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MicroRNAs are powerful regulators of gene expression in physiological and pathological
conditions. We previously showed that the dysregulation of miR-384 resulted in
a T helper cell 17 (Th17) imbalance and contributed to the pathogenesis of
experimental autoimmune encephalomyelitis, an animal model of multiple sclerosis.
In this study, we evaluated the molecular mechanisms underlying the abnormal
increase in miR-384. We did not detect typical CpG islands in the Mir384 promoter.
Based on a bioinformatics analysis of the promoter, we identified three conserved
transcription factor binding regions (RI, RII, and RIII), two of which (RII and RIII)
were cis-regulatory elements. Furthermore, we showed that signal transducer and
activator of transcription 3 (STAT3) bound to specific sites in RII and RIII based on
chromatin immunoprecipitation, electrophoretic mobility shift assays, and site-specific
mutagenesis. During Th17 polarization in vitro, STAT3 activation up-regulated miR-
384, while a STAT3 phosphorylation inhibitor decreased miR-384 levels and reduced
the percentage of IL-17+ cells, IL-17 secretion, and expression of the Th17 lineage
marker Rorγt. Moreover, the simultaneous inhibition of STAT3 and miR-384 could further
block Th17 polarization. These results indicate that STAT3, rather than DNA methylation,
contributes to the regulation of miR-384 during Th17 polarization.
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INTRODUCTION

MicroRNAs (miRNAs) are a class of important small non-coding RNAs that either inhibit the
translation of or trigger the degradation of target mRNAs by binding to 3′-untranslated regions
(Saliminejad et al., 2019). About 1000 human miRNAs have been identified. They are thought
to regulate more than 50% of protein-coding genes in the genome and thereby contribute to
a wide array of complex cellular processes, including cell proliferation, differentiation, invasion,
metastasis, apoptosis, and cell–cell communication (Selbach et al., 2008; Bayraktar et al., 2017).
Furthermore, miRNAs are involved in many diseases, such as cancer, cardiovascular diseases,
metabolic diseases, neurodegenerative diseases, and autoimmune diseases (Paul et al., 2018). They
are used as diagnostic, prognostic, and predictive biomarkers (Jamali et al., 2018; Petrovic and
Ergun, 2018; Salehi and Sharifi, 2018), and miRNA-based therapies have shown promising results
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in clinical trials for cancer and viral infections (Beg et al., 2017;
van der Ree et al., 2017). However, the upstream mechanisms
underlying the regulation of miRNAs are not well understood. In
other words, the factors contributing to the disruption of specific
miRNAs in certain diseases are unclear.

Most miRNA genes are transcribed by RNA polymerase
II as initial stem-loop structured primary miRNAs, cleaved
into precursor miRNAs by Drosha (Garcia-Lopez et al., 2013),
and processed into small double-stranded RNAs by Dicer
(Ha and Kim, 2014). When the miRNA-induced silencing
complex is assembled, mature miRNAs are guided to destabilize
mRNA and repress translation (Bartel, 2004; Bagga et al.,
2005; Krol et al., 2010). Although Drosha and Dicer are
indispensable during miRNA biogenesis, they cannot precisely
regulate specific miRNAs in a tissue- and developmental stage-
specific manner.

Tissue- or developmental stage-specific miRNAs are often
associated with diseases related to specific cells and tissues.
Transcription profiling of miRNAs in human tissue biopsies
of different organs has shown that approximately 17% of
miRNAs and miRNA families are predominantly expressed
in certain tissues (Ludwig et al., 2016). Emerging evidence
now indicates that epigenetic and transcriptional regulation
play major roles in controlling the spatial and temporal
transcription of miRNAs. In cancer, the altered transcription
of many miRNAs is caused in large part by changes in
DNA CpG island methylation; approximately 50% of miRNA
genes are associated with CpG islands (Wang et al., 2013).
For example, DNA methyltransferase (DNMT) inhibitors
restore miR-127 transcription (Saito et al., 2006) and the
genetic disruption of DNMTs restores the transcription of
miR-124a (Lujambio et al., 2007), suggesting that DNA
methylation is a major factor in miRNA transcriptional
silencing in cancers.

In addition to DNA methylation, transcription factors (TFs)
are thought to regulate miRNA genes in a manner similar
to the regulation of protein-coding genes (Ozsolak et al.,
2008). This is supported by the observation that conventional
TF binding sites are located in or near promoter regions
lying upstream of many miRNA genes (Turner and Slack,
2009), indicating that the promoters of specific miRNA
genes can be positively or negatively controlled by TFs
for activation or silencing in a tissue- or developmental
stage-specific manner (Krol et al., 2010). For example, Myc
activates miR-17-92 and miR-9 but inhibits the transcription
of miR-15a during the proliferation and apoptosis of cancer
cells (Chang et al., 2008). P53 promotes the transcription
of miR-34 and miR-107 (He et al., 2007), while signal
transducer and activator of transcription 3 (STAT3) down-
regulates miR-520d-5p (Li et al., 2017). During nervous system
development, REST is closely related to miR-124 transcription
(Conaco et al., 2006).

Recent studies have shown that miR-384 is closely associated
with cancer cell proliferation, metastasis, and progression (Zheng
et al., 2016; Wang Y. et al., 2018; Wang Y. X. et al., 2018; Yao
et al., 2019). We have previously shown that miR-384 levels
are abnormally increased in the pathogenesis of experimental

autoimmune encephalomyelitis (EAE) (Qu et al., 2017), a central
nervous system autoimmune disease caused by inappropriate
inflammation and the infiltration of IL-17-producing CD4+
T helper (Th17) cells (Zhu et al., 2017; Zhang et al., 2019).
Enforced constitutive expression of miR-384 in CD4+ naïve T
cells promotes polarization to the Th17 lineage, leading to severe
EAE, by targeting suppressor of cytokine signaling 3 (SOCS3)
(Qu et al., 2017). This previous work has clearly established that
miR-384 regulates Th17 development and thereby contributes
to the pathogenesis of EAE. In this study, we evaluated the
upstream molecular mechanisms underlying the regulation of
miR-384 and found that miR-384 could be activated by p-STAT3,
thus explaining the abnormal increase in this miRNA during
Th17 polarization.

MATERIALS AND METHODS

Mice
C57BL/6 wild-type (WT) mice were purchased from SLAC
Laboratory Animal Co., Ltd. (Shanghai, China), and housed
under specific-pathogen-free conditions in the Xuzhou Medical
University animal facility (Xuzhou, China). All experiments
were performed in accordance with the Provisions and
General Recommendations of the Chinese Experimental Animal
Administration Legislation, as well as institutional approval
from the Xuzhou Medical University Experimental Animal
Ethics Committee.

Cell Isolation, Culture, and Induction
Splenocytes (SPs), isolated from 5- to 6-week-old C57BL/6
mice, were prepared for a single-cell suspension with red
blood cells depletion by ACK lysis (Beyotime, Shanghai,
China). CD4+ T cells were isolated according to manufacturer’s
instructions (Miltenyi Biotec, Bergisch Gladbach, Germany). As
our previous description (Qu et al., 2016), purification of CD4+
naïve T cells was achieved by depletion of magnetically
labeled non-naïve CD4+ T cells and CD44+ memory
T cells following kit instructions (Miltenyi Biotec, Bergisch
Gladbach, Germany).

For Th17 polarization, purified CD4+ naïve T cells were
cultured for 3 days in RPMI-1640 containing 10% FBS, 1 mM
glutamine, 0.1 mM β-mercaptoethanol, 1% non-essential amino
acids (Sigma-Aldrich, MO, United States), anti-CD3 plus anti-
CD28-coated beads (Invitrogen, CA, United States), 5 ng/ml
IL-2 (R&D Systems Inc., MN, United States), 20 ng/ml IL-6,
5 ng/ml transforming growth factor-β, 10 ng/ml IL-23, 2 µg/ml
anti-IL-4, and 2 µg/ml anti-interferon-γ (BD Bioscience, CA,
United States). In some experiments, 10 µM AG490 (MCE, NJ,
United States), 200 nM SignalSilence R© Stat3 siRNA II (CST, MA,
United States) or miR-384 inhibitor (acauugccuaggaauuguuuaca)
(Qu et al., 2017) was used.

Flow Cytometric Analyses
Cells were incubated with Cell Stimulation Cocktail (eBioscience,
CA, United States) for 5 h, then surface-stained with anti-CD4
antibody (Clone GK1.5, Miltenyi Biotec, Germany), followed by
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fix and permeabilization using a Fixation/Permeabilization Kit
(BD Biosciences, United States). Subsequently, the cells were
washed and stained with anti-IL-17 antibody (Clone TC11-
18H10, Miltenyi Biotec, Germany). Tests were proceeded on
MACSQuantTM Flow Cytometers (Miltenyi Biotec, Germany)
and analyzed with FlowJo software.

ELISA
Quantikine ELISA kit to measure IL-17 concentration
was obtained from Westang Biological Technology
Co., Ltd (Shanghai, China) and used according to the
manufacturer’s instructions. All samples were measured in
duplicate for five times.

Quantitative RT-PCR
After RNA were extracted using TRIzol (Invitrogen,
United States) according to usual protocol, 1 µg total RNA
was reverse-transcribed using a Quantscript RT kit (TIANGEN,
Beijing, China) and examined with a SYBR Green real-time
PCR kit (Roche, Basel, Switzerland) in lightCycler R© 480II
System (Roche, Switzerland). The primers used were as
follows: Rorγt, 5′-TGCAAGACTCATCGACAAGG and 5′-
AGGGGATTCAACATCAGTGC; SOCS3, 5′-ATGGTCACCC
ACAGCAAGTTT and 5′-TCCAGTAGAATCCGCTCTCCT;
β-actin,5′-GAGACCTTCAACACCCCAGCC and 5′-AATGTCA
CGCACGATTTCCC. Analyses of miR-384 levels were
performed using SYBR Green miRNA assays (Genechem,
Shanghai, China) with U6 small RNA as an internal reference
for normalization. Relative expression was evaluated using
2−11 Ct calculation.

Western Blot
Cells were ultrasonically homogenized in RIPA buffer, and
quantified using bicinchoninic acid protein assay kit (Beyotime,
Shanghai, China). Protein samples were electrophoresed in
an SDS denaturing 10% polyacrylamide gels and transferred
to nitrocellulose membranes. Membranes were blocked
in 0.01% PBS containing 5% BSA, incubated overnight
at 4◦C with anti-p-STAT3 (Clone EP2147Y), anti-STAT3
(Clone EPR787Y) and anti-GAPDH (Clone 6C5) primary
antibodies (Abcam, Cambridge, United Kingdom), and
then incubated in IRDye-conjugated secondary antibodies
(LI-COR, CA, United States). Bands were scanned
using an Odyssey Infrared Imaging System Scanner (LI-
COR, United States) and images were analyzed using
ImageJ software.

Dual-Luciferase Reporter Assay
Synthesized DNA sequences (deletion constructs or
binding site-mutated fragments) were cloned into the
pGL4.20[luc2Puro] vector (Promega, Madison, WI,
United States). The recombinant plasmids together with
internal control PRL-TK Renilla vector were transfected into
Jurkat cells using Lipofectamine 2000 reagent (Invitrogen,
United States) following the instructions. Cells were
harvested at 48 h post transfection and assayed for luciferase

activity using the Dual-Luciferase Reporter Assay System
(Promega, United States).

Chromatin Immunoprecipitation Assay
ChIP assays were performed using an EZ-Magna ChIPTM

HiSens kit (Millipore, MA, United States) according to the
manufacturer’s instructions. Chromatin was cross-linked with 1%
formaldehyde for 10 min, followed by neutralization with glycine
for 5 min at room temperature. Cells were then harvested, lysed,
and sonicated 15 times for 4.5 s each with 9 s intervals on ice
water using a Scientz-IID (Scientz, Zhejiang, China). An equal
amount of chromatin was immunoprecipitated at 4◦C overnight
with 2 µg of p-STAT3 (Clone EP2147Y) or isotype IgG antibodies
(Clone EPR25A, Abcam, United Kingdom) together with Magna
ChIP protein A Magnetic Beads. Immunoprecipitated products
were collected on the magnetic separator, eluted in ChIP elution
buffer, and purified to obtain DNA for PCR test. Primers for PCR
were listed as follows: Site 1, 5′-ATGCTATAACCACCACCA and
5′-CTTGGGATATTGTTCTGTAA; Site 2, 5′-TGCTGCCTTC
TGCTTTGA and 5′-CAGGCATTGTGAACAATTTCTA; Site
3, 5′-CACTCATAAACTGGCTCG and 5′-ACTGTCTGAAGC
AGTCCC.

Electrophoretic Mobility Shift Assay
Cellular nuclear protein was extracted with Nucleoprotein
Extraction Kit (Beyotime, China). A total of 12 µg of nuclear
protein was added to 0.1 µM Biotin-labeled double-stranded
oligonucleotides (Sangon, Shanghai, China) in 1 × EMSA/Gel-
Shift binding buffer. In some trials, extra 5 µM unlabeled
competitor oligonucleotide or 2 µg of anti-p-STAT3 antibody
was used. Mixtures were incubated at 24◦C for 20 min, analyzed
by electrophoresis in 4% polyacrylamide gels at 10 V/cm,
and then transferred to a nylon membrane. Membranes
were UV-light cross-linked, incubated with Streptavidin-
conjugated HRP, and proceeded with chemiluminescence.
The probe sequences were listed as follows: Site 1, 5′-
TGACCCCAGGAACTTGTATATGCTAGGCAAGTACTCTATT
ACAGAACAAT; Site 2, 5′-TGTATAATGTTGGTAAGTCATTC
CTAGAAATTGTTCACAATGCCTGTAAC. The sequences
in bold and italic show the predicted binding sites of
STAT3. Site 1 mutation, 5′-TGACCCCAGGAACTTGTATA
CCGACTCTTCGTACTCTATTACAGAACAAT; Site 2 mutation,
5′-TGTATAATGTTGGTAAGTCACCGACTCTTCTTGTTCAC
AATGCCTGTAAC. The underline marked sequences show the
mutated binding sites of STAT3.

Bioinformatics Analysis Websites
MiR-384 and gene promoter sequences were obtained from
Mirbase1 and UCSC2. CpG islands prediction was analyzed by
EMBOSS Cpgplot3, MethPrimer4, and Sequence Manipulation

1 http://www.mirbase.org/
2http://genome.ucsc.edu/ENCODE/
3http://www.ebi.ac.uk/emboss/cpgplot/
4http://www.urogene.org/methprimer
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FIGURE 1 | Analysis of CpG islands in Mir384 promoter. (A) The DNA sequence 2000 bp upstream of Mir384 in chromosome X. CG dinucleotides are marked in
bright yellow. (B–D) Mir384 promoter sequence is analyzed by EMBOSS Cpgplot for CpG islands prediction, and the ratio of observed to expected (B), percentage
of CG (C), and putative CpG island (D) are shown.

FIGURE 2 | Analysis of TFs binding in different regions of Mir384 promoter. (A) The homologous binding sites of TFs in Mir384 promoter among the species of
mouse, human, and chimp. This sequence is divided into three regions (I, II, and III) according to the binding sites. Peaks represent the level of homology. (B) Effects
of different binding region deletion on transcriptional activity by luciferase assay. On the left side is a schematic representation of the deleted DNA sequences carrying
different regions. The right panel shows luciferase activity normalized to Renilla luciferase activity. Data are presented as mean ± standard deviation. ∗P < 0.05.
∗∗P < 0.01. ∗∗∗P < 0.001. Data are representative of three experiments done in triplicate.
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FIGURE 3 | STAT3 binds to Mir384 promoter. (A) Analysis of STAT3 binding sites in the Mir384 promoter by JASPAR database. (B) Sequence logo of STAT3 binding
sites. (C) Pattern diagram shows the locations of site 1, site 2, site 3, and primers for ChIP-PCR. (D) Gel electropherogram of ChIP-PCR products at site 1 and site
2. Lanes 1 and 5, immunoprecipitation by anti-RNA Polymerase II antibody. Lanes 2 and 6, input. Lanes 3 and 7, immunoprecipitation by isotype IgG. Lanes 4 and
8, immunoprecipitation by anti-p-STAT3 antibody. M, DNA marker. (E) ChIP-qRT-PCR assay to analyze p-STAT3 binding to the Mir384 promoter at three sites. DNA
isolated from immune-precipitated materials is amplified using qRT-PCR. The values are normalized to the input for each sample.

Suite5. Transcription factor binding sites were predicted using the
ECR Browser6 and JASPAR database7.

Statistical Analyses
The results were expressed as mean ± standard deviation
(SD) and analyzed by SPSS 17.0. Independent sample t tests
were used to evaluate differences between groups. Two-way

5http://www.bioinformatics.org/sms2/
6https://www.dcode.org/
7https://jaspar.genereg.net/

analysis of variance followed by Bonferroni’s post hoc test was
used for multiple comparisons. A P value of 0.05 or less was
considered significant.

RESULTS

CpG Islands Are Absent in the Mir384
Promoter
To determine the regulatory mechanisms controlling miR-384
transcription, we obtained the DNA sequence 2000 bp upstream
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of Mir384 (Figure 1A). We scanned this sequence for promoter
methylation, a major mechanism underlying miRNA activation
or silencing. We found eight groups of CpG dinucleotides
separated from each other (Figure 1A). Further analysis using
EMBOSS Cpgplot showed that in every 100-nucleotide window,
the ratio of observed to expected (Obs/Exp) CpG sites was
less than 0.45 (Figure 1B) and the percentage of CpG sites
was less than 55% (Figure 1C). Thus, no putative CpG island
was identified in this sequence (Figure 1D) according to
established criteria (Island size >100 bp, GC percentage >50,
and Obs/Exp >0.6). Similarly, no CpG islands were found in
this sequence based on analyses using MethPrimer and Sequence
Manipulation Suite (data not shown). Based on these results, we
hypothesized that miR-384 transcription was not regulated by
promoter methylation.

STAT3 Binds Directly to Specific Sites in
the Mir384 Promoter
The lack of CpG islands in the Mir384 promoter suggests
that miR-384 might be regulated by TFs. Using ECR Browser,
we identified three predicted TF binding site regions (I, II,
and III) in this promoter sequence with high conservation
across three closely related mammalian taxa: mice, humans,
and chimps (Figure 2A). Next, we constructed DNA fragments
carrying variant regions (Figure 2B, left) for luciferase assays
and found that the deletion of region I had no obvious effect
on transcriptional activity, while a lack of region II attenuated
transcription and the construct lacking region III exhibited
only about one-fifth of the total activity observed for the
construct carrying all three regions (Figure 2B). Moreover, the
simultaneous deletion of region II and III resulted in highly
decreased transcriptional activity (Figure 2B). These data suggest
that region II and, to a greater extent, region III, have important
roles in transcription.

To identify the precise TFs that bind to regions II and
III to regulate miR-384 transcription, we analyzed the Mir384
promoter sequence using the JASPAR database and identified
five STAT3 binding motifs (Figures 3A,B), one (864 to 873,
site 1) located in region II and another (1970 to 1979,
site 2) located in region III (Figure 3C). A ChIP analysis
showed that the site 1 and site 2 fragments were significantly
enriched, while the site 3 fragment with no STAT3 binding
motif was underrepresented after p-STAT3 immunoprecipitation
(Figures 3D,E), suggesting that p-STAT3 binds to both site 1 and
2 but not to site 3.

Supershifted EMSA bands further indicated that p-STAT3
bound to both site 1 and site 2 probes, while these bands
disappeared when using unlabeled competitor probes
(Figure 4A). When mutations were introduced in sites 1 and 2,
the supershifted bands disappeared (Figure 4B). Furthermore,
site-specific mutations in either site 1 or site 2 could significantly
decrease transcriptional activity, and simultaneous mutations
in both sites further inhibited transcription (Figure 4C).
Taken together, these data demonstrate that p-STAT3 can
bind to conserved sites in cis-regulatory elements of the
Mir384 promoter.

FIGURE 4 | STAT3 binds with special sites in Mir384 promoter. (A,B) EMSA
shows the interaction between p-STAT3 and specific probe sequences
containing site 1, site 2, mutated site 1, or mutated site 2. Binding complexes
are identified by supershifted bands (red arrows) with antibody against
p-STAT3. (C) Effects of binding site mutagenesis on transcriptional activity by
luciferase assay. On the left side is a schematic representation of the WT
(white) and special site-directed mutation (yellow) constructs at site 1 in region
II and site 2 in region III. The right panel shows the luciferase activity
normalized to Renilla luciferase activity. Data are presented as
mean ± standard deviation. ∗P < 0.05. ∗∗P < 0.01. ∗∗∗P < 0.001. Data are
representative of three experiments done in triplicate.
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FIGURE 5 | STAT3 regulates miR-384 transcription. CD4+ naïve T cells are cultured with IL-6, siRNA, or AG490, and then p-STAT3 and STAT3 levels are tested by
Western blot (A), and miR-384 transcription is measured by qRT-PCR (B). Data are presented as mean ± standard deviation. ∗∗P < 0.01. ∗∗∗P < 0.001. Data are
representative of three experiments done in triplicate.

FIGURE 6 | STAT3 and miR-384 mediate Th17 polarization. CD4+ naïve T cells are cultured in Th17 polarizing conditions with AG490 or miR-384 inhibitor
(miR-384 I) for 3 days, and then miR-384 transcription is measured by qRT-PCR (A), percentage of stimulated IL-17+ cells is tested by flow cytometry (B,C), dose of
IL-17 in culture supernatant is measured by ELISA (D), and Rorγt mRNA (E) and SOCS3 mRNA (F) levels are analyzed by qRT-PCR. Data are presented as
mean ± standard deviation. ∗P < 0.05. ∗∗P < 0.01. ∗∗∗P < 0.001. Data are representative of three experiments done in triplicate.

STAT3 Regulates miR-384 Transcription
During Th17 Polarization
To determine whether STAT3 activation could regulate miR-
384 transcription, we used IL-6 to activate STAT3, siRNA to
knockdown STAT3 expression, or AG490 to inhibit STAT3
phosphorylation with more than 95% selectively by blocking
JAK2 with no effect on STAT3 mass and cell viability (Dowlati
et al., 2004). In CD4+ naïve T cells, IL-6 could obviously
promote the phosphorylation of STAT3, while siRNA and AG490
significantly decreased p-STAT3 levels (Figure 5A). A qRT-PCR
analysis showed that IL-6 increased miR-384 levels by more than

eightfold, while miR-384 levels reduced to one-third or one-sixth
of control levels when siRNA or AG490 was used, respectively
(Figure 5B), suggesting that STAT3 activation mediates miR-
384 transcription.

During Th17 polarization in vitro, treatment with AG490
or a miR-384 inhibitor (Figure 6A) could suppress IL-17+
cell cytopoiesis, with decreased IL-17 secretion and Rorγt
expression but up-regulated SOCS3 (Figures 6B–F). Moreover,
the simultaneous inhibition of STAT3 and miR-384 further
reduced IL-17+ cell generation, IL-17 concentrations, and Rorγt
expression but increased SOCS3 (Figures 6B–F). These data
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FIGURE 7 | Schematic model of STAT3 and miR-384 regulating Th17 polarization. IL-6-induced activation of STAT3 promotes transcription of miR-384 and Rorγt
(RORC). The increased miR-384 further activates STAT3 via targeting SOCS3, resulting in promoted Th17 polarization.

indicate that the STAT3-mediated regulation of miR-384
transcription plays a role in Th17 polarization.

DISCUSSION

Tissue- or developmental stage-specific alterations in miRNAs
are associated with diseases. Studies of miRNAs in tumors
have been fruitful, including the identification of hundreds of

thousands of miRNAs related to tumorigenesis (Kulkarni
et al., 2019), proliferation, migration (Li et al., 2010),
apoptosis, necroptosis (Shirjang et al., 2019), and metabolism
(Subramaniam et al., 2019). Recent findings have suggested that
the dysregulation of miRNAs is associated with several central
neurological disorders, such as Alzheimer’s disease (Angelucci
et al., 2019), Parkinson’s disease (Reddy et al., 2019), and
multiple sclerosis (MS) (Marangon et al., 2019). Our previous
studies have shown that certain miRNAs are closely related
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to the development of EAE, a mouse model of MS. Genome-
wide transcription profiling indicates that miR-30a levels are
substantially decreased in both patients with MS and mice with
EAE, but miR-384 levels are significantly increased. Enforced
constitutive expression of miR-30a in vivo results in fewer Th17
cells and alleviates EAE via IL-21R, while the expression of miR-
384 in vivo leads to severe EAE due to SOCS3 inhibition (Qu et al.,
2016, 2017). However, these studies have not resolved the factors
contributing to the abnormal levels of miR-30a and miR-384 in
EAE conditions. Promoter-associated CpG island methylation
is a major mechanism underlying miRNA regulation and about
50% of miRNA genes are associated with CpG islands (Wang
et al., 2013). However, we did not identify CpG island regions
in 2000 bp upstream of Mir384 using bioinformatics tools,
suggesting that promoter methylation status does not explain
differences in transcription. Thus, neither methylation-specific
PCR nor bisulfite-modified DNA sequencing were performed.
We detected potential binding motifs of STAT3, a key TF
regulating Th17 polarization, in cis-regulatory elements within
the Mir384 promoter. Owing to the high false-positive and
false-negative rates for prediction algorithms, we performed an
additional ChIP assay, EMSA, and binding site mutagenesis
combined with luciferase reporter assays to show that p-STAT3
bound directly to the Mir384 promoter in regions II and III.
Furthermore, STAT3 activation up-regulated miR-384, while
a STAT3 phosphorylation inhibitor decreased miR-384, with
reductions in the percentage of IL-17+ cells, IL-17 secretion, and
expression of the Th17 lineage marker Rorγt, suggesting that
STAT3 activation directly regulates miR-384 transcription during
Th17 polarization.

STAT3, a member of the STAT family of TFs, is an
important constitutive signaling molecule for many key genes
involved in multiple biological functions. It targets many
miRNAs (Rokavec et al., 2014; Liao et al., 2015). For example,
STAT3-induced miR-92a and miR-520d-5p suppression regulate
cancer growth and survival (Chen et al., 2017; Li et al.,
2017), and the inactivation of the phosphorylation of STAT3
decreases miR-155-5p and its anti-cancer properties (Zheng
et al., 2018). Inhibition of the STAT3-associated pathway
not only reduces miR-21 levels in cells but also inhibits
the release of miR-21-enriched exosomes (Chuang et al.,
2019). Using STAT3 cardiomyocyte-deficient mice, STAT3-
mediated decreases in miR-34b and miR-337 play key roles
in cardio-protection (Pedretti et al., 2019). Mechanistically,
p-STAT3 binds to the promoter region of miR-199a-2 for
regulation (Zhou et al., 2019). Three functional binding
sites of STAT3 in the Mir21 promoter region mediate
angiogenesis (Chen et al., 2019). During Th17 polarization,
IL-6-activated STAT3 has particularly important roles in the
expression of Rorγt, a Th17 lineage marker. However, it is
not clear whether STAT3 regulates Th17-related miRNAs.
Our results showed that IL-6 stimulation resulted in the
phosphorylation of STAT3 and activation of miR-384, thus
potentially explaining the abnormal increase in miR-384 levels
in Th17 and EAE.

T helper cell 17 development relies on key cytokines,
including IL-6, IL-21, and IL-23, via STAT3 activation for gain

of effector Th17 cell functions, such as the expression of the
inflammatory cytokines IL-17, IFN-γ, and GM-CSF. Mice with
STAT3 knockout in Th17 cells are resistant to the development
of EAE because the STAT3 deficiency decreases Th17 counts
in lymph nodes and the central nervous system (Yang et al.,
2007). Thus, targeting STAT3 signaling is a potential strategy
to alleviate Th17-related diseases. Our previous results showed
that miR-384 was an upstream factor that directly inhibited
SOCS3 during Th17 polarization (Qu et al., 2017). Furthermore,
miR-384 is a direct target of STAT3 and is induced by IL-6.
However, the repression of Th17 polarization when miR-384 was
inhibited was weaker than that observed for STAT3 inhibition,
suggesting that miR-384 is not the only downstream target
of STAT3, which can directly regulate Rorγt (Qu et al., 2012;
Tanaka et al., 2014). Since STAT3 is constitutively expressed
in cells, it is possible that miR-384 is co-regulated by other
TF complexes under specific cellular contexts or chromatin
features; this is supported by our analysis showing that the
simultaneous inhibition of STAT3 and miR-384 further blocked
Th17 polarization. Based on our findings, we propose a schematic
model by which IL-6 induces the STAT3-mediated activation of
miR-384 and its downstream target SOCS3 to partially regulate
Th17 polarization (Figure 7).
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