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Purpose: It is challenging for traditional CT signs to predict invasiveness of pancreatic
solid pseudopapillary neoplasm (pSPN). We aim to develop and evaluate CT-based
radiomics signature to preoperatively predict invasive behavior in pSPN.

Methods: Eighty-five patients who had pathologically confirmed pSPN and preoperative
contrasted-enhanced CT imaging in our hospital were retrospectively analyzed (invasive:
24; non-invasive: 61). 1316 radiomics features were separately extracted from delineated
2D or 3D ROIs in arterial and venous phases. 200% (SMOTE) was used to generate
balanced dataset (invasive: 72, non-invasive: 96) for each phase, which was for feature
selection and modeling. The model was internally validated in the original dataset. Inter-
observer consistency analysis, spearman correlation, univariate analysis, LASSO
regression and backward stepwise logical regression were mainly applied to screen the
features, and 6 logistic regression models were established based on multi-phase
features from 2D or 3D segmentations. The ROC analysis and Delong’s test were
mainly used for model assessment and AUC comparison.

Results: It retained 11, 8, 7 and 7 features to construct 3D-arterial, 3D-venous, 2D-
arterial and 2D-venous model. Based on 3D ROIs, the arterial model (AUC: 0.914)
performed better than venous (AUC: 0.815) and the arterial-venous combined model
was slightly improved (AUC: 0.918). Based on 2D ROIs, the arterial model (AUC: 0.814)
performed better than venous (AUC:0.768), while the arterial-venous combined model
(AUC:0.893) performed better than any single-phase model. In addition, the 3D arterial
model performed better than the best combined 2D model. The Delong’s test showed
that the significant difference of model AUC existed in arterial models in original dataset
(p = 0.019) while not in arterial-venous combined model (p=0.49) as comparing 2D and
3D ROIs.

Conclusion: The arterial radiomics model constructed by 3D-ROI feature is potential to
predict the invasiveness of pSPN preoperatively.

Keywords: pancreatic solid pseudopapillary neoplasm, computed tomography, invasiveness, radiomics, diagnosis
May 2021 | Volume 11 | Article 6778141

https://www.frontiersin.org/articles/10.3389/fonc.2021.677814/full
https://www.frontiersin.org/articles/10.3389/fonc.2021.677814/full
https://www.frontiersin.org/articles/10.3389/fonc.2021.677814/full
https://www.frontiersin.org/articles/10.3389/fonc.2021.677814/full
https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles
http://creativecommons.org/licenses/by/4.0/
mailto:jianbogaochina@163.com
https://doi.org/10.3389/fonc.2021.677814
https://www.frontiersin.org/journals/oncology#editorial-board
https://www.frontiersin.org/journals/oncology#editorial-board
https://doi.org/10.3389/fonc.2021.677814
https://www.frontiersin.org/journals/oncology
http://crossmark.crossref.org/dialog/?doi=10.3389/fonc.2021.677814&domain=pdf&date_stamp=2021-05-17


Huang et al. Pancreatic Solid Pseudopapillary Neoplasm
INTRODUCTION

Pancreatic solid pseudopapillary neoplasm (pSPN) is a rare low-
grade malignant tumor, accounting for 1%–2% of pancreatic
exocrine tumors. It usually occurs in women under the age of 40.
Its clinical manifestations are not typical. Most of them come to the
hospital with asymptomatic physical examination, abdominal pain
or touching abdominal mass as the main complaint. Laboratory
examination is of little help in its diagnosis, and the final diagnosis
depends on the immunohistochemical results of postoperative
pathology (1–3). A 2018 Chinese multicenter retrospective study
showed that pSPN accounted for 31.7% of all resected pancreatic
cystic tumors (4). According to the classification criteria of digestive
system tumors of theWorld Health Organization, SPN is defined as
invasive when the tumor obviously breaks through the capsule or
invades the peripancreatic tissue, surrounding organs and blood
vessels, vascular invasion, peripheral nerve invasion, lymph node
metastasis and distant metastasis (5, 6). Surgery is the only
treatment for patients with pSPN, but the traditional radical
resection of pancreatic malignant tumor is more traumatic, which
is easy to cause postoperative pancreatic secretion insufficiency and
high risk. At present, clinicians tend to take smaller surgical
methods for patients with pSPN. Non-invasive pSPN is mainly
enucleation of the tumor as a whole, and the prognosis is good, but
the scope of resection of invasive pSPN is larger, and incomplete
resectionof the tumormay lead to recurrence andmetastasis (7).Gao
et al. (1). studies have shown that positive incisalmargin increases the
risk of postoperative pSPN recurrence, so accurate preoperative
judgment of the invasiveness of pSPN is a key factor in making
clinical operation plans. However, it is often difficult to obtain
pathological results before operation. the pathological diagnosis of
puncture biopsy is restricted by the quality and quantity of samples,
which can’t accurately reflect the heterogeneity of tumor, and the
operation of puncture biopsy may cause tumor cells to spread along
the needle path. Thismakes it difficult and controversial for surgeons
to choose the mode of operation. Because of its high popularization
rate, convenience and few contraindications, CThas become the first
choice for pancreatic diseases, the preoperative diagnosis and
evaluation of invasiveness of pSPN depend to a large extent on the
imaging features of tumors. Some relevant scholars have analyzed the
relationship between imaging features and invasiveness of pSPN, but
the imagingdata of patients inmultiple studies are not all analyzedby
the same radiologist andconcluded that theremaybe somesubjective
differences, and the results are not the same. It is controversial to
predict the invasiveness of solid pseudopapillary tumor of the
pancreas only from CT signs, so it is necessary to explore reliable
features to evaluate tumor invasiveness before operation.

Radiomics technique using various automatically extracted data
characterization algorithms converts images into a high dimensional
mineable feature space (8–10). Numerous studies have applied the
emerging radiomics technique to improve diagnostic, identification,
prognostic, andpredictive accuracyof cancer research (11–14). Some
scholars also try to apply radiomics in pancreatic tumor studies, such
as malignancy prediction (15), histopathologic characteristics
discrimination (16), vascular invasion prediction (17), prognosis
prediction (18), and radiogenomics for genetic status prediction
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(19). However, to the best of our knowledge, there is no literature
that has determined whether a radiomics signature derived fromCT
images would enable superior prediction of invasive behavior in
patients with pSPN.

Considering the radiomics feature could be extracted from
the single cross section (two dimensional, 2D) or multi-slices
(three dimensional, 3D) of the tumor in CT images, the reported
radiomics-based pancreatic cancer studies have either applied 2D
segmentation (20) or 3D whole-tumor segmentation (14, 21–25).
However, whether to select 2D regions of interest (ROIs) or 3D
ROIs still remains unclear for invasive behavior prediction in
pSPN. In addition, the previous studies also have shown that
there is controversy between 2D and 3D radiomics analysis in
tumor diagnosis or prognosis (26–30).

In this work, we proposed a CT radiomics-based classification
method by considering the performance of 3D or 2D
segmentation and multiple CT imaging phases to discriminate
invasiveness and non-invasiveness pSPN. The developed CT
imaging signature might help treatment decision-making,
especially the choice of operation.
MATERIALS AND METHODS

Patient Selection
With institutional review board approval and waiver of the
written informed consent, we retrospectively collected 85
patients with pSPN diagnosed by postoperative pathology from
January 2012 to April 2020. The patient enrollment criteria
included:1) the patient had no history of other malignant
tumors before admission; 2) all patients with pSPN underwent
surgery and the CT imaging data were complete; 3) abdominal
CT plain scan and enhanced examination were performed within
30 days before operation; 4) the lesion covers at least 3 slices on
CT cross section, and the maximum plane diameter is not less
than 20mm. Exclusion criteria included:1) insufficient data of
pathological diagnosis; 2) the patient had been punctured or
treated with related tumor before CT examination; 3) poor CT
image quality or lack of raw DICOM data; 4) there are a large
number of ascites, pancreas or other lesions around the pancreas
that cannot be divided. The flow chart of inclusion and exclusion
of 85 patients is shown in Figure 1.

This cohort contained both screening and symptomatic cases
(i.e., 48 and 37 cases respectively). There were 85 lumps on 85
cases, of which 24 tumor masses were invasive and 61 were non-
invasive demonstrated by postoperative pathology. Patient
characteristics in the invasive and non- invasive cohorts are
given in Table 1.

CT Image Acquisition
All patients underwent contrast-enhanced CT scan and informed
consent forms were signed before inspection. The CT scans were
acquired with a 64-row CT scanner (Discovery CT 750 HD, GE
Healthcare, Waukesha, WI, United States) or a dual source CT
scanner (Somatom Definition Flash, S+iemens Healthineers,
Forchheim, Germany). Conventional axial scanning was
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performedbefore and after an intravenous (i.v.) injection of nonionic
iohexol (iopromide, 370mg/mL,GEMedical Systems, 1.5mL/kg and
3 mL/s) through a dual-head pump injector (Medrad, Warrendale,
PA, United States). The scanning parameters were as follows: tube
voltage, 120 kV; automatic mA technology is used for tube current;
field of view (FOV), 500mm;matrix, 512 × 512mm; slice thickness,
0.625 mm to 5 mm; scan spacing, 0.625 mm to 5 mm. Finally, a 20-
mL saline flush was performed at a rate of 3 mL/s. Using low-dose
trigger technique, when the descending aorta reached 100 HU after
injection of contrastmedium, arterial phase imageswere collected 10
seconds later, and venous phase images were collected at intervals of
30 seconds.
Frontiers in Oncology | www.frontiersin.org 3
Image Process and Lesion
ROI Segmentation
The CT images in arterial and venous phases were firstly
resampled isotropically into 1 mm ×1 mm × 1 mm voxel size
by using trilinear interpolation, to reduce the heterogeneity
resulted from different scanner (24, 25). Then the CT images
in respective phases were sequentially imported into A.K.
software (Artificial Intelligence Kit, GE Healthcare, version
3.3.0) and the lesions were separately delineated in each
imaging phase. 2D segmentation was realized by delineating
around the tumor outline for the largest cross-sectional area in
the CT axial plane. By conducting slice-by-slice delineation along
with the tumor outer contour in the CT axial plane, 3D ROI was
automatically merged. Each ROI was outlined by a radiologist
(H.WP, 5 years of experience in abdominal imaging diagnosis)
and supervised by a radiologist (L.P, 10 years of experience in
abdominal imaging diagnosis). All the segmentations were finally
accomplished with the consensus of these two radiologists. At the
same time, thirty CT image sets were randomly and separately
chosen from arterial and venous phase for assessing inter-
observer repeatability of radiomics features. The ROIs were
outlined by another radiologist (H.YJ, 5 years of experience in
abdominal imaging diagnosis) and supervised by another
TABLE 1 | The clinical features of pancreatic solid pseudopapillary neoplasm.

Characteristics Number of cases Percentage

Age, mean ± SD
(years)

32.12 ± 13.66

Gender Male 18 21.95%
Female 64 78.05%

Clinical symptoms Abdominal pain 43 52.43%
Abdominal mass 4 4.88%
Physical
examination

35 42.68%
FIGURE 1 | The patient enrollment workflow.
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radiologist (L.LM, 8 years of experience in abdominal imaging
diagnosis). The features were then extracted and the features
with intra-class correlation coefficient (ICC) greater than 0.75
were retained for further analysis, which meant a good feature
reliability (31).

Radiomics Feature Extraction
The radiomics features were automatically extracted by using
Python package Pyradiomics (32). And before feature extraction,
theCTvalues included in theROIwere discretizedwithbinWidth=
25HU(33). 1316 radiomics featureswere separately extracted from
the delineated 2D or 3D ROIs in arterial and venous phases. There
were 107 features extracted from the original images including: 32
first-order features (18 intensity statistical and 14 shape features).
Among 75 textural features, there were 24 Gray Level Co‐
occurrence Matrix (GLCM), 16 Gray Level Run Length Matrix
(GLRLM), 16Gray Level SizeZoneMatrix (GLSZM), 14GrayLevel
Dependence Matrix (GLDM) and 5 Neighboring Gray Tone
Difference Matrix (NGTDM) features. By using transformed
images, 1209 first-order and textural features were calculated,
including 744 wavelet features based on level-1 wavelet
decomposition images in three directions and 8 channels of LLL,
HHH, LHL, LLH, HLL, HLH, HHL and LHH; 186 Laplacian of
Gaussian (LoG) filtered features with sigma 2.0 mm and 3.0 mm
and 279 features based on local binary pattern (LBP)filtered images
including 2 sets of images based on 2-level spherical harmonics and
1 set of kurtosis image. For each transformed image, the same 6
kinds of features (93 features in total per image) were extracted
including: 1) first-order features (18 intensity statistical features); 2)
24 Gray Level Co‐occurrence Matrix (GLCM) features; 3) 16 Gray
Level Run Length Matrix (GLRLM) features; 4) 16 Gray Level Size
Zone Matrix (GLSZM) features; 5) 14 Gray Level Dependence
Matrix (GLDM) features; 6) 5 Neighboring Gray Tone Difference
Matrix (NGTDM) features. Thirty CT image sets were randomly
and separately chosen from arterial and venous phase for assessing
inter-observer repeatability of radiomics features.

Feature Selection and Model Construction
The radiomics features extracted from 2D and 3D ROIs in arterial
and venous phases were firstly processed. The missing values were
firstly replaced with median values. Then z-score normalization was
used for standardization. As the class distribution of the original
dataset was moderately imbalanced (invasive:24; non-invasive:61;
ratio of 2.5), 200% data oversampling based on Synthetic Minority
Oversampling Technique (SMOTE)was conducted to obtain
equilibrium for class distribution (34, 35). The generated dataset
(SMOTE dataset) involve 72 invasive and 96 noninvasive samples
respectively (ratioof1.3),whichwasusedas training set formodeling.

The radiomics models were constructed separately based on
2D and 3D ROIs. While, the same feature selection and modeling
methods were applied. The feature selection and final modeling
procedure was performed in the SMOTE dataset as follows.

1. The features with agreement coefficient larger than 0.75
during the inter-observer consistency analysis were retained.

2. The features with relatively low variance less than 1.0 were
excluded.
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3. The features with less collinearity were retained by using
correlation analysis at cut-value 0.7.

4. The features with significant difference (P<0.05) between
invasive and noninvasive groups were selected by using
univariate analysis (Mann-Whitney U test or t-test).

5. The least absolute shrinkage and selection operator (LASSO)
logistic regression involving 10-fold cross validation was
conducted to avoid overfitting (36). The maximum area under
the curve (AUC) for model fitting among the 10-folds cross
validationwas applied to determine the lambda values, at which
the remaining featureswithnon-zero coefficientswere retained.

6. The retained features after LASSO regression were finally
involved into backward stepwise logistic regression with
minimum AIC (Akaike Information Criterion) criteria to
develop the regression radiomics model and radiomics-
derived signature “Radscore” was derived by using the
regression coefficients, which could be further transferred into
probability by using sigmoid function P (Radscore) = 1/(1+exp
(-Radscore)).

Hence, there were four basic radiomics models and
corresponding Radscore derived, including the arterial phase
model based on 2D ROIs (RadscoreAP_2D), venous phase model
based on 2D ROIs (RadscoreVP_2D), arterial phase model based
on 3D ROIs (RadscoreAP_3D) and venous phase model based on
3D ROIs (RadscoreVP_3D). Besides these four basic radiomics
models, additional two combined models were also constructed,
including the arterial-venous combined model based on 2D ROIs
(RadscoreAP_VP_2D) and arterial-venous combined model based
on 3D ROIs (RadscoreAP_VP_3D).

Evaluation of Model Predictive Performance
The discrimination of the radiomics models were assessed by the
receiver operating characteristic (ROC) curve analysis, and the
area under the ROC curve (AUC), sensitivity, specificity and
accuracy could be derived. In order to validate the constructed
model based on the SMOTE dataset, the constructed single or
combined model were applied in the original dataset. The
regression coefficients and the model cut-off value (when
Youden index reached the maximum) derived in the SMOTE
dataset were applied in the original dataset. And the AUC,
sensitivity, specificity and accuracy in the original dataset could
be obtained to validate the model performance. Furthermore, the
1000-times bootstrap was used to assess the optimism and
overall performance of radiomics models (37). To investigate
the consistency of radiomics model for predicting invasiveness of
pSPN in both SMOTE and original datasets, the calibration
curves were plotted. Meanwhile, the decision curve analysis
(DCA) was also used for assessment of the model clinical
usefulness. In order to compare the ROC performance of each
same kind of model between 2D and 3D ROIs, or to perform
comparison between paired model from different phases, the
Delong’s test was applied.

Statistical Analysis
Statistical analysis was conducted by R software (version 3.5.3;
http://www.r-project.org). Student’s t test or Mann-Whitney U
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test was used for continuous variables with normal or non-normal
distribution (the Shapiro–Wilk test for assessing the normality of
distribution) and the categorical variableswere testedbyChi-square
(orFisher’s exact test). TheDelong’s testwasused for comparisonof
AUC between each paired model. The statistical significance levels
were two-sided with P< 0.05. The following R packages were
applied: “DMwR” for SMOTE oversampling; “findCorrelation” in
“caret” package for correlation analysis; “glmnet” for logistic
regression including LASSO regression algorithm; “pROC” for
ROC analysis, and “rmda” for DCA analysis.
RESULTS

Feature Selection and Radiomics
Model Development
There were totally 6 radiomics models constructed based on 2D
and 3D ROIs in arterial and venous imaging phase.

Arterial Phase Model Based on 3D ROI
Byusing inter-observer consistency analysis, 825 radiomics features
with ICCs>0.75were retained among1316 features. After removing
featureswith variance less than1.0, 409 featureswere kept. Then, 25
features were retained after correlation analysis by using cut-value
0.7.Among19 features selectedbyMann-WhitneyU test, 5 features
were further removed by LASSO regression (Figure S1). Finally, 11
radiomics features were kept by backward stepwise logistic
regression analysis (minimum AIC criteria), and the regression
function deriving the RadscoreAP_3D was summarized in
Supplementary Equation (S1).

Venous Phase Model Based on 3D ROI
By using inter-observer consistency analysis, 810 radiomics
features with ICCs>0.75 were retained among 1316 features.
After removing features with variance less than 1.0, 385 features
were kept. Then, 20 features were retained after correlation
analysis by using cut-value 0.7. Among 17 features selected by
Mann-Whitney U test, 13 features were retained after LASSO
regression (Figure S2). Finally, 8 radiomics features were kept by
backward stepwise logistic regression analysis (minimum AIC
criteria), and the regression function deriving the RadscoreVP_3D

was summarized in Supplementary Equation (S2).

Arterial Phase Model Based on 2D ROI
By using inter-observer consistency analysis, 1059 radiomics
features with ICCs>0.75 were retained among 1316 features.
After removing features with variance less than 1.0, 475 features
were kept. Then, 23 features were retained after correlation
analysis by using cut-value 0.7. Among 12 features selected by
Mann-Whitney U test, 8 features were retained after LASSO
regression (Figure S3). Finally, 7 radiomics features were kept
by minimumAIC criteria, and the regression function deriving the
RadscoreAP_2D was summarized in Supplementary Equation (S3).

Venous Phase Model Based on 2D ROI
By using inter-observer consistency analysis, 1126 radiomics
features with ICCs>0.75 were retained among 1316 features.
Frontiers in Oncology | www.frontiersin.org 5
After removing features with variance less than 1.0, 517 features
were kept. Then, 32 features were retained after Spearman
correlation analysis by using cut-value 0.7. Among 12 features
selected by Mann-Whitney U test, no feature was removed after
LASSO regression (Figure S4). Finally, 7 radiomics features were
kept by minimum AIC criteria, and the regression function
de r i v i ng th e Rad s co r eVP _ 2D was summar i z ed in
Supplementary Equation (S4).

Arterial-Venous Combined Model Based on 3D ROI
The derived RadscoreAP_3D and RadscoreVP_3D were involved
directly into multivariate logistic regression to construct the
Arterial-Venous combined model based on 3D ROIs and the
regression function deriving the RadscorAP_VP_3D was
summarized in Supplementary Equation (S5).

Arterial-Venous Combined Model Based on 2D ROI
The derived RadscoreAP_2D and RadscoreVP_2D were involved
directly into multivariate logistic regression to construct the
Arterial-Venous combined model based on 2D ROIs and the
regression function deriving the RadscorAP_VP_2D was
summarized in Supplementary Equation (S6).

A statistically significant difference existed in RadscoreAP_3D,
RadscoreVP_3D were RadscorAP_VP_3D between noninvasive and
invasive in the original datasets with (-2.85(-4.66, -0.60) vs. 1.90
(1.02, 7.25), p < 0.001), (-1.34(-2.65, -0.41) vs. 1.11(-0.44, 2.10), p
< 0.001), (-2.51(-4.71, -1.02) vs. 2.63(0.92, 8.58), p < 0.001).
Meanwhile, such significant difference also existed in
RadscoreAP_3D, RadscoreVP_3D were RadscorAP_VP_3D between
noninvasive and invasive in the original datasets with (-1.24 ±
2.12 vs. 1.01 ± 1.81, p < 0.001), (-0.79(-2.15, 0.09) vs. 0.38(-0.34,
1.25), p < 0.001), (-2.17(-4.51, -0.27) vs. 2.01(0.53, 4.24), p <
0.001). The distribution of each model’s Radscore in the invasive
and noninvasive and the P values for the statistical difference
analysis were also shown in Figure 2 and their inset.

Radiomics Model Performance
The ROC analysis was used to evaluate the predictive performance
of the constructed sixmodels and theROCcurves for eachmodel in
SMOTEand original datasetwere illustrated inFigure 3. TheAUC,
specificity, sensitivity, accuracy and the determined cut-value for
eachmodel performance inSMOTEdataset and the original dataset
were summarized inTables 2 and 3. Based on 3DROIs, the arterial
phase model has better performance than venous phase model and
the arterial-venous combinedmodel performed slightly better than
the others. Based on 2D ROIs, the arterial phase model performed
better than venous phase model, while the arterial-venous
combined model performed better than any model constructed
by independent imaging phase. In addition, the 3D arterial model
performedbetter than the best arterial-venous combined2Dmodel.
The Delong’s test result showed that the significant difference of
modelAUC existed in arterialmodels in original dataset (p = 0.019)
while not in arterial-venous combined model (p=0.49) as
comparing 2D and 3D segmentations (Table S1). In addition, the
AUC of each selected 2D-based or 3D-based radiomics feature and
their statistical differencesbetweennoninvasive and invasive groups
were also summarized in the Tables S2–S5.
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The arterial-venous combined models in both of 2D and 3D
conditions showed a relatively good agreement between
predicted and actual probability as shown by calibration curves
in Figure 4. The overall performance of radiomics logistic
regression model trained in the SMOTE dataset among 1000-
times bootstrap were summarized in Tables S6 and S7. The
appearing frequency of each radiomics feature in the 3D and 2D
logistic regression models during 1000-times bootstrap was
respectively illustrated in Figures S1 and S2. The respective
optimism-corrected model’s AUC (3D arterial model: 0.928; 3D
venous model: 0.832; 2D arterial model: 0.815; 2D venous model:
0.78) and their average optimism (3D arterial model: 0.045; 3D
venous model: 0.059; 3D arterial model: 0.048; 3D venous model:
0.055) represents a relatively good reliability of the model
established from the selected feature. In Figure S2, all of the
features selected in the final 2D and 3D models appeared over
500 times during 1000-times bootstrap, which also reflected the
reliability of the features. As shown by the DCA curves in Figure
4, in 3Dmodels, the arterial model and arterial-venous combined
model have wider range for risk threshold (0-0.9) than venous
model to make model net benefit larger than 50%. And in
2D models, the arterial-venous combined model has wider
range for risk threshold (0-0.6) than arterial or venous model
alone to reach model net benefit exceed 50%.

DISCUSSION

In this retrospective study, we applied radiomics techniques to
predict the invasiveness of pancreatic solid pseudopapillary
neoplasm (pSPN), and established radiomics models to evaluate
tumor invasiveness before operation based on CT images. The
results showed that the 3D-domain radiomics features and 2D-
domain features are potential predictors. Therefore, the classifier
basedon radiomics features couldpotentiallyprovide a noninvasive
and personalized management method for pSPN patients.

Previous studies mainly focused on the characteristic
manifestations of CT and/or magnetic resonance imaging (38).
However, it is difficult to identify whether pSPN is invasive before
operation (39). Radiomic analysis has been proposed as a step
towards realization of precision medicine by providing means to
interrogate the spatial complexity of tumors in vivo (40). Therefore,
we try to identify the invasiveness of pSPN by radiomics features
and comprehensively consider the effectiveness of different contrast-
enhanced phases and 2D or 3D segmentation.

The results showed that when using the single-phase-based
radiomics features to predict the invasiveness of pSPN, the arterial
phase features were more effective than the venous phase features
and there was no statistically significant model’s AUC improvement
in the original dataset when combining arterial and venous phase
compared with sole arterial-phase model. The arterial phase
enhancement characteristics of the tumor reflected the
characteristics of tumor blood supply and functional capillaries,
and the invasive tumor had more obvious blood supply. On the one
hand, angiogenesis is closely related to the occurrence, development
and prognosis of the tumor, but there are complex substances such
as collagen and hyaluronic acid in the cell stroma. During the
Frontiers in Oncology | www.frontiersin.org 6
venous phase, the interstitial components of the tumor will also be
enhanced because of the inflow of the contrast medium. As a result,
the vascular enhancement of the tumor in the venous phase is not
obvious. The arterial phase images can only enhance the blood
vessels of the tumor, because the interstitial components will not be
enhanced. Thus the arterial phase images can better reflect the
characteristics of blood supply in the tumor and reflect the
characteristics of the tumor more accurately. In some related
studies of pancreatic tumors, Kwon et al. (41) especially
emphasized the role of enhanced MRI in arterial phase in the
study of the differentiating focal autoimmune pancreatitis and
pancreatic ductal adenocarcinoma. Corwin et al. (42). reported
that the greater attenuation differential between lesions and
normal pancreas during the arterial phase compared to venous.
Bian et al. (23). also reported a significant positive association
between the arterial-phase-based radiomics Radscore and the risk
of LN metastasis in pancreatic ductal adenocarcinoma. In addition,
it was also the arterial-phase model could have higher multivariable
AUC in predicting malignancy and invasive pathological status of
pancreatic intraductal papillary mucinous neoplasms compared
with that of venous-phase model (14). On the other hand, the
invasive biological behavior of invasive pSPN is more prone to
vascular invasion, and peripheral blood vessels are easily involved,
especially the venous wall is thin and the pressure is low, and the
tumor is easy to cause stenosis of venous branches. If the formation
of microtumor thrombus can lead to obstruction of venous
branches in microcirculation and obstruction of blood flow,
resulting in an increase of compensatory blood supply of arteries.
These results might reflect the predictive capability of the arterial-
phase-based radiomics features in predicting tumor invasiveness.

Most prior studies have employed either a single slice or whole
tumor to extract features for radiomics analysis. However, the
actual effect of using features extracted from 2D slices or 3D
volumes varies. In a colorectal cancer prognosis study, it has
shown that the CT feature extracted from 3D segmentation was
superior to the largest cross-sectional segmentation to predict the
survival rate (16). Some scholar reports also showed that the 2D
and 3D segmentation possessed similar capability in clinical
outcome prediction, such as the determination of pathological
feature or prognosis in hepatic metastatic colorectal cancer (CRC)
(28) and prediction of axillary lymph node metastasis in breast
cancer (29). However, it has also been reported that 2D CT
radiomics features performed better in prognosis prediction in
lung cancer (30). These studies show that the results of 2D or 3D
radiological analysis need to be further studied by different patient
cohorts and tasks. Our study indicated that the AUC value of 3D-
based model is greater than that of 2D-based model in both
SMOTE dataset and original dataset. Except for that the AUC
value of 2D venous model is 0.768, the AUC values of all models
are all greater than 0.80. In the original dataset, the ROC
comparison of 2D-based and 3D-based arterial-phase model was
statistically significant. Multi-slices (3D) analysis covers the entire
tumor volume and can better depict spatial heterogeneity than
using a single tumor slice (2D) (27).

In terms of feature contribution to each 2D or 3D model in the
current study, most of the selected features were filtered or
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FIGURE 2 | The boxplot for Radscores from 2D-domain and 3D-domain radiomics models and their statistical differences between invasive and noninvasive groups.
(A–C) The respective distribution of RadscoreAP_3D, RadscoreVP_3D, RadscoreAP_VP_3D in the invasive (yellow) and noninvasive (blue) groups in the SMOTE dataset.
(D–F) The respective distribution of RadscoreAP_3D, RadscoreVP_3D, RadscoreAP_VP_3D in the invasive (yellow) and noninvasive (blue) groups in the original dataset.
(G–I) The respective distribution of RadscoreAP_2D, RadscoreVP_2D, RadscoreAP_VP_2D in the invasive (yellow) and noninvasive (blue) groups in the SMOTE dataset.
(J–L) The respective distribution of RadscoreAP_2D, RadscoreVP_2D, RadscoreAP_VP_2D in the invasive (yellow) and noninvasive (blue) groups in the original dataset.
Frontiers in Oncology | www.frontiersin.org May 2021 | Volume 11 | Article 6778147

https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


Huang et al. Pancreatic Solid Pseudopapillary Neoplasm
transformed first-order or texture features. It might indicate that
the distinguishment between the noninvasive and invasive pSPN
might need the emphasized features in the spatial or frequency
domains. It could be found that there existed some overlaps for
Frontiers in Oncology | www.frontiersin.org 8
selected 2D and 3D feature types in the artery-phase models,
including the RunVariance (GLRLM), Median (First order),
Kurtosis (First order) and DependenceVariance (GLDM), which
represent similar tendency between invasive and noninvasive
A B C D

E F G H

FIGURE 3 | The ROC and calibration curves for 3D- and 2D- radiomics models. The ROC curves of artery-(red), venous- (blue) and combined artery-venous (green)
radiomics models based on 3D ROIs in the SMOTE dataset (A) and original dataset (B). The ROC curves of artery-(red), venous-(blue) and combined artery-venous
(green) radiomics models based on 2D ROIs in the SMOTE dataset (C) and original dataset (D). The calibration curves of artery-(red), venous-(blue) and combined
artery-venous radiomics (green) models based on 3D ROIs in the SMOTE dataset (E) and original dataset (F). The calibration curves of artery-(red), venous-(blue)
and combined artery-venous (green) radiomics models based on 2D ROIs in the SMOTE dataset (G) and original dataset (H).
TABLE 2 | Performance of 2D-domain radiomics model in predicting invasive behavior of pancreatic solid pseudopapillary neoplasm.

SMOTE dataset Original dataset

Artery Venous Artery +Venous Artery Venous Artery +Venous

Threshold -0.248 -0.819 -0.337 -0.248 -0.819 -0.337
AUC (95%CI) 0.863 (0.806-0.921) 0.835 (0.777-0.894) 0.946 (0.913-0.980) 0.814 (0.717-0.910) 0.768 (0.665-0.871) 0.893 (0.821-0.966)
Specificity 0.833 0.604 0.854 0.721 0.492 0.738
Sensitivity 0.875 0.917 0.944 0.875 0.917 0.917
Accuracy 0.851 0.738 0.893 0.765 0.612 0.788
NPV 0.899 0.906 0.953 0.936 0.938 0.957
PPV 0.797 0.635 0.829 0.553 0.415 0.579
May 2021 | Volume
TABLE 3 | Performance of 3D-domain radiomics model in predicting invasive behavior of pancreatic solid pseudopapillary neoplasm.

SMOTE dataset Original dataset

Artery Venous Artery +Venous Artery Venous Artery +Venous

Threshold 0.024 -1.195 -0.262 0.024 -1.195 -0.262
AUC (95%CI) 0.973 (0.950-0.996) 0.891 (0.843-0.939) 0.976 (0.953-0.998) 0.914 (0.854-0.974) 0.815 (0.718-0.912) 0.918 (0.860-0.976)
Specificity 0.948 0.698 0.948 0.820 0.525 0.803
Sensitivity 0.931 0.958 0.958 0.833 0.875 0.875
Accuracy 0.940 0.810 0.952 0.824 0.624 0.824
NPV 0.948 0.957 0.968 0.926 0.914 0.942
PPV 0.931 0.704 0.932 0.645 0.420 0.636
11 | Article 677814

https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


Huang et al. Pancreatic Solid Pseudopapillary Neoplasm
groups. However, the 3D features’ AUC located in the range of
0.58-0.72, which were slightly higher than that of 2D features
(AUC from 0.58 to 0.66). And the features that not involved in the
2D model, such as wavelet.LLL_firstorder_InterquartileRange,
original_firstorder_Skewness, and wavelet.HHL_glrlm_Long
RunLowGrayLevelEmphasis could even have acceptable AUC
values larger than 0.65. First-order statistics features describe the
distribution of voxel intensity in the ROI region. GLDM texture
features mainly describe the gray level dependence between voxels.
GLRLM quantifies the length of consecutive pixels that have the
same grey level. Three-dimensional ROI includes the whole lesion
and does not avoid cystic necrosis and calcification in the tumor. It
could have more chances compared with 2D cross-section to
extract intensity or texture details distributed in 3D space or
multiple 3D directions and select the representative features
describing the internal structure or pathological heterogeneity of
Frontiers in Oncology | www.frontiersin.org 9
tumor which are closely related to invasiveness. This might
indicate that intensity or texture details distributed in 3D space
or multiple 3D directions could be extracted from the entire
volume rather than those from the single slice. In the current
study, 3D features can better predict invasiveness from a global
point of view.

Thus, the noninvasive radiomics signature could serve as a
more convenient biomarker for the prediction of invasive
behavior in pSPN. To justify the clinical usefulness, decision
curve analysis was applied in this study to confirm the predictive
value of the imaging group model. This novel method offers
insight into clinical consequences on the basis of threshold
probability, from which the net benefit could be derived.

There are still some limitations in this study. Firstly, the
disease is rare, all available data have been collected, but the
sample size in this study was small and had some class imbalance
A B

C D

FIGURE 4 | The decision curves for 2D-domain and 3D-domain radiomics models. (A, B) The decision curves for 3D-domain radiomics models in SMOTE dataset
(A) and original dataset (B). (C, D) The decision curves for 2D-domain radiomics models in SMOTE dataset (C) and original dataset (D). The black horizontal line
manifests no patients is invasive type (NONE) and the grey line manifests all patients are invasive type (ALL). The colored lines of each model respectively illustrate the
net benefit brought to each patient based on artery-(red), venous-(blue) and combined artery-venous (green) radiomics models. The closer the decision curves to the
black and gray curves, the lower the clinical decision net benefit of the model.
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with noninvasive-to-invasive sample ratio of 2.5. The data were
augmented and balanced by SMOTE method into noninvasive-
to-invasive sample ratio of 1.3 and used as the training set of the
model, which was further internally validated in the original
dataset to test the model performance as much as possible.
Secondly, it was not combined with clinical data and
pathological immunohistochemical results. A study of
radiomics and clinical data is needed in the future to further
reveal the biological or clinical meanings or association for the
radiomics features, which still could not be well explained in the
current study. In addition, this is a single-center study, and we
are working to further evaluate our model in a bigger dataset that
may come from multiple centers and multiple imaging schemes.
CONCLUSION

In conclusion, a radiomics method based on CT imaging data
was developed and validated as a potential method for predicting
invasiveness of pSPN before the operation in our study.
Radiomics model showed encouraging performance and is
expected to provide an intelligent, non-invasive diagnostic tool
for predicting the invasiveness of pSPN. Further research is
needed to explore the relationship between radiomics features
and clinicopathological index and establish more generalized
prediction models.
Frontiers in Oncology | www.frontiersin.org 10
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