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Dawn of Monitoring Regulatory T
Cells in (Pre-)clinical Studies: Their
Relevance Is Slowly Recognised
A. Charlotte M. T. de Wolf, Carla A. Herberts and Marcel H. N. Hoefnagel*

Medicines Evaluation Board (MEB), Utrecht, Netherlands

Regulatory T cells (Tregs) have a prominent role in the control of immune homeostasis.

Pharmacological impact on their activity or balance with effector T cells could

contribute to (impaired) clinical responses or adverse events. Monitoring treatment-

related effects on T cell subsetsmay therefore be part of (pre-)clinical studies for medicinal

products. However, the extent of immune monitoring performed in studies for marketing

authorisation and the degree of correspondence with data available in the public domain

is not known. We evaluated the presence of T cell immunomonitoring in 46 registration

dossiers of monoclonal antibodies indicated for immune-related disorders and published

scientific papers. We found that the depth of Treg analysis in registration dossiers

was rather small. Nevertheless, data on treatment-related Treg effects are available in

public academia-driven studies (post-registration) and suggest that Tregs may act as

a biomarker for clinical responses. However, public data are fragmented and obtained

with heterogeneity of experimental approaches from a diversity of species and tissues.

To reveal the potential added value of T cell (and particular Treg) evaluation in (pre-)clinical

studies, more cell-specific data should be acquired, at least for medicinal products

with an immunomodulatory mechanism. Therefore, extensive analysis of T cell subset

contribution to clinical responses and the relevance of treatment-induced changes in

their levels is needed. Preferably, industry and academia should work together to obtain

these data in a standardised manner and to enrich our knowledge about T cell activity in

disease pathogenesis and therapies. This will ultimately elucidate the necessity of T cell

subset monitoring in the therapeutic benefit-risk assessment.

Keywords: regulatory T cells, immunomonitoring, monoclonal antibodies, JAK inhibitors, registration dossiers,

biomarkers, (pre-)clinical study recommendations

INTRODUCTION

The mammalian immune system is indispensable for the protection against a broad range of
pathogens. For this, immune cells should be able to differentiate between (pathogenic) non-self
and self. In addition, immune responses should be fine-tuned to demarcate the localisation and
extent of an inflammatory reaction. Preservation of self-tolerance and immune homeostasis is
mediated by various immunosuppressive mechanisms, including regulatory T cells (Tregs) (1).
These suppressor cells appear to be specifically equipped to control the activation of other immune
cells (2).
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Human Tregs can be classified in different subtypes. The
major subtype consists of the classical CD4+ Tregs that are either
differentiated in the thymus (also known as natural Tregs) or
peripherally induced from conventional (effector) CD4+ T cells
(3, 4). Classical Tregs highly express CD25 [i.e., interleukin (IL)-
2α receptor] and cytotoxic T lymphocyte-associated antigen-
4 (CTLA-4) (5–7). These surface markers, together with the
transcription factor forkhead box protein 3 (FoxP3), have
essential roles in Treg-mediated suppressive functionality (8–12).
Non-classical Tregs include FoxP3− Tr1 and T helper (Th)3 cells.
These types are depending on IL-10 and tumour growth factor-β
production for their suppressive activity (13, 14). Also γδ T cell
and CD8+ T cell populations contain suppressive subsets, but
their specific roles in regulating the immune system have yet to
be identified (15–19).

The negative regulation of an immune response as mediated
by Tregs is essential to prevent auto-immune and allergic
disorders. On the other hand, this suppressive activity may
prevent pathogen clearance during infections and hinder
effective immune responses against (mutated) self-antigens in
cancer (20). Therefore, in diseases where the balance between
immune activation and suppression is skewed, Tregs could
be attractive pharmacological targets (21, 22). For Th1- and
Th17-dominated auto-immune disorders and Th2-dominated
allergies, a therapy increasing Treg suppressive activity is sought
(21, 23, 24). In contrast, for malignant diseases reversing an
immunosuppressive tumour micro-environment by reducing
Treg functionality would be the goal of treatment (21, 24–
26). However, targeting Tregs in vivo is challenging, because
a single (surface) marker with high specificity and selectivity
for Tregs is still lacking (25). In addition, interfering with Treg
numbers and/or functionality may also increase the risk for
(auto-)immune-related adverse events (8). Examples are auto-
immune enterocolitis and myocarditis following treatment with
immune checkpoint inhibitors such as anti-CTLA-4 and anti-
programmed cell death-1 (PD-1) (27–33). But also therapies
against auto-immune disorders, for example tumour necrosis
factor (TNF) inhibitors, have been reported to result in
paradoxical immune-related inflammation (34).

Given the role of Tregs in (maintenance of) the immune
balance, inclusion of these cells in the investigation of treatment
effects on T cell subsets would be expected to be part of
the (clinical) development program of medicinal products, at
least for therapies targeting the immune system. Comprehensive
overviews of immunomodulatory therapy-related effects on the
balance between effector and regulatory T cells are available,
for example for arthritis and solid organ transplantation (21,
35, 36). They show that general immunosuppressive drugs
(such as corticosteroids), which target intracellular signalling
pathways, do not only affect conventional T cell activation, but
may also affect Treg activity. However, the sensitivity to the
pathway-suppressive effects of these products differs between
effector and regulatory T cells, and this difference determines
whether immunomodulatory products will inhibit or stimulate
immune cell activity. Differences in inhibition sensitivity of
shared intracellular pathways are also apparent for more selective
immunomodulating drug products. For example, blocking TNF

has an effect on both TNF receptor-expressing effector T cells
and Tregs, although it appears that positive clinical responses
in several auto-immune disorders are the result of a greater
inhibition of the effector than the regulatory cells (37).

Medicinal products may also disturb the balance between
effector and regulatory T cells or the total T cell population
more indirectly or even unintendedly (i.e., off-target effects).
For example, monoclonal antibody (mAb)-mediated apoptosis
results in the tumour tissue infiltration of immune cells,
including Tregs. These Tregs can negatively influence the
cytotoxic potential of effector cells, which could result in reduced
efficacy. Therefore, immunomonitoring in (pre-)clinical studies
is a useful tool to elucidate unintended treatment effects (and
potential underlying mechanisms) caused by disturbance of the
immune balance. In addition, immunomonitoring can provide
more insight in the role of specific immune cells in the disease
pathophysiology and thereby contribute to the identification of
biomarkers predictive for the clinical response (38).

Given the potential clinical impact of Treg modulation,
appropriate monitoring of treatment-induced effects on Treg
frequency, phenotype and function would be required. We
questioned whether Tregs have been investigated in (pre-)clinical
studies to support a marketing authorisation application (MAA).
Therefore, we surveyed if and when T cells, and Tregs in
particular, were evaluated in these studies and whether the data in
the registration dossiers corresponded to the available data in the
public domain. There are multiple immunomodulatory therapies
registered in the EU.We have chosen to restrict the sample size of
registration dossiers to MAAs for approved mAb products based
on the assumption that for mAbs immunomonitoring studies
most frequently have been performed. After all, the majority is
indicated for immune system-related disorders. In addition, we
assessed T cell monitoring for a few tyrosine kinases inhibitors
known to specifically target cytokine signalling pathways in T
cells. We conclude this review with our perspective on the value
of Treg monitoring and recommendations for their evaluation in
(pre-)clinical studies.

SEARCH FOR IMMUNOMONITORING
DATA

Selection of Monoclonal Antibodies
We have evaluated the presence of data on T cell
immunomonitoring (with the focus on Tregs) reported in
published literature and in registration dossiers for MAA.
We included all mAb products used as anti-neoplastic agents
(anatomical therapeutic chemical classification code L01XC) or
as selective immune inhibitor in the context of auto-immunity
(L04AA, AB and AC) or asthma (R03DX), which have been EU-
registered between 2006 and the first half year of 2019. Products
that have been authorised and subsequently withdrawn in this
time frame (for commercial, insufficient supply or unfavourable
benefit-risk reasons) have been included. Biosimilars were
excluded from our evaluation, because it was not expected that
information on Tregs would be included in these dossiers (39).
In total, 46 monoclonal antibodies were considered eligible.
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Selection of Publications and Registration
Dossier Reports
As far as applicable, this study followed the recommendations
of PRISMA in conducting and reporting a systemic review.
Registration dossier search is summarised in Figure 1A,
literature search is summarised in Figure 1B.

We searched in both registration dossiers [common technical
documents, CTDs, required to apply for regulatory approval of
a new medicinal product (40)] and PubMed literature for Treg-
related keywords (including: regulatory T cell, suppressor T cell,
Treg, FoxP3, CD25, mAb generic, and trade names). Because the
Treg field is relatively new and the extent of T cell monitoring
in dossiers of mAb products was not known, we decided to
search more generally for lymphocyte and T cell populations
in the CTDs, but with a focus on Tregs. Therefore, we also
included keywords related to the whole T cell population (such as:
lymphocyte, T cell, CD4, and CD8).When lymphocytes or T cells
were mentioned in an individual study report, we also searched
with the Treg-related keywords. Our main focus was on CD4+

FoxP3+ T cells, because these are the major Tregs in the immune
system. However, other (non-classical) suppressor T cells—when
mentioned in reports—were also taken along.

To explore lymphocyte and T cell immunomonitoring in
registration dossiers, we searched the pre-clinical and clinical
sections of the CTD (pre-clinical module 4 and clinical module
5, respectively) for each individual monoclonal antibody. Most
study reports containing immunomonitoring results were found
in the sections about pre-clinical pharmacology (module 4.2.1),
toxicology (module 4.2.3), clinical pharmacokinetics (module
5.3.3), efficacy and safety (module 5.3.5).

RESULTS

Evaluation of Immunomonitoring Data
Availability
We investigated whether potential mAb treatment-related effects
on Tregs reported in published studies are also reported as
individual studies presented in registration dossiers. Table 1

describes the immunomonitoring parameters used to determine
potential effects of mAb products on lymphocytes, T cell
subsets or specifically Tregs in registration dossier reports. In
this table, no individual mAb products have been indicated
for confidentiality reasons. The effects of the individual mAb
products on Treg frequency, phenotype, and function as found in
literature are described in Tables 2–4. Table 5 represents all mAb
products for which no scientific literature was publicly available.
Product-related effects were measured either pre-clinically (in
vitro or in vivo in animal models) or clinically (human healthy
donors and patients), the latter further subdivided in systemic
(in peripheral blood) and local (at the tumour site or in inflamed
tissue) effects. Potential (absence of) associations between clinical
results and the presence or activity of Tregs prior to or
during/after treatment are included.

To gain better insight in the type of products for which T cell
monitoring was available, we divided the mAb products in three
groups, based on the relevance of the product’s pharmacological
target for T cell (subset) function and survival:

1. mAb target is highly relevant for Tregs, i.e., the target is
constitutively expressed on most Tregs (e.g., CTLA-4);

2. mAb target is -expected to be- relevant for the T cell
population, i.e., the target is expressed on specific T cell and
Treg subsets (e.g., α4 integrins) or the mAb product has
a more indirect effect on Treg activity, when the target is
involved in the balance between T cell subsets (e.g., IL-6 and
IL-17A pathways);

3. mAb target is not directly relevant for T cells, i.e., the target
is not involved in T cell functionality (e.g., CD20, which is
expressed on B cells).

T Cell Immunomonitoring Data in mAb
Registration Dossiers
For the majority of registration dossiers of mAbs targeting Tregs
or other T cell subsets, only absolute and relative counts of
lymphocytes, lymphocyte subsets (i.e., T and B cells, in some
cases also natural killer cells) or T cell subsets (CD4+ and CD8+)
were determined clinically and pre-clinically (Table 1). T cell
functionality testing (i.e., proliferative or cytotoxic capacity) was
limited to pre-clinical studies, whereas further differentiation of
T cell subsets (such as naïve/memory state) and determination
of the CD4+ to CD8+ ratio was primarily found in clinical
reports. Most data were derived from samples evaluated via
clinical haematology, flow cytometry or immunohistochemistry.
In most cases, however, no summarising data or concluding
remarks (such as clinical significance) concerning the treatment
effects on T cell frequency and functionality were provided.

Comparison of Treg Immunomonitoring
Between Literature and mAb Registration
Dossiers
Targets With High Relevance for Regulatory T Cells
Seven mAb products were classified as affecting targets (here:
cell surface receptors) essential for Treg function or survival. In
literature, treatment-related effects on frequency and phenotype
(other than identity markers such as CD25 and FoxP3) were
studied for all thesemAb products, whereas effects on suppressive
function were evaluated for four mAbs (Table 2). Nevertheless,
high variability between mAb products existed in the number of
available studies (most on products targeting CTLA-4 and PD-1)
and the level of Treg analysis per study. For the majority of the
publications, identification of Tregs within the T cell population
was based on several markers (mainly a combination of CD25,
CD127, and/or FoxP3) to exclude activated effector T cells as
much as possible. In four of the seven mAb registration dossiers,
effects on the frequency of Tregs (defined as CD4+/CD8+

CD25+ FoxP3+ in most studies) were taken into account
(Table 1), although actual results were not always reported. Next
to frequency, Treg functionality is an important determinant of
the degree of immune suppression and thus requires evaluation.
But in none of the dossiers Treg functionality was determined.

In both publications and registration dossier studies, mAb-
related effects on Tregs were found. However, comparing
these sources elucidated a clear discrepancy. For most mAb
products, the public domain contained more studies and within
these studies, Tregs were analysed more extensively than in
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FIGURE 1 | Flow chart of registration dossiers and literature reports selection process. (A) Registration dossier search and (B) literature search.
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TABLE 1 | Overview of lymphocytic parameters evaluated in mAb registration dossiers.

In vivo target

group

(# of mAb dossiers evaluated)

Parameters determined

on lymphocytes or T cells

(# of mAb dossiers)

Treg identification

markersa
Parameters determined

on Treg frequency and phenotype

(# of mAb dossiers)

Parameters determined

on Treg functionality

(# of mAb dossiers)

Clinical associations

(# of mAb dossiers)

Target highly relevant for Tregs (7) Pre-clinical

• Amount of total T cell population (1)b

• Amount of (naïve/memory) CD4+ and/or

CD8+ T cells (5)

• Activation level of CD4+ and/or CD8+ T

cells (2)

• Cytokine production of CD4+ and/or

CD8+ T cells (1)

• Functionality of CD4+ and/or CD8+ T

cells (1)

Pre-clinical

CD4, CD25, CD127;

CD4, CD25, FoxP3;

CD8, CD25, FoxP3;

Unknown

Pre-clinical

• Binding potential to T suppressor

cells (1)

• Amount of (mAb-target+) CD4+

suppressor cells (3)

• Amount of CD8+ suppressor

cells (2)

Pre-clinical

n.a.

Prognostic

• Association between baseline

FoxP3 expression of T suppressor

cells and clinical benefit (1)

Predictive

• Association between amount of

CD4+ or CD8+ T cells and clinical

response rate (1)

Clinical

• Amount of total lymphocyte population (1)

• Amount of total T cell population (1)b

• Amount of (naïve/memory) CD4+ and/or

CD8+ T cells (6)c

• Activation level of CD4+ and/or CD8+ T

cells (1)

Clinical

CD4, CD25, FoxP3

Clinical

• Amount of CD4+ suppressor

cells (4)c

Clinical

n.a.

Target relevant for the T cell

population (28)d
Pre-clinical

• Viability of total lymphocyte or PBMC

population (2)

• Amount of total lymphocyte population

(7)c

• Amount of total T cell population (1)b

• Amount of (naïve/memory) CD4+ and/or

CD8+ T cells (14)

• Activation level of CD4+ and/or CD8+ T

cells (4)

• Cytokine production of PBMC population

(1)

• Cytokine production of CD4+ and/or

CD8+ T cells (2)

• Functionality of total T cell population (1)

• Functionality of CD8+ T cells (3)

Pre-clinical

FoxP3;

CD4, CD25;

CD4, FoxP3;

CD4, CD25, CD127;

Unknown

Pre-clinical

• Binding potential to CD45RO+

CD4+ suppressor cells (1)

• Density of tumour-infiltrating

suppressor cells (1)

• Amount of T suppressor cells (2)c

Pre-clinical

• Suppressive capacity of

mAb target+ CD4+

suppressor cells (1)

Predictive

• Association between amount of

CD4+ suppressor cells and clinical

response (1)

Clinical

• Amount of total lymphocyte population

(12)c

• Amount of total T cell population (4)

• Amount of (naïve/memory) CD4+ and/or

CD8+ T cells (9)

• Amount of CD4+ T cell subsets (2)

• Activation level of CD4+ and/or CD8+ T

cells (3)

• CD4+ T cell: CD8+ T cell ratio (2)

• Cytokine production of CD4+ T cells (1)

Clinical

CD4, CD25, FoxP3;

CD4, CD25, CD127, FoxP3;

Unknown

Clinical

• Amount of T suppressor cells (2)

• Amount of CD4+ suppressor cells

(3)

• Amount of CD8+ suppressor cells

(1)

• CD8+ T cell : CD4+ suppressor cell

ratio (1)

Clinical

n.a.

(Continued)
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registration dossiers. For example, activation markers (such as
Ki67 and CD69), phenotypic and functionality-related markers
(e.g., Helios, CD39, PD-1, CTLA-4, cytokines such as IL-10
and the combination of CD45RA− with FoxP3++) or actual
suppressive activity were monitored for all mAb products in
published studies, except cemiplimab. In contrast, in only one
registration dossier, two of suchmarkers (i.e., CTLA-4 and CCR4,
thus directly related to the mAb target) were taken into account.
Analysis of surface markers next to standard Treg identity
indicators could be a useful surrogate for Treg activity when
actual functionality assays cannot be performed [see section
Recommendations for (Pre-)clinical Studies].

In several public studies, Treg (subset) frequency could be
used to differentiate responders from non-responders or to
predict the clinical response prior to treatment. A decrease in
local or systemic Treg frequency was associated with a better
(anti-tumour) treatment response (52, 55–59). A high Treg
frequency at baseline was associated with either better or worse
clinical outcome, depending on the evaluated Treg phenotype
(60, 61, 87–89). These studies indicate that Tregs may be assigned
as potential biomarker for disease activity or clinical outcome
[see section Value of Treg Monitoring]. Because Treg data
would be available much quicker than, for example, long-term
clinical responses such as progression-free survival, it could
be worthwhile to investigate applicability of such biomarker
in product-specific studies (as surrogate clinical end point)
(144). Nevertheless, this probably requires more (pre-)clinical
experience than available at the time of MAA.

Targets With Relevance for Tregs or the Balance

Between T Cell Subsets
Most evaluated mAb products [i.e., (28)] were designed to
target cell surface receptors or cytokines that have a role in
the physiology of T cells. All targets (or their receptors) were
known to be expressed on Treg subsets or were earlier defined
as involved in maintaining the delicate balance between effector
and regulatory T cells.

In general, the number of published studies (Table 3) was
related to the level of Treg analysis in the registration dossiers
(Table 1), except for Treg functionality. However, where Treg
identification in literature was based on a combination of
several phenotypic markers (e.g., CD25 and CD127 next to
CD4), most dossier reports defined Tregs solely on one marker
(if defined at all). Therefore, the latter may have measured
therapeutic effects on a mix of Tregs and activated effector T
cells, which interferes with correct interpretation of the data
[see section Recommendations for (Pre-)clinical Studies]. It was
also noted that changes in Treg phenotype (e.g., activation)
were analysed more in-depth in public literature compared to
registration dossiers.

Targets Not Directly Relevant for T Cells
Eleven mAb products were not expected to directly impact T cell
function or survival and targets were therefore considered “non-
relevant”. Published studies for mAb products targeting non-
relevant molecules did indeed not report any Treg monitoring,
except for belimumab and trastuzumab (Table 4). Belimumab
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TABLE 2 | Overview of published studies for mAbs with a target highly relevant for Tregs.

In vivo target

and monoclonal antibody

(trade mark, year of EU

registration)

Treg identification markersa Effect of mAb

on Treg frequency or phenotype

Effect of mAb

on Treg functionality

Clinical associations Key references

CCR4

Mogamulizumab

(Poteligeo, 2018)

Pre-clinical

Peripheral blood

CD4, CD45RA, FoxP3

Clinical

Peripheral blood

CD4, CD25, FoxP3;

CD4, CD25, CD127, FoxP3;

CD4, CD45RA, FoxP3

Tumour site

FoxP3;

CD4, FoxP3;

CD4, CD45RA, FoxP3

Pre-clinical

Peripheral blood

• ↓ % Tregs (mainly eTregs)

Clinical

Peripheral blood

• ↓ number of Tregs (mainly eTregs)

• ↓ % Tregs (mainly eTregs)

• ↓ FoxP3 mRNA expression

Tumour site

• ↓ % Tregs (mainly eTregs)

• ↓ FoxP3 expression

n.a. Predictive

Peripheral blood

• ↓ % Tregs is associated with induction of

skin-related adverse events

• Association between changes in % eTregs

and occurrence of tumour relapse vs.

adverse events

• No relation between changes in %

(effector) Tregs and extent of

clinical response

(41–51)

CD3 and CD19

Blinatumomab

(Blincyto, 2015)

Pre-clinical

In vitro

CD4, CD25, CD127

Clinical

Peripheral blood

CD4, CD25, FoxP3

Pre-clinical

In vitro

• ↑ CD25, CD69 and PD-1 protein

expression (HC)

• ↑ IL-10 and ↓ IFN-γ and TNF-α

production (HC)

Clinical

n.a.

Pre-clinical

In vitro

• ↑ Treg-mediated suppression of T

effector cell proliferation and lytic

capacity (HC)

Clinical

n.a.

Predictive

In vitro

• Depletion of Tregs in non-responders can

restore the T effector cell proliferation

Peripheral blood

• ↑ % Tregs is associated with decreased

therapy responsiveness

(52)

CD3 and EpCAM

Catumaxomab

(Removab, 2009)*

Pre-clinical

In vitro

CD4, FoxP3

Clinical

Peripheral blood

CD4, FoxP3

Pre-clinical

In vitro

• ↑ % Tregs (mainly FoxP3high

CD45RA− CD73+ subpopulation)

Clinical

Peripheral blood

• ≈ % Tregs

• No expression of FoxP3 protein in

CD4+ cells when ex vivo

restimulated with EpCAM peptides

n.a. n.a. (53, 54)

CTLA-4

Ipilimumab

(Yervoy, 2011)

Pre-clinical

In vitro

CD4, CD25, FoxP3

Animal model

CD4, CD25, CD127, FoxP3

Pre-clinical

In vitro

• Treg lysis by mAb-activated

CD16+ monocytes

Animal model

• ↑ number of Helios+ Tregs (hM)

Pre-clinical

In vitro

• Treg-mediated suppressive

capacity is not affected

Animal model

n.a.

Prognostic

Animal model

• ↓ local Treg : Teff ratio is associated with

weight loss (hM)

Peripheral blood

• Positive correlation between

(30, 33, 55–86)

(Continued)
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TABLE 2 | Continued

In vivo target

and monoclonal antibody

(trade mark, year of EU

registration)

Treg identification markersa Effect of mAb

on Treg frequency or phenotype

Effect of mAb

on Treg functionality

Clinical associations Key references

Clinical

Peripheral blood

CD4, CD25, CD39;

CD4, CD25, FoxP3;

CD4, CD25, CD127, FoxP3

Tumour site

CD4, FoxP3

Clinical

Peripheral blood

• ↑ or ≈ number of Tregs

• ↓ number of CD62L+ Tregs,

followed by ↑ compared to

baseline level

• ↑, ≈ or ↓ % Tregs

• ↑ % CD39+ and/or Helios+ Tregs

• ↑ % Tregs, followed by ↓

compared to baseline level

• ↑ CD4+ ICOS+ T cell : Treg ratio

• ↓ CD8+ T cell : Treg ratio

• ↑ Ki67 protein expression in

CD45+ Tregs

• ↑ FoxP3 mRNA expression in Tregs

• ↓ FoxP3 mRNA expression in

PBMCs, followed by ↑ compared

to baseline level (rebound)

Tumour site

• ↑ % Tregs compared to blood

• ↓ % Tregs

• ↑ CD4+ ICOS+ T cell : Treg ratio

• ≈ CD8+ T cell : Treg ratio

• ≈ Ki67+ effector T cell : Treg ratio

• ↓ CD8+ T cell : Treg ratio

compared to blood

• ↓ FoxP3 mRNA expression

Clinical

Peripheral blood

• Treg-mediated suppressive

capacity is not affected

Tumour site

n.a.

pre-treatment number of CTLA− Tregs (but

not CTLA-4+ Tregs) and overall survival

• Positive association between pre-treatment

% of CD39+ Tregs and relapse-free survival

Tumour site

• ↑ number of FoxP3+ cells in pre-treatment

metastatic tumour lesions is associated

with clinical response (a.o., overall survival)

• ↑ % Tregs in pre-treatment tumour lesions

is associated with clinical activity

Predictive

Peripheral blood

• No difference in number of Tregs between

patients with and without immune-related

adverse events

• ↓ number of Tregs is associated with local

and systemic clinical benefit

• ↑ % Tregs is associated with improved

progression-free survival

• ↑ % Treg suppressive function is

associated with decreased

progression-free survival

• ↑ % Helios+ and/or HLA-DR+ Tregs is

associated with decreased clinical

response

• ↓% Tregs is associated with overall survival

• No association between changes in Treg

frequency and function

• No association between changes in %

Tregs and clinical response (a.o.,

overall survival)

Tumour site

• Inverse correlation between number of

intra-tumoural Tregs and the degree of

tumour necrosis after treatment

• ↓ % Tregs in post-treatment tumour

lesions from responders compared to

non-responders

• No association between intra-tumoural

FoxP3 protein expression and

clinical response

(Continued)
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TABLE 2 | Continued

In vivo target

and monoclonal antibody

(trade mark, year of EU

registration)

Treg identification markersa Effect of mAb

on Treg frequency or phenotype

Effect of mAb

on Treg functionality

Clinical associations Key references

PD-1

Nivolumab

(Opdivo, 2015)

Pre-clinical

In vitro

CD4, CD25;

CD4, CD25, FoxP3

Animal model

CD4, CD25, FoxP3

Clinical

Peripheral blood

CD4, CD25

Tumour site

CD4, CD25

Pre-clinical

In vitro

• ↓ % (Ki67+) Tregs

Animal model

• ≈ number of Tregs (hM)

• ≈ CD8+ T cell : Treg ratio (hM)

Clinical

Peripheral blood

• ↑ % Tregs

• ↑ % CCR4+ Tregs

• ≈ % TCRαβ+ CD45RO+ Tregs

Tumour site

n.a.

Pre-clinical

In vitro

• ↓ Treg-mediated

suppressive capacity

Animal model

n.a.

Clinical

n.a.

Prognostic

Peripheral blood

• ↓ pre-treatment % Tregs is associated with

non-relapsing

• ↓ pre-treatment % PD-1+ Tregs is

associated with positive clinical response

Tumour site

• ↑ pre-treatment FoxP3 (mRNA) expression

is associated with diminished survival

↓ pre-treatment % PD-L1+ Tregs is

associated with diminished clinical

outcome

(87–94)

Pembrolizumab

(Keytruda, 2015)

Pre-clinical

In vitro

CD4, CD25

Clinical

Peripheral blood

CD4, CD25, CD127, FoxP3

Tumour site

CD4, CD25, CD127

Pre-clinical

In vitro

• ≈ CD15s, CTLA-4, FoxP3, Helios,

Ki67 and LAP protein expression

on/in Tregs

Clinical

Peripheral blood

• ≈ % Tregs

• ≈ % CD45+ Tregs

• ↑ CD8+ T cell : Treg ratio

Tumour site

• ≈ % Tregs

• ≈ % CD45+ Tregs

Pre-clinical

In vitro

• Treg-mediated suppressive

capacity is not affected (HC)

Clinical

n.a.

Prognostic

Tumour site

• ↓ pre-treatment % PD-L1+ Tregs is

associated with diminished

clinical outcome

(68, 87, 95–97)

aSummary of phenotypic markers used in the studies (in different combinations) to identify cells that are -according to the authors- regulatory cells.
*This mAb is now withdrawn from use in the European Union.

↓, decreased level (compared to baseline or control); ↑, increase (compared to baseline or control); ≈, similar level (compared to baseline or control); CCR4, CC-chemokine receptor 4; CD15s, Sialyl Lewis x; EpCAM, epithelial cell

adhesion molecule; eTreg, effector (activated) regulatory T cell; HC, healthy controls; HLA-DR, one of the human MHC class II molecules; hM, humanised mice; ICOS, inducible T cell co-stimulator; IFN, interferon; Ki67, intracellular

marker for proliferation; LAP, latency-associated peptide; n.a., not available; PBMC, peripheral blood mononuclear cell.
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TABLE 3 | Overview of published studies for mAbs with a target relevant for the T cell population.

In vivo target

and monoclonal antibody

(trade mark, year of EU

registration)

Treg identification markersa Effect of mAb

on Treg frequency or phenotype

Effect of mAb

on Treg functionality

Clinical associations Key references

α4 subunit of integrins

Natalizumab

(Tysabri, 2006)

Pre-clinical

In vitro

CD4, CD25, FoxP3

Clinical

Peripheral blood

CD4, CD25, FoxP3;

CD8, CD28

Pre-clinical

In vitro

• ≈ % Tregs

Clinical

Peripheral blood

• ↑ % Tregs when ex vivo

restimulated with auto-antigen

• ↑, ≈ or ↓ % Tregs

• ≈ % CTLA-4+ Tregs

• ↓ % Helios+ Tregs (compared to

HC)

• ≈ FoxP3 mRNA expression in

Tregs

• ↓ FoxP3 mRNA expression in

memory CD49d+ Tregs

• ↓ CD49d protein expression on

Tregs

• ↑ CD49d+ Th1 cell : CD49d+ Treg

ratio

• ↑ CD49d+ Th17 cell : CD49d+

Treg ratio

Pre-clinical

In vitro

• Treg-mediated suppressive

capacity is not affected (HC)

• α4+ β7+ Treg-mediated

suppressive capacity is not

affected (HC)

Clinical

Peripheral blood

• Treg-mediated suppressive

capacity is not affected

• Migratory capacity of Tregs

not affected

Predictive

Peripheral blood

• ↑ CD49d+ Th1 cell : CD49d+ Treg ratio

or CD49d+ Th17 cell : CD49d+ Treg

ratio associated with relapse

• Negative correlation between IL-10

concentration and disease progression

(98–108)

Tissue

FoxP3

Tissue

• ≈ number of Tregs

• ≈ CD4+ T cell : Treg ratio

• ≈ CD8+ T cell : Treg ratio

Tissue

n.a.

α4β7 integrin

Vedolizumab

(Entyvio, 2014)

Pre-clinical

In vitro

CD4, CD25, CD127, FoxP3

Animal model

CD4, CD25, CD127

Clinical

Peripheral blood

CD4, FoxP3

Pre-clinical

In vitro

n.a.

Animal model

• Treg homing from blood to

tissue (hM)

Clinical

Peripheral blood

• ↑ % Tregs

• ↓ CD4+ FoxP3− cell : Treg ratio

Pre-clinical

In vitro

• α4+ β7+ Treg-mediated

suppressive capacity is not

affected (HC)

Animal model

n.a.

Clinical

n.a.

n.a. (102, 109)

(Continued)
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TABLE 3 | Continued

In vivo target

and monoclonal antibody

(trade mark, year of EU

registration)

Treg identification markersa Effect of mAb

on Treg frequency or phenotype

Effect of mAb

on Treg functionality

Clinical associations Key references

C5

Eculizumab

(Soliris, 2007)

Pre-clinical

n.a.

Clinical

Peripheral blood

CD4, CD25, FoxP3

Pre-clinical

n.a.

Clinical

Peripheral blood

• ≈ number of Tregs

• ≈ number of CXCR4+ Tregs

Pre-clinical

n.a.

Clinical

Peripheral blood

• Treg-mediated suppressive

capacity is not affected

n.a. (110)

CD30

Brentuximab vedotin

(Adcetris, 2012)

Pre-clinical

n.a.

Clinical

Peripheral blood

CD4, CD25, CD127

Pre-clinical

n.a.

Clinical

Peripheral blood

• ↓ % CCR4+ Tregs

n.a. Prognostic

Peripheral blood

• No correlation between pre-treatment %

CD30+ Tregs and clinical response

(91, 111)b

CD38

Daratumumab

(Darzalex, 2016)

Pre-clinical

n.a.

Clinical

Peripheral blood

CD4, CD25, CD127

Pre-clinical

n.a.

Clinical

Peripheral blood

• ↓ number of Tregs

• ↓ number of CD38+ Tregs

• ↓ % CD38+ Tregs

• ↑ CD8+ T cell : Treg ratio

n.a. Prognostic

Peripheral blood

• Positive correlation between

pre-treatment number of CD38+ Tregs

(but not total Tregs) and extent of

the response

Predictive

Peripheral blood

• No relation between CD8+ T cell : Treg

ratio and clinical response

(112, 113)

IL-6R

Tocilizumab

(RoActemra, 2009)

Pre-clinical

In vitro

CD4, CD25, CD127, FoxP3;

CD8, CD25

Animal model

CD4, CD25, FoxP3

Clinical

Peripheral blood

CD4, CD25, CD127, FoxP3;

CD8, CD25, FoxP3

Pre-clinical

In vitro

• ↑ % Tregs, followed by ↓ towards

baseline level (probably

apoptosis-related decline)

• ≈ % Tregs (HC)

• ≈ CD4+ Treg : CD8+ Treg

ratio (HC)

Animal model

n.a.

Clinical

Peripheral blood

• ↑ number of Tregs

• ↑ or ↓ % Tregs

• ↑ % HLA-DR+ Tregs

Pre-clinical

In vitro

• ↑ CD45RA+ Treg-mediated

suppressive capacity (after

expansion period, HC)

Animal model

• ↑ Treg-mediated suppression (hM)

• Restoration of Treg-mediated

suppression (measured as ↑ body

weight, hM)

Clinical

Peripheral blood

• Treg-mediated suppressive

capacity is not affected

Predictive

Peripheral blood

• ↑ % Tregs is associated with clinical

improvement or remission

• ↑ % (suppressive) CD39+ Tregs in

responders compared to

non-responders

• Inverse correlation between % Tregs

and disease activity

• No association between % Tregs and

changes in disease activity or clinical

parameters

• No association between Foxp3 mRNA :

ROR-γt mRNA ratio and changes in

disease activity

(114–129)

(Continued)
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TABLE 3 | Continued

In vivo target

and monoclonal antibody

(trade mark, year of EU

registration)

Treg identification markersa Effect of mAb

on Treg frequency or phenotype

Effect of mAb

on Treg functionality

Clinical associations Key references

• ↑ % CD45RA− Tregs

• ↑ % Helios+ Tregs

• ↓ % IL-17+ Tregs

• ↓ % FoxP312+ Tregs

• ↑ CTLA-4, CCR4 and Ki67 protein

expression on/in Tregs

• ↑ FoxP3 mRNA expression in

whole blood

• ↓ IL-10 mRNA expression in

PBMCs

• ↑ Treg : activated effector CD4+

cell ratio

• ↑ Foxp3 mRNA : ROR-γt mRNA

ratio in whole blood

• ↓ CD4+ IL-17+ cell : CD4+

CD25high FoxP3+ cell ratio

• Inverse correlation between Treg :

activated effector CD4+ cell ratio and

disease activity

• Positive correlation between Treg :

effector CD4+ cell ratio and % STAT3+

cells

• ↓ CD4+ IL-17+ cell : CD4+ CD25high

FoxP3+ cell ratio is associated with

reduced disease activity

p40 subunit of IL-12 and IL-23

Ustekinumab

(Stelara, 2009)

Pre-clinical

n.a.

Clinical

Peripheral blood

CD4, CD25, CD127, FoxP3

Pre-clinical

n.a.

Clinical

Peripheral blood

• ≈ number of Tregs

• ↑ or ≈ % Tregs

Pre-clinical

n.a.

Clinical

Peripheral blood

• Treg-mediated suppressive

capacity is not affected

n.a. (130, 131)

VEGFR2

Ramucirumab

(Cyramza, 2014)

Pre-clinical

In vitro

CD4, CD45RA, FoxP3

Clinical

Peripheral blood

CD4, CD45RA, FoxP3

Tumour site

CD4, FoxP3; CD4, CD45RA, FoxP3

Pre-clinical

In vitro

• ↓ % eTregs

Clinical

Peripheral blood

• ≈ % eTregs

Tumour site

• ↓ % eTregs (in TILs)

• ↓ % Ki67+ Tregs

n.a. Prognostic

Tumour site

• ↑ pre-treatment % eTregs (in TILs) is

associated with partial response and

longer progression-free survival

(132)

aSummary of phenotypic markers used in the studies (in different combinations) to identify cells that are -according to the authors- regulatory cells.
bStudy by Romano et al. (133) not taken into account, because of incorrect use of markers to determine Tregs (i.e., CD4+ CD25+ CD127+).

↓, decreased level (compared to baseline or control); ↑, increase (compared to baseline or control);≈, similar level (compared to baseline or control); C5, complement protein 5; CCR4, CC-chemokine receptor 4; CXCR4, CXC-chemokine

receptor 4; eTreg, effector (activated) regulatory T cell; HC, healthy controls; HLA-DR, one of the human MHC class II molecules; hM, humanised mice; Ki67, intracellular marker for proliferation; n.a., not available; PBMC, peripheral

blood mononuclear cell; TIL, tumour-infiltrating lymphocyte.
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de Wolf et al. (Pre-)clinical Regulatory T Cell Monitoring

TABLE 4 | Overview of published studies for mAbs with a target not relevant for T cells.

In vivo target

and monoclonal antibody

(trade mark,

year of EU registration)

Treg identification

markersa
Effect of mAb

on Treg frequency or

phenotype

Effect of mAb

on Treg functionality

Clinical associations Key references

BLyS (BAFF)

Belimumab

(Benlysta, 2011)

Pre-clinical

In vitro

CD4, CD25, CD127

Clinical

Peripheral blood

CD4, FoxP3

Pre-clinical

n.a.

Clinical

Peripheral blood

• ↑ % Tregs

• ↑ Treg : Th17 cell ratio

Pre-clinical

In vitro

• Treg-mediated

suppressive capacity is

not affected

Clinical

n.a.

Predictive

Peripheral blood

• Inverse correlation

between % Tregs and

disease activity

(134)

Her2b

Ado-trastuzumab emtansine

(Kadcyla, 2013)c

Pre-clinical

Animal model

CD4, CD25, FoxP3

Clinical

Peripheral blood

CD4, CD25, FoxP3

Tumour site

FoxP3

Pre-clinical

Animal model

• ↑ % Tregs (M)

• ↑ Ki67, CTLA-4 and T-bet

protein expression in/on

Tregs (M)

Clinical

Peripheral blood

• ≈ number of Tregs

• ≈ or ↓ % Tregs

• ↑ CD8+ T cell: Treg ratio

• ↓ Treg : Th17 cell ratio

Tumour site

• ≈ or ↓ number of Tregs

n.a. Predictive

Peripheral blood

• Negative correlation

between mAb

concentration and

change in % Tregs

• ↑ % Tregs is associated

with disease progression

• ↓ % Tregs is associated

with progression-free

survival

Tumour site

• ↓ Number of Tregs in

post-treatment tumour

lesions is associated with

clinical response

(135–142)

aSummary of phenotypic markers used in the studies (in different combinations) to identify cells that are -according to the authors- regulatory cells.
bStudy by Force et al. (143) not taken into account, because it was not clear which product (pertuzumab or trastuzumab) had effects on Tregs.
cFor the clinical studies, is was not clear from the description whether trastuzumab (Herceptin) or ado-trastuzumab emtansine (Kadcyla) was used.

↓, decreased level (compared to baseline or control); ↑, increase (compared to baseline or control); ≈, similar level (compared to baseline or control); BLyS (BAFF), B lymphocyte

stimulator (B cell activating factor); GD-2, glycolipid disialoganglioside-2; Ki67, intracellular marker for proliferation; M, mice; n.a., not available; PDGFR-α, platelet derived growth factor

receptor-alpha; SLAMF7, signalling lymphocytic activation molecule F7.

targets the B lymphocyte stimulator (BLyS) protein, thereby
blocking the activation of cells bearing the BLyS receptor. Target
cells are primarily B cells, but also T follicular helper cells, which
produce IL-21. Belimumab appears to reduce IL-21 production
and subsequently restores Treg development at the expense of
Th17 expansion (134).

Trastuzumab is indicated for Her2+ breast cancer and
does not directly target the immune system. Nevertheless,
Treg frequency and phenotype and their association with
clinical outcome were evaluated both in human patients
and in mice. One reason for assessing Tregs in breast
cancer patients and the effect of trastuzumab on these
cells may be that disease progression appears to be related
to tumour-associated immunosuppression and FoxP3+ cell
infiltration (135, 145–147). Indirect effects of the mAb on
the balance between pro- and anti-inflammatory immune
cells could therefore contribute to a more effective anti-
tumour response.

For mAbs with a target outside the T cell population, still
the number of the total T population or CD4+ and CD8+ cells
were monitored, although no Treg monitoring was performed
(Table 1), which is in line with the published reports on
these products.

Taken together, we found that the depth of Treg (and T cell
subset) immunomonitoring differs between products, depending
on the likeliness that the mAb affects T cell functionality or
survival. In addition, the extent of Treg evaluation varies between
registration dossiers and published studies for individual mAbs.
This is most probably because the majority of literature studies
were academia-driven and were published only after marketing
authorisation. Nevertheless, the involvement of the company in
approximately half of these studies reveals that collaboration
between industry and academia contributes to increased insight
in treatment-related effects on the immune system.

Other Products Affecting Treg-Relevant
Targets
We took a pragmatic approach by evaluating mAb products
EU-registered in a time period of 13 years without selecting
for products that were actually meant to modulate the immune
system. Only seven (of the 46 evaluated) products targeted
molecules with high relevance for Treg function and survival.
To determine whether other drug products with a Treg-relevant
target took these suppressor cells into account in (pre-)clinical
studies, we investigating two recently EU-registered Janus
kinase (JAK) inhibitors indicated for rheumatoid arthritis. The
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JAK/STAT (i.e., signal transducer and activator of transcription)
pathway is known to play an important role in the activation and
survival of immune cells (148). Especially STAT5, a downstream
target of the IL-2 receptor, is crucial for FoxP3 induction and Treg
differentiation in the thymus (149, 150).

In both registration dossiers, effects of JAK inhibitors
on lymphocyte and T cell subsets (cell count, phenotypic
markers, cytokine production, and STAT phosphorylation) were
determined, both clinically and pre-clinically. Clinically, also
effects on Tregs (i.e., frequency) were investigated and a potential
association between Tregs and the clinical response was explored.
However, the amount of data presented in published studies (i.e.,
on local and systemic Treg frequency and functionality in mice
andmen, but also in vitro) was muchmore extensive than present
in the dossier reports, although for one of the JAK inhibitors only
one literature study was available (151–158).

DISCUSSION

Study Limitations
Some limitations in our study need mentioning. First, we
specifically selected EU-authorised mAb products (although not
restricted to their registered indications). Therapies that did not
reach the market or were still under review were not evaluated,
although some of these products may target Tregs and thus
dossiers could contain valuable information [e.g., isatuximab
(159)]. In addition, we acknowledge that several mAb products
with direct immune-related or even T cell-related targets are in
the late-stage pipeline of several companies (160). Future MAAs
containing data on Treg frequency or even functionalitymay thus
be expected.

Second, mAb products authorised before 2006 were excluded,
because the main increase in attention for and knowledge about
Tregs occurred in the last decade. For several of these older
immunomodulatory mAb products with a direct impact on the
T cell population (e.g., infliximab, adalimumab, alemtuzumab,
daclizumab), recently published immunomonitoring studies
involved Treg frequency and functionality, because of their
importance in the disease pathophysiology and to (further)
elucidate the pharmacological mechanisms of action in lack-of-
response issues or for biomarker definition (161, 162). Tregs
are also monitored for old mAbs targeting non-T cell receptors,
such as CD20 (rituximab) (163, 164). Above-mentioned studies
investigating effects of recently authorised products or relatively
old products on the immune system could contribute to our
knowledge of T cell subsets.

Third, mAb products indicated for infections (e.g., caused
by Clostridium difficile or HIV) or immune-related diseases
with a distinct pathophysiology (such as paroxysmal nocturnal
haemoglobinuria) were also excluded. Only a few mAb products
are registered for these indications and it is expected that data
concerning Tregs in existing dossiers will be limited.

Fourth, for literature reports, we limited our search to the
same products as described for MAA dossiers and thus excluding
studies with non-registered human or “mousenised” mAbs
against the same target. We acknowledge that these excluded
studies would be helpful when more insight in efficacy or

TABLE 5 | Overview of mAbs for which no published scientific papers were

available.

In vivo target group In vivo

target

Monoclonal antibody

(trade mark, year of EU registration)

Target highly relevant

for Tregs

PD-1 Cemiplimab (Libtayo, 2019)

Target relevant

for the T cell population

EGFR Necitumumab (Portrazza, 2016)

Panitumumab (Vectibix, 2007)

IL-1β Canakinumab (Ilaris, 2009)

IL-4R and

IL-13R

Dupilumab (Dupixent, 2019)

IL-5 Benralizumab (Fasenra, 2018)

Reslizumab (Cinqaero, 2016)

Mepolizumab (Nucala, 2015)

IL-6 Sarilumab (Kevzara, 2017)

Siltuximab (Sylvant, 2014)

IL-17A Ixekizumab (Taltz, 2016)

Secukinumab (Cosentyx, 2015)

IL-17RA Brodalumab (Kyntheum, 2018)

IL-23 Risankizumab (Skyrizi, 2019)

Tildrakizumab (Ilumetri, 2018)

Guselkumab (Tremfya, 2017)

PD-L1 Durvalumab (Imfinzi, 2018)

Atezolizumab (Tecentriq, 2017)

Avelumab (Bavencio, 2017)

TNF-α Certolizumab pegol (Cimzia, 2009)

Golimumab (Simponi, 2009)

Target not relevant

for T cells

CD20 Ocrelizumab (Ocrevus, 2018)

Obinutumumab (Gazyvaro, 2014)

Ofatumumab (Arzerra, 2010)*

CD22 Inotuzumab ozogamicin (Besponsa, 2017)

CD33 Gemtuzumab ozogamicin (Mylotarg, 2018)

GD-2 Dinutuximab (Unituxin, 2015)*

Her2 Pertuzumab (Perjeta, 2013)

PDGFR-α Olaratumab (Lartruvo, 2016)*

SLAMF7 Elotuzumab (Empliciti, 2016)

*This mAb is now withdrawn from use in the European Union.

safety-related effects of mAb products on specific immune cells
would be required. Nevertheless, to establish the relevance of
experience with such non-registered products, interpretation of
the published data would be needed, which was not the aim of
our study.

Value of Treg Monitoring
Tregs have a crucial function in regulating immune responses
to dampen inflammation, limit tissue damage and prevent auto-
reactivity. Pharmacological impact on their number and/or
(local) activity, either directly or indirectly, is likely to contribute
to (or impair) clinical responses or to adverse events. Therefore,
monitoring effects of immunomodulatory products on T
cells -including Tregs- should be part of (pre-)clinical studies.

In addition, Tregs or specific Treg subsets may turn out
to be predictive biomarkers for specific diseases or patient
populations. We noted that in the majority of mAb product
dossiers, no clinical relevance was estimated for treatment-
induced changes in Treg frequency or phenotype. For only two
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products, an association was determined between Treg frequency
and the clinical response. Published reports, on the other
hand, frequently mentioned associations between the amount of
(local) Tregs and clinical outcome. Thereby, Tregs could act as
biomarker for the clinical response (144). Associations with the
baseline Treg level prior to treatment may be used as prognostic
biomarker, for example to select patients eligible for mAb (anti-
tumour) therapy. Changes in Treg level following treatment may
act as predictive marker of the mAb-mediated clinical response,
in auto-immune as well as in neoplastic indications. Nonetheless,
interpretation of clinical associations and treatment-related
Treg effects is still rather difficult. For example, differentiation
between effects that are a direct consequence of the medicinal
product activity or a result of disease remission is usually not
accomplished. In addition, the clinical significance of fluctuations
in Tregs during or after therapy remains to be established.

In general, immunomonitoring has a substantial value to
assess the effectiveness and safety of therapeutic interventions
and to select patients eligible to these treatments (2, 165). On
the level of T cell subsets, scientific knowledge regarding
immune responses is growing exponentially (also for
older immunomodulatory treatments) and this knowledge
should be taken into account when selecting for specific
immunomonitoring parameters. But we consider that the
general added value of measuring Tregs in (pre-)clinical studies
is not yet sufficiently clear and their contribution to the clinical
response requires more extensive analysis. This would include
gathering information regarding the Treg role in disease
pathophysiology and therapy-related adverse events. Regulatory
authorities need this information to estimate the value of
Tregs and the necessity to take treatment-related Treg changes
along in the benefit-risk assessment. Tregs should therefore be
taken into account as exploratory parameter in (pre-)clinical
studies, either prior to MAA or post-registration in collaboration
with academia.

Despite growing knowledge regarding treatment effects on
Tregs, we observed a high variability in data between the different
studies, probably due to heterogeneity of the experimental
approach. Studies differed in markers used to identify Tregs,
in methods to measure their functionality and in assay read-
out techniques. Also tissues and species used to monitor Tregs,
the time between treatment and analysis points varied between
studies. Moreover, the treatment protocol (e.g., administration
route, number and quantity of doses and dose intervals,
concomitant therapies), therapeutic indication and the number
of patients also added to study heterogeneity. D’Arena et al. ran
into the same problem of heterogeneity when evaluating the
relevance of Tregs as biomarker in the context of hematologic
malignancies. Their study also exemplified “the need for more
standardised approaches in the study of Tregs” (166). Thus,
harmonisation of Treg identification and monitoring is required
before these cells can become actual endpoints in clinical
investigations or can be used as prognostic or predictive
biomarker (25, 144).

Apart from this lack of harmonisation, the scientific
knowledge is too limited to demand or guide Treg monitoring
in registration dossiers. Nevertheless, we hereby stimulate

companies (and academia) to take these cells into account in their
investigations or to collaborate with academia to perform T cell
subset-specific studies (post-registration).

Recommendations for (Pre-)clinical
Studies
We will end this review with some specific points-to-consider
for Treg (and other T cell subset) monitoring in pre-clinical and
clinical studies.

Sampling
Treg monitoring (both clinically and pre-clinically) could be
restricted to products with a target known to play a vital
role in T cell development, differentiation, functionality, or
survival. Especially when the target is related to regulation of
the immune system and loss-of-function would considerably
increase the risk of auto-immunity [e.g., CTLA-4 expression
on Tregs (27)], monitoring the frequency and functionality of
immune cells closely related to this target may significantly
add to the identification of potential safety concerns early
in product development. Obviously, for products containing
(ex vivo expanded) Tregs or for therapies typically aiming to
enhance Treg activity (e.g., tolerogenic dendritic cells), analysis
of Treg frequency and/or function will be imperative (24). For
immunomodulatory treatments with a target in the non-T cell
compartment, a risk-based approach could identify whether
monitoring of T cell subset responses would be required to
substantiate clinical data.

We suggest to add several Treg-related markers to an existing
immune monitoring panel (see below in subsection Identifying
Tregs). When this would not be feasible, one could retain
clinical samples to be able to retrospectively measure effects
on specific T cell or Treg subsets when required [as recently
performed for unexpected events with nivolumab (167–169)].
More “standard” Treg monitoring could then be restricted to
pre-clinical investigation.

What samples would be most appropriate? In general, in
humans peripheral blood is the most accessible compartment for
multiple analyses over time. Nevertheless, changes in circulating
T cell subsets may not accurately reflect the local environment.
Furthermore, it has been reported that the ratio and phenotype of
Treg subsets at tumour sites differ substantially from peripheral
blood (8, 9, 25, 132, 170). Therefore, when feasible, treatment
effects on local T cell subsets may be taken into account as
well (26).

We noted that pre-clinical in vitro pharmacologic studies are
frequently performed with cells from healthy donors. This can be
acceptable, but using cells from patients may have added value
when the disease has impaired the intrinsic function of the cells.
For example, patients with giant cell arteritis can have a defect in
their FoxP3 protein, which affects the suppressive capacity of the
Tregs, but could be pharmacologically corrected (114).

Identifying Tregs
In general, treatment-related effects on the immune system
are dose-dependent and difficult to predict. For example,
lymphocyte-depleting approaches (such as anti-thymocyte
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globulin) do not simply deplete all T cells, but also act as
immunosuppressant by, for example, converting effector into
regulatory T cells and by preserving or even expanding already
existing Tregs. An increased Treg to conventional T cell ratio
may therefore be an unexpected effect of T cell-depleting
antibodies (21, 36, 171, 172). This indicates that monitoring
drug-mediated effects on the whole T cell population may
not correctly predict effects on T cell subsets. Therefore, these
analyses should preferably discriminate between effector and
regulatory T cells, at least for products indicated to specifically
target T cells.

Accurately defining Tregs is, however, a challenge. Although
there are several useful reviews available that highlight different
markers and cytokines that may help identifying Tregs, there is
no unique Tregmarker (7, 22, 24, 173–175). Expression of FoxP3,
the master regulator of classical CD4+ Tregs, is not limited to
human regulatory cells: effector T cells transiently upregulate
FoxP3 expression after activation and also other immune cells
and even tumour cells may express this transcription factor
(176–181). In addition, not all regulatory T cell subtypes express
FoxP3. Moreover, FoxP3 cannot be used to isolate Tregs alive for
ex vivo functionality testing. Combined use of several (surface)
markers will therefore be needed to identify and purify Tregs.
In contrast to murine CD4+ CD25+ regulatory T cells, only
CD4+ cells with a high level of CD25 expression have a
suppressive capacity in humans. The other CD4+ CD25+ T
cells are activated effector T cells. According to the vision of
several experts in the field, CD3, CD4, CD25, CD127, and
FoxP3 are the minimally required markers to define human
Treg cells in flow cytometric samples and addition of Ki67
and CD45RA/RO could provide information on the activation
status of Tregs (173) or improve selection of pure Treg fractions
(182). Such Treg panel would also allow for monitoring of
different effector T cell subsets (naïve/memory state of both
CD4+ and CD8+ T cells). The experts also emphasised that
a proper flow cytometric gating strategy will improve the
reliability and purity of the defined Treg population, and in the
meantime diminish inter-assay variability (173, 183). Recently,
Pitoiset et al. provided a standardised protocol to monitor
Tregs in multicentre clinical trials, using above-mentioned
markers (184).

One should, however, keep in mind that there are phenotypic
differences between circulating Tregs and Tregs at sites
of inflammation (173). A more precise discrimination
of Treg subtypes may thus be needed, especially in the
peripherally-induced (heterogeneous) population (25, 185).
And differentiating between naïve and activated Treg subsets
may be needed to find treatment-related effects or clinical
associations (186, 187). Nevertheless, distinguishing between
Treg subsets (especially thymus- vs. periphery-derived cells)
is rather challenging (3–5, 188–190). Measuring the amount
of demethylation of the FoxP3 gene may provide insight
in the stability of FoxP3 expression and thereby distinguish
thymus-derived Tregs from peripherally-induced Tregs
and activated conventional T cells (191, 192). Nevertheless,
this demethylation status analysis requires a highly pure
lymphocyte sample.

Functionality Testing of Tregs
There are various methods to analyse the suppressive capacity
of Tregs. Most of these assays aim to measure inhibition of
effector T cell proliferation or cytokine production, although
cytotoxicity inhibition may also be used as read-out (193, 194).
The requirement of a rather large amount of autologous cells
for such co-cultures would make these types of assays less
suitable for patient samples (195). Indeed, we found in several
registration dossiers that such testing was considered clinically,
but impossible to perform. In addition, the in vivo functionality
may be impacted by the tissue environment, which is difficult
to mimic in vitro (26). Moreover, impaired in vivo suppressive
function is not always reflected by results from an in vitro
assay (20).

Treg functionality was only (pre-clinically) analysed in one of
the 46 mAb dossiers evaluated. Lack of functionality testing is
probably the result of difficulties with assay design. Nevertheless,
there are literature examples where Treg functionality testing
appeared possible (62).We therefore would like to draw attention
to different approaches that may enhance the possibility of
Treg function analysis. Instead of using autologous cells, a
mixed lymphocyte reaction may be considered (196, 197). In
addition, to prevent long co-culture periods, a surrogate read-
out (i.e., inhibition of activation marker expression instead
of proliferation) could be used (198–200). Identification of
functional Tregs via marker gene analysis (e.g., FoxP3, CTLA-
4, and IL-10) may also be a simple and quick method, although
the level of mRNA expression does not necessarily reflect protein
expression and this read-out is also considered surrogate for Treg
functionality (201). Simply distinguishing between resting and
activated Tregs and effector T cells can also provide information
about the presence or absence of suppressive T cells in a sample
(182, 187). More considerations and technical challenges for
Treg functionality assays can be found in the public domain
(25, 115, 183, 194, 202–204).

Future Perspective and Conclusion
We are now starting to understand the role of different T
cell subsets in disease pathogenesis and immunotherapeutic
mechanisms of action. This provides the opportunity to
selectively target specific subpopulations rather than a whole
T cell population to improve the effectiveness and safety
of immunomodulatory therapies. In addition, monitoring the
activation status, function and amount of specific T cell
subsets could assist in identifying the patients that would
most likely benefit from therapy (2). A risk-based approach is
considered helpful to select products that would require T cell
subset monitoring to more reliably assess the product’s benefits
and risks.

Immunomonitoring, as proposed in this review, will also
help to enrich our knowledge about Tregs and their association
with the clinical response. This will, however, require accurate
phenotypic identification of regulatory subsets and further
investigation of the clinical relevance of treatment-induced
changes in their levels. To obtain and report such information in
a systematic way, a collaboration between industry and academia
will be required (205).
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We believe that there are still many issues to address before
Tregs can be used as biomarkers for targeted therapies, but
gathering knowledge about Treg subpopulations in health and
disease will eventually shed more light on the (pre-)clinical value
of these regulatory cells. This will ultimately result in more
concrete regulatory guidance for T cell (and particularly Treg)
monitoring in studies used for marketing authorisation.
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