsy

NR YES

Ari Seff et al. (2014) [92] LNM LNM NR Expert consensus Resampling method NO
Zhi-Guo Zhou et al. (2013) [93],* LNM LNM in GC GC Surgery and histopathology Resampling method NO
Seungwook Yang et al. (2013)
[94],*

DM Brain metastases NR Single expert NR NO

Jianfei Liu et al. (2013) [95] DM Ovarian Cancer Metastases Ovarian Cancer Single expert NR NO
Yoshihiko Nakamura et al.
(2013) [96]

LNM Abdominal Lymph Node 5 colorectal; 23 stomach cancer 26cases: single expert
2 cases: experts consensus using
a particular medical image

Resampling method NO

Chuan-Yu Chang et al. (2013)
[97]

LNM LNM NR Histopathology NR NO

Johannes Feulner et al. (2013)
[98]

LNM Mediastinal lymph nodes NR Single expert Resampling method NO

Chao Li et al. (2012) [99] LNM LNM in GC GC Histopathology NR NO
Hongmin Cai et al. (2012) [100] LNM Regional LNM Rectal cancer Histopathology Resampling method NO
Shao-Jer Chen et al. (2012) [101] LNM LNM NR Histopathology; follow up Resampling method NO
Xiao-Peng Zhang et al. (2011)
[102],*

LNM LNM in GC GC Histopathology Resampling method NO

Matthias Dietzel et al. (2010)
[103]

LNM Metastasis to the ipsilateral
axilla lymph node

Breast cancer Surgicopathology Random split sample validation NO

May Sadik et al. (2008) [104],* DM Metastasis to bone Testing: Breast/prostate cancer Training: Clinical reports and the
bone scan images

Testing: Final clinical assess-
ments made by the same
experienced physician

NR NO

Junji Shiraishi et al. (2008) [105] DM Metastasis to the liver NR Biopsy or surgical specimens NR NO
Junhua Zhang et al. (2008)
[106],*

LNM Metastasis to the cervical lymph
nodes

NR Histopathology Resampling method NO

Rie Tagaya et al. (2008) [107],* LNM Diagnosis of LNM by B-Mode
Images from Convex-Type
Echobronchoscopy

66 lung cancer,25sarcoidosis Histopathology or cytologic
testing

NR NO

K. Marten et al. (2004) [108] DM Pulmonary nodules NR Expert consensus NR NO

Characteristics only be described in 1 or 2 studies are classified to others.
Abbreviation: NR=not reported. LNM=Lymph node metastasis. DM= distant metastasis. BS=bone scintigraphy. GC=gastric cancers. STS=soft-tissue sarcoma. NSTGCT= Non-seminomatous testicular germ cell tumor. PGMLNs= peri-
gastric metastatic lymph nodes. EC=Endometrial cancer. FNA=fine needle aspiration.
* 34 studies included in the meta-analysis.
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Table 3
Indicator, algorithm, and data source for the 69 included studies.

First author and
year

Indicator definition Algorithm Data source

Method for
predictor
measurement

Exclusion of poor-
quality imaging

Heatmap
provided

Extracted
features

Algorithm
architecture name

Algorithm
architecture

Transfer learning
applied

Source of data Number of images for
training/testing)

Data range Open
access
data

Mitsuru Koizumi
et al. (2020) [40]

BS NR NR NO NR ANN NR Retrospective clinical data
from cancer institute hos-
pital, Tokyo, Japan

NR/54 2013.1�2019.8 NO

Jing Li et al. (2020)
[41]

dual-energy CT YES NR YES DCNNs; ANN;
Ksvm

CNN; ANN; SVM NR Retrospective cohort 136/68 2012.1�2018.11 NO

L. Zhang et al.
(2020) [42]

MRI, CT NR NR NO Inception V3 CNN; Inception YES Data collected from Cancer
Imaging Archive

25/15 NR YES

Li-Qiang Zhou
et al. (2020)
[43],*

US image YES YES NO Inception V3;
Inception-
ResNet V2;
ResNet-101

CNN; Inception;
Residual
Network

NR Cohort 1: retrospective
cohort collected from
Tongji Hospital; Cohort 2:
retrospective cohort col-
lected from Hubei Cancer
Hospital (Hubei, China)

877/97(internal test) +81
(external test)

Cohort

1:2016.5�2018.10;
Cohort 2:2018.10�2019.4

NO

Endre Grøvik et al.
(2020) [44]

Multisequence
MRI

NR YES NO GoogLeNet CNN NR Retrospective cohort 100/51 2016.6�2018.6 NO

Yu Zhao et al.
(2019) [45]

PSMA PET/CT, CT NR NR NR triple combing
2.5D U-NET

CNN NR Retrospective cohort from
medical centers of Techni-
cal University of Munich,
University of Munich and
University of Bern

130/63 NR NR

Jie Xue et al.
(2019) [46]

3D-T1-MPRAGE
images

YES NR NO 3D CNN CNN NR Dataset 1: Retrospective
clinical data from the
Shandong Provincial Hos-
pital Affiliated to Shan-
dong University; Dataset
2: Retrospective clinical
data from the Affiliated
Hospital of Qingdao Uni-
versity Medical College;
Dataset 3: Retrospective
clinical data from the Sec-
ond Hospital of Shandong
University

1201/451 Dataset

1:2016.10�2019.5
Dataset 2:2017.8�2019.3
Dataset 3:2017.4�2019.4

NO

Bettina Baessler
et al. (2019)
[47],*

CT YES NR YES logistic regression logistic regression NR Retrospective cohort 120/23(internal test)+61
(external test)

2008�2017 NO

Xiaojun Yang et al.
(2019) [48],*

CT YES NR YES CNN-F; multivari-
able logistic
regression

CNN; logistic
regression

YES Retrospective cohort 184/164 2016.1�2018.11 NO

Yuan Gao et al.
(2019) [49]

CT YES NR YES FR-CNN CNN NR Cohort 1: retrospective
cohort collected from
Tongji Hospital

Cohort 2: retrospective
cohort collected from
Hubei Cancer Hospital
(Hubei, China)

32,495/6000 2011.1�2018.5 No

David Coronado-
Gutierrez et al.
(2019) [50],*

US YES NR YES CNN; VGG-M VGG NR Retrospective cohort NR/NR 2015.4~2018.8 NO

(continued on next page)
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Table 3 (Continued)

First author and
year

Indicator definition Algorithm Data source

Method for
predictor
measurement

Exclusion of poor-
quality imaging

Heatmap
provided

Extracted
features

Algorithm
architecture name

Algorithm
architecture

Transfer learning
applied

Source of data Number of images for
training/testing)

Data range Open
access
data

Xiao-Peng Zhang
et al. (2011)
[102],*

Multi-detector row
CT

NR NR YES LibSVM 2.89 SVM NR Retrospective cohort NR/NR 2006.4~2008.9 NO

Matthias Dietzel
et al. (2010)
[103]

Breast MRI NR NR YES ANN ANN NR Retrospective cohort 123/71 NR NO

May Sadik et al.
(2008) [104],*

BS NR NR YES ANN ANN NR Retrospective cohort 810/59 Training:
1999.1~2002.6

Testing:
1999.8~2001.1

NO

Junji Shiraishi et al.
(2008) [105]

Contrast-enhanced
ultrasonography

NR NR YES ANN ANN NR Retrospective cohort NR/NR NR NO

Junhua Zhang et al.
(2008) [106],*

US NR NR YES v-SVM SVM NR Retrospective cohort NR/NR 2005.7~2006.6 NO

Rie Tagaya et al.
(2008) [107],*

US from convex-
type

echobronchoscopy NR NR NO

BP-ANN ANN NR Retro-
spec-
tive
cohort
from
St.

Marianna Uni-
versity School of
Medicine,
Tokyo, Japan

9/82 2005.4�2007.3 NO

K. Marten et al.
(2004) [108]

MSCT NR NR NR NR NR NR Retrospective cohort from
Klinikum rechts der Isar,
Technical University
Munich, Germany

NR/NR NR NR

Abbreviation: NR=not reported. BS=bone scintigraphy. GC=gastric cancers. CT=computed tomography. MRI= magnetic resonance imaging. ANN= artificial neural network. SVM= support vector machine. NN= neural networks. CNN= con-
volutional neural networks. US= ultrasound. PSMA= Prostate specific-membrane antigen. 3D-T1-MPRAGE images=Three-dimensional T1 magnetization prepared rapid acquisition gradient echo. FR-CNN= fast region convolutional neural
networks. CNN-F= CNN fast. PET: positron emission tomography. DNN= Deep neural network. MO= multi-objective model. KNN= k nearest neighbors. OCT= Optical coherence tomography. ANN= artificial neural network. BP-ANN= back-
propagation artificial neural network. MSCT= multi-slice CT.
* 34 studies included in the meta-analysis.
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Fig. 2. International research situation.
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ROC curves of these 34 studies (123 contingency tables) are
shown in Fig. 3a, in which the pooled sensitivity was 82% (95% CI
79�84%) for all studies, and the pooled specificity was 84% (82�87%),
with AUC of 0¢90 (0¢87�0¢92). Many studies used more than one
algorithm with several different accuracy for each algorithm. So,
when selecting the contingency tables reporting the highest accuracy
for different algorithms in these 34 studies with 48 tables, the pooled
sensitivity was 87% (95% CI 84�89%), and the pooled specificity was
88% (84�92%), with AUC of 0¢93(0¢90�0¢95) (Fig. 3b).

Considering different algorithms were used in the included stud-
ies, we divided them into ML algorithms (ANN, KNN, SVM, RF, logistic
regression and decision tree) and DL algorithms (CNN, DNN and
DCNN) and did separate analysis for them, which showed a pooled
sensitivity of 87% (95% CI 83�90%) for ML and 86% (82�89%) for DL,
and a pooled specificity of 89% (82�93%) for ML and 87% (82�91%)
for DL (Fig. 4).

30 studies included in the meta-analysis were validated by in-
sample dataset with a pooled sensitivity of 86% (95% CI 83�89%) and
a pooled specificity of 90% (85�93%). Only 4 studies used out-of-sam-
ple dataset to perform an external validation, for which sensitivity
was 89% (84�93%) and specificity was 74% (69�79%) (Fig. 5).

Of these 34 studies, 8 compared performance between AI algo-
rithms and health-care professionals using the same sample, with 10
contingency tables for AI algorithm and 16 tables for health-care pro-
fessionals (Fig. 6). The pooled sensitivity was 89% (95% CI 83�93%)
for AI algorithms and 72% (61�81%) for health-care professionals.
The pooled specificity was 85% (79�89%) for AI algorithms and 72%
(63�79%) for health-care professionals. Only 1 of the 8 studies was
validated by out-of-sample dataset, and therefore a comparison
between the performance of AI and health-care professionals by the
identical external sample could not be performed.

All studies showed that the AI algorithms were beneficial for the
diagnosis of tumor metastasis from medical radiology imaging when
compared to the reference standard used in each study (OR 22¢14
[95% CI 18¢52�26¢46] P<0¢001, I2=79¢6%) (Fig. 7), from which we can
also see high heterogeneity among these studies. Visual inspection of
funnel plots suggested there was no publication bias (P = 0¢19) (Sup-
plementary figure 2).

To determine the source of heterogeneity, we did several sub-
group analyses. In terms of metastasis types, there were DM whose
pooled sensitivity was 88% (95% CI 80�93%), pooled specificity was
90% (76�96%), and AUC was 0¢94 (0¢92�0¢97) (n = 15, I2=79¢7%,
P<0¢001) and LNM whose sensitivity was 86% (95% CI 83�88%), spec-
ificity was 87% (84�90%), and AUC was 0¢93 (0¢90�0¢95) (n = 33,
I2=79¢0%, P<0¢001) (Fig. 8a). The outcomes were similar regarding
the primary tumor types and medical imaging types. When it comes
to the primary tumor types, in the breast cancer group, the sensi-
tivity was 85% (95% CI 81�87%), the specificity was 82%
(75�87%), and AUC was 0¢86 (0¢83�0¢89) (n = 12, I2=46.4¢0%,
P = 0¢039). In the head and neck cancer group, the sensitivity was
87% (95% CI 81�91%), the specificity was 91% (87�94%), and AUC
was 0¢95 (0¢92�0¢96) (n = 10, I2=77¢8%, P<0¢001). Regarding the



Fig. 3. (a, b). ROC curves of all studies included in the meta-analysis (34 studies)
a: ROC curves of all studies included in the meta-analysis (34 studies with 123 tables)
b: ROC curves of studies when selecting contingency tables reporting the highest accuracy (34 studies with 48 tables)
Abbreviations: ROC=receiver operating characteristic; SENS= sensitivity; SPEC= specificity.

Fig. 4. (a, b): ROC curves of studies using different algorithms
a: ROC curves of studies using machine learning algorithms (32 tables)
b: ROC curves of studies using deep learning algorithms (16 tables).
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other primary tumor types, the sensitivity was 88% (95% CI
83�91%), the specificity was 89% (81�94%), and AUC was 0¢94
(0¢91�0¢95) (n = 26, I2=84¢2%, P<0¢001) (Fig. 8b). As for medical
imaging types, there were 16 contingency tables using CT
(I2=85¢7%, P<0¢001), 12 tables using ultra sound (I2=0¢0%,
P = 0¢505), 9 tables using bone scintigraphy (I2=62¢3%, P = 0¢007),
6 tables using MRI (I2=76¢8%, P = 0¢001) and 5 tables using other
imaging types (I2=65¢6%, P = 0¢02) (Fig. 8c). Subgroup analysis for
different AI algorithms contained ML (n = 32, I2=82¢4%, P<0¢001)
and DL (n = 16, I2=70¢8%, P<0¢001). While in the studies were
externally validated, heterogeneity was acceptable (n = 7,
I2=45¢1%, P = 0¢091). We could not find a reasonable explanation
for heterogeneity from subgroup analysis. We also did regression
analysis to find the sources of heterogeneity. However, the results
also could not make an explanation (regression analysis results
are provided in Supplementary table).



Fig. 5. (a, b): ROC curves of studies with or without external validation
a: ROC curves of studies without external validation (41 tables)
b: ROC curves of studies with external validation (7 tables).

Fig. 6. (a, b). ROC curves of studies using the same sample for comparing performance between health-care professionals and artificial intelligence algorithms (8 studies)
a: Artificial intelligence models (10 tables)
b: Health-care professionals (16 tables).
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4. Discussion

With great attention to the development of AI, more and more
people are curious about its performance in medicine. In this system-
atic review and meta-analysis, we found that AI algorithms may be
used for the diagnosis of tumor metastasis from medical radiology
imaging material with equivalent or even better performance to
health-care professionals, in terms of sensitivity and specificity.
Tumor metastasis, as one of the main reasons for tumor-induced
death, has a great impact on the treatment plan and prognosis judg-
ment. Tumor metastasis sites may involve lymph nodes and distant
organs, such as liver, lung and brain, which may be difficult to diag-
nose in clinical examination. Medical imaging is an important tool to
diagnose tumor metastasis. However, the accurate diagnosis of tumor
metastasis without misdiagnosis and missed diagnosis is a challeng-
ing task. The excellent performance of AI in image identification with
rapid speed, high accuracy and significant manpower reduction
excited the public. In 2019, Liu XX, et al. [30]. conducted a systematic
review and meta-analysis and found the diagnostic performance of
deep learning models from medical imaging to be equivalent to that
of health-care professionals in classifying diseases, with the sensitiv-
ity of 87¢0% and specificity of 92¢5%, which provided the basis for the
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Fig. 7. Forest plot of studies included in the meta-analysis (34 studies).
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Fig. 8. (a, b, c). Forest plot of 3 subgroups
a: Subgroup 1. Different metastasis types
b: Subgroup 2. Different primary tumors
c: Subgroup 3. Different imaging types
Abbreviations: ES= estimate.
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clinical use of deep learning models. As for the diagnosis of tumor
metastasis, there were no other meta-analyses focus on this subject
to date, where we also reached a similar positive conclusion.

The first appearance of AI as a term can be dated back to a confer-
ence in 1956 [31]. As a branch of computer science, AI attempted to
use computers to simulate the thought processes and intelligent
behaviors of people, of which machine learning is an important part.
The presence of ANN, SVM and other ML algorithms aroused people’s
enthusiasm towards ML. It is not until 2006 that Geoffrey Hinton [13]
the greatness of ML, proposed the concept of DL, which was the fur-
ther development of ML. Twenty-three of the included studies in
2018 and beyond witnessed an increase in DL, in contrast to that only
1 study before 2018 involved in DL. Taking into account the different
development stages of AI, we did a separate analysis for studies using
different algorithms, where no significant difference was observed.
This may be attributed to the small dataset of included studies, most
of which collected a few hundred data, limiting the advantages of DL.

In our research, we observed statistically significant heterogeneity
among the included studies. So, we did several subgroup analyses
and meta-regression for different algorithms, existence of external
validation, the type of metastasis, primary tumors and medical imag-
ing. The heterogeneity of studies validated by external sample was
acceptable. 3 of the 4 studies with external validation based on the
different version of the same computer assisted diagnosis system,
which may contribute to the result. Generally, the results still cannot
explain the source of heterogeneity, which may be contributed to the
broad nature of the review (accepting any classification task using
any imaging types for any metastasis types of any primary tumors).

Although the outcome of our research seems to bring light to the
application of AI in detecting tumor metastasis from medical radiol-
ogy imaging, several common methodological defects should be
noted.

First, the design and practice of some included studies may make
the research results out of clinical practice, among which the most
common is the lack of comparison with health-care professionals in
diagnostic accuracy. In the 69 included studies, only 8 studies made a
comparison with health-care professionals. Assessing the perfor-
mance of AI in insolation instead of comparing with the most com-
mon way in clinical practice (review the medical imaging by a
radiologist) makes the outcomes unreliable when applied in the clini-
cal setting. Even if some studies had the comparison, very few of
them made it with humans using the same test dataset, resulting in a
lack of comparability. Although we have reached the conclusion that
AI models had the equivalent or even better diagnostic performance
from medical imaging compared to health-care professionals, some
factors still need to be considered. Only 8 studies using the same
sample to compare health-care professionals and AI algorithms. Dif-
ferent studies recruited radiologists with different years of experi-
ence and different numbers. Some studies did not train radiologists
in advance. All of above may influence the result. Furthermore, we
included the studies that only used medical imaging to identify the
presence of tumor metastasis, and excluded those that used other
clinical materials, such as electronic medical record and clinical infor-
mation of patients. It made our research topic more consistent. With
the additional information available in the clinical practice, some pre-
diction models can predict the possibility of metastasis based on the
patient's gender, age and history to assist diagnosis [32�36].

Second, there were no prospective studies. All included studies
were retrospective studies, whose participants were selected from
hospital medical records. Some studies used online open-access data-
sets instead of being done in the real clinical environment. And some
studies provided poor description of missing data. In terms of the
standard to diagnose metastasis, some studies only used the opinion
of a single radiologist as a standard, which may not be convincing.

Third, various indicators of diagnostic performance were used in
the studies. The value of TP, TN, FP and FN at a specified threshold
should at least be provided, but most studies did not give a threshold
or explain the reason for choosing this threshold. Most studies set
the threshold at the value of 0¢5, which is a convention in machine
learning development [37,38]. Indicators like the sensitivity, specific-
ity and accuracy were used in most studies. When the number of
patients with/without metastasis in the test dataset was reported,
sensitivity and specificity can be used to calculate TP, TN, FP and FN
for contingency tables construction. Other indicators such as preci-
sion, dice ratio, F1 score and recall, which are common in the field of
computer science, also appeared as the only measure in some studies.
However, these indicators are not comprehensive, only with which
we cannot get enough information to construct contingency tables.

Last but not least, in the 69 included studies there were only 4
with external validation, which means testing the model with out-of-
sample dataset from one or more other centers. Most studies split the
dataset from one center into training set and test set randomly or
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according to different time periods. The performance was evaluated
by the test set, which should be called internal validation. Since the
goal of validation is to investigate the performance within patients
from different population, it is appropriate to collect a new dataset
from different center. The absence of external validation made it
hard to ensure the generalizability of the model, leading to overesti-
mated results [39]. In our research, studies with external validation
had an expectedly worse performance than internally validated stud-
ies. It is understandable that better performance can be achieved
with the less heterogeneous samples. Strict external validation in the
development of diagnostic model is urgently needed.

During the research, we also found some common deficiencies in
AI studies. The most obvious point is that some key terminology is
not uniformly named. Different studies have different definitions of
the same terminology. For instance, for one AI model, the dataset is
usually divided into several different parts, including the initial train-
ing set and one or more testing sets used to evaluate model effective-
ness. While the term “validation” is used causally, some authors used
this word to indicate the dataset used to test the diagnostic perfor-
mance of the final model. Others defined it as a dataset with tuning
function during the development process. The naming confusion
makes it difficult to judge whether the test set is independent. The
independent dataset, which is never learned by the model, is crucial
to the credibility of the final model. So, canonical naming is urgently
needed. Some scholars [30] have put forward suggestions. They dis-
tinguished the dataset used for a model as training set (for training
the model), tuning set (for tuning the parameters of the model) and
validation test set (for evaluating the performance of the final model),
which is also accepted by our article. As for different types of valida-
tion test set, Altman and Royston’s suggestion [39] may be adopted.
They named dataset for in-sample validation as internal validation,
dataset for in-sample validation with a temporal split as temporal
validation, and dataset for out of sample validation as external valida-
tion. Studies on the AI application in the medical field should strive to
avoid problems mentioned above in the future.

Diagnosis of tumor metastasis using AI algorithms has great
potential. From this meta-analysis, we conservatively draw a conclu-
sion that the AI algorithms may be used for the diagnosis of tumor
metastasis from medical radiology imaging with equivalent or even
better performance to health-care professionals, in terms of sensitiv-
ity and specificity, providing a basis for its clinical application. Its
widespread clinical application may alleviate the shortage of medical
resources, improve the detection rate and accuracy of tumor metasta-
sis and then the prognosis of patients. However, it should be
acknowledged that more high-quality studies on the AI application in
the medical field with adaption to the clinical practice and standard-
ized research routines are needed. In this review, we also put forward
some existing problems of design and reporting that the algorithm
developers should consider. High-quality studies are always the cor-
nerstone of evaluation for diagnostic performance by various algo-
rithms, which will finally benefit patients and the health care system.
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