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THRIVE
Transnasal humidified rapid-insufflation ventilatory ex- When discussing NHFO therapy, it is important to distin-
change (THRIVE) has changed airway management since its

introduction into anaesthetic practice just 5 yr ago. Whilst

nasal high-flow (NHF) oxygen has been used for more than a

decade in critical care to treat patients with hypoxaemic res-

piratory failure,1 it was not until 2015 when THRIVE was

shown to prolong safe apnoea time before desaturation and to

reduce the rate of carbon dioxide accumulation that the po-

tential role of NHF oxygen (NHFO) in anaesthesia began to be

realised.2

Since 2015, NHFO/THRIVE has been rapidly incorporated

into anaesthetic practice worldwide and several key airway

guidelines,3,4 testament to its utility. The ability of THRIVE to

optimise periprocedural oxygenation and prolong safe apnoea

time via per-oxygenation (i) increases the margin of safety for

securing a definitive airway, improving patient safety; (ii) fa-

cilitates safer training in difficult airway management; (iii)

provides an extended apnoea ‘tubeless’ technique, for

example, in airway/laryngotracheal surgery; and has also led

to broader uses of NHFO in anaesthetic practice.
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guish between NHFO delivered to a spontaneously breathing

patient and THRIVE (NHF therapy) delivered to an apnoeic pa-

tient, as the underlying mechanisms differ, resulting in

different clinical uses and considerations. In the spontane-

ously breathing patient perioperative uses of NHFO are: (i)

preoxygenation; (ii) sedation, for example during awake

tracheal intubation; (iii) general anaesthesia with mainte-

nance of spontaneous breathing; and (iv) postextubation.

THRIVE, which we will discuss further here, is used during

apnoea to maintain: (i) oxygenation during the intubation

process (peri-intubation) and (ii) to facilitate extended apnoea

for ‘tubeless’ surgery.
Reproducibility

The THRIVE effect of extended safe apnoea time before desa-

turation with reduced rate of carbon dioxide accumulation

compared with historical studies of ‘classical’ apnoeic

oxygenation using low-flow oxygen, has now been reproduced
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in: (i) many centres worldwide5e10; (ii) in different patient

populations5; (iii) in patients with ‘difficult’ and compromised/

stridulous airways2,10; (iv) during both peri-intubation6 and

extended apnoea application of THRIVE7e9; and (v) using

different methods to measure carbon dioxide (e.g. end-tidal

CO2 [ETCO2] on termination of THRIVE, transcutaneous CO2,

and PaCO2).

The rate of carbon dioxide increase (0.15 kPamin�1 ETCO2
2;

0.13 kPa min�1 ETCO2
8; 0.21 kPa min�1 PvCO2

7; 0.24 kPa min�1

PaCO2
9) is lower than the 0.35e0.45 kPa min�1 observed in

historical apnoeic oxygenation studies with low-flow oxy-

gen.11,12 No RCT has compared the rate of carbon dioxide

clearance with high-flow vs low-flow apnoeic oxygenation

techniques, but results from a current RCT investigating this

are awaited.13 It is also unclear whether carbon dioxide

clearance, or ‘ventilatory exchange’, occurs in certain pop-

ulations such as children.14,15
Mechanisms

Whilst the mechanisms underlying NHFO in spontaneously

breathing patients are well described (high FiO2; positive

airway pressure of 0.7 cm H2O per 10 L min�1 flow rate16;

pharyngeal dead-space ‘washout’ and improved respiratory

mechanics), the physiological mechanisms underlying

THRIVE (apnoeic patient) are not fully elucidated. Positive

airway pressure was initially considered an important mech-

anism, but we now realise this is not the case. Positive airway

pressure generated during THRIVE is minimal,17 as the patient

is apnoeic and therefore does not generate an expiratory flow

rate to counter the incoming oxygen stream, which is the

predominant mechanism generating high mean positive

airway pressures in a spontaneously breathing patient.16

Apnoeic oxygenation and, most importantly, apnoeic ventilation

are now considered key. Apnoeic ventilation, or ‘respiration

without respiratory movements’, was first described in 1865

when itwas appreciated thatwith closed nose, open glottis, and

breath held, ‘air within the respiratory passages moves to and

fro in tiny expiratory and inspiratory puffs … with each inspi-

ratorymotion coincidingwith a cardiac systole, each expiratory

puffwith a cardiacdiastole.‘18 Thesepulsatile changes inairway

gas flow, synchronous with the cardiac cycle, known as

cardiogenic oscillations (cardiogenic ‘stroke volume’ 6e40 ml),

arise frommovement of blood in the pulmonary vessels causing

compression and expansion of small airways.19 Cardiogenic

oscillations contribute to carbon dioxide removal during

apnoea, however this mechanism alone does not explain the

increased carbon dioxide removalwith high-flownasal oxygen, as

cardiogenic oscillations are present regardless of whether high-

flow, low-flow, or no oxygen is applied.

Studies in vivo of apnoeic ventilation mechanisms are

challenging because of complex and dynamic interactions of

the cardiorespiratory and circulatory systems, so a physical

and computational physiological modelling approach has

been used.20,21 Physical airway models to investigate the fluid

dynamics affecting carbon dioxide clearance suggest that

enhanced carbon dioxide clearance with THRIVE arises as a

result of interaction between entrained, highly turbulent

supraglottic flow vortices generated by NHFO (turbulence

proportional to THRIVE flow rate), and cardiogenic oscilla-

tions.20 This interaction creates a mechanism enhancing car-

bon dioxide removal from carina to pharynx, whilst also

providing a means of increasing oxygen movement from

pharynx to carina, an ‘active’ oxygenation component.20
Apnoeic ventilation further increases PAO2 as a consequence

of its reciprocal reduction in PACO2 {alveolar gas equation:

PAO2¼(FiO2�[PatmePH2O])e(PACO2/R)}. Results from computa-

tional physiological modelling in adult patients complement

these findings.21
Variable apnoea times in different
populations

The safe apnoea window provided by THRIVE is shortened in

certain patient groups and clinical situations. Factors affecting

the rate of oxyhaemoglobin desaturation during apnoea (with

airway open or closed, with air or 100% oxygen as the ambient

gas) have been extensively modelled, with the models vali-

dated against clinical data from human apnoea studies.22e24

These models did not incorporate high-flow nasal oxygen,

which provides a means during apnoea of not only adding

oxygen to the reservoir established at the end of preoxyge-

nation via apnoeic oxygenation (as low-flowoxygen also does),

but also via apnoeic ventilation.

A complex interplay of factors determines apnoea time

(Fig. 1) in patients undergoing THRIVE: (i) alveolar oxygen

content at the end of preoxygenation (FRC�FAO2); (ii) magni-

tude of effect of mechanisms that will add to the oxygen

reservoir during apnoea (i.e. apnoeic oxygenation and apnoeic

ventilation) (via both reciprocal clearance of PACO2 and ‘active’

replacement of oxygen); (iii) factors affecting the oxygen

cascade, transport, and cellular uptake; and (iv) metabolic rate

of oxygen consumption. These factors differ in their weighted

importance, with initial FAO2, alveolar volume and oxygen

consumption rate having the greatest effects in low-flow ox-

ygen models.22,24 Interestingly, in models, increasing ambient

FiO2 from 0.9 to 1.0 almost doubles the time to desaturation,

which is a greater effect than when ambient FiO2 is increased

from 0.21 to 0.9.23

The framework shown in Fig. 1 could be incorporated into

an equation or App format. The anaesthetist would input

known patient parameters to calculate predicted mean

apnoea time (standard deviation [SD]) and the likely rate of

carbon dioxide increase for the patient. The predicted safe

apnoea time would pertain to populations rather than any

specific patient, but nonetheless could help guide airway

management strategy.
Unanswered questions

Further research is needed to improve our understanding of

the mechanisms underlying THRIVE. This knowledge could

refine the THRIVE technique, for example by optimising flow

rates used and the magnitude of cardiogenic oscillations

generated (e.g. by modifying HR or stroke volume), and

perhaps even by combining NHFO and oxygen jet ventilation.

Better understanding of the variable physiological responses

to THRIVE in different patient groups will improve our ability

to predict patients in whom the safe apnoea time is likely to be

shortened. Furthermore, whether apnoeic ventilation occurs

in all patient subgroups, notably children, requires further

investigation.
Coronavirus disease 2019

Coronavirus disease 2019 (COVID-19) has changed our lives

and has become a defining point for airway management: BC

(before COVID-19) and AC (after COVID-19).



Apnoea time
(with patent airway)

•  V/Q matching (deadspace, shunt QS/QT)
•  1/diffusion barrier (Fick’s)

•  Increased: critical illness, paediatrics, obesity, pregnancy, hypermetabolic
   states  e.g. thyrotoxicosis, fasciculations from suxamethonium

•  CaO2=(1.34×[Hb]×SaO2)+(0.0225x PaO2 kPa)
•  P50 (position) of oxy-Hb dissociation curve
- pH, PaCO2, temperature, 2,3-DPG etc
•  Bohr shift: increasing PACO2 during apnoea

1. Apnoeic oxygenation:
    Magnitude of effect dependent upon:
    • Airway patency
    • Entrained FiO2
    • Degree of denitrogenation achieved

2. Apnoeic ventilation: (oxygenation & partial removal of CO2)
     Magnitude of effect dependent upon:
    •Turbulence from supraglottic flow vortices
      • Proportional to flow rate
      • Variable upper airway anatomy
    •Magnitude of cardiogenic oscillations
      • ‘Cardiogenic stroke volume’
         - HR, cardiac contractility, pulmonary vascular compliance
          - ↑Pa��2 → +SNS →↑cardiac contractility →↑cardiogenic
            stroke volume

A. OXYGEN RESERVOIR AT END OF PRE-
    OXYGENATION

D. OXYGEN DELIVERY(DO2) AND CELLULAR UPTAKE

B. MECHANISMS ADDING OXYGEN TO RESERVOIR
    DURING APNOEA

E. OXYGEN CONSUMPTION (VO2)

C. OXYGEN UPTAKE FROM ALVEOLI → ARTERIAL
    BLOOD

DO2=CaO2xCO

O2 content in alveolar compartment= PAO2 xFRC
where:

1. PAO2 =(FiO2x[Patm –PH2O])–PACO2 /R

    • FiO2 delivered
      • Degree of air entrainment (nasal high-flow rate: nasal PIFR
        ratio, and nasal cannulae: nares ratio)
    • Degree of denitrogenation achieved
    • PACO2 (inversely proportional to minute ventilation)
    • R (0.7-1.0 varies dependent on diet)

2. FRC
 • Reduced: obesity, pregnancy, paediatrics, restrictive lung
 disease, supine position
 • Increased: head-up position, positive airway pressure
 (mouth open/closed), recruitment, obstructive lung disease
 • Proximity of closing volume to FRC
 Alveolar reservoir is by far the largest oxygen compartment.
 Also consider arterial, venous and tissue O2.
 eg CaO2=(1.34x[Hb]xSaO2)+(0.0225xPaO2) kPa

Fig 1. Conceptual framework of factors influencing apnoea time with THRIVE. CaO2, arterial O2 content; CO, cardiac output; DO2, O2 de-

livery; FiO2, fraction of inspired O2; FRC, Functional residual capacity; [Hb], haemoglobin concentration; PACO2, alveolar CO2 partial

pressure; PAO2, alveolar partial pressure of O2; Patm, atmospheric pressure; PH
2
O, standard vapour pressure of water; R, respiratory quotient;

SaO2, arterial O2 saturation of haemoglobin; SNS, sympathetic nervous system; V/Q, ventilation/perfusion; PIFR, peak inspiratory flow rate.
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In early 2020, the main concern raised with NHFO/THRIVE

and severe acute respiratory syndrome coronavirus-2 (SARS-

CoV-2) was the potential for the generation and dispersion of

aerosols and droplets and consequent influence on infection

risk. The evidence base to guide NHFO and aerosolisation risk

was limited25; whilst a study suggested low risk of bacterial

transmission26 the risk of viral transmission had not been

studied. The UK consensus guidelines for managing the

airway in patients with COVID-19 were based on limited data

and took a precautionary approach, recommending that NHFO

should not be used in patients around the time of tracheal

intubation.27 Joint UK Critical care guidance for COVID-19 pa-

tients also advised against NHFO use in critical care settings.28

Countries and societies worldwide adopted different ap-

proaches, with many recommending NHFO therapy for hypo-

xaemia associated with COVID-19 (e.g. Italy, China).29.30 The

WHO recommended NHFO use in selected patients with hypo-

xaemic respiratory failure.31 Because of the scale of the

pandemic, intensive care resource limitations, and efficacy of

NHFO in COVID-19 patients, NHFO has been used on a global
scale. Consequently, there is both an increasing body of evi-

dence of NHFO in clinical practice, and simulation and

laboratory-basedmodelling of aerosolisation.

Different particle size thresholds arbitrarily differentiate an

aerosol from a droplet (WHO specifies 5 mm diameter

threshold32). The critical difference is that aerosols remain

temporarily suspended in air (drag forces lifting them upwards

equal gravitational forces pulling them to earth), travel over

distances and can be inhaled and deposited in the distal air-

ways, leading to airborne spread.41 By contrast, droplets follow

a ballistic trajectory falling from patient’s mouth to ground,

with droplet mass determining the distance travelled.41

Aerosol and droplet formation occurs when shear forces are

generated which are sufficient to overcome surface tension

forces between fluid in the respiratory tract and the respira-

tory tract lining.41 NHFO delivers a high velocity gas flow

across the upper respiratory tract epithelium, generating such

shear forces.41

The inclusion of NHFO on the current Public Health England

list of aerosol-generatingprocedures is basedonexpertopinion

mailto:Image of Fig 1|eps
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and consensus, because ‘no evidence of appropriate quality or

strengthwas identified’ for NHFO.33 NHFOuse in anaesthesia, in

contrast to use in the high-dependency unit setting, forms part

of a wider airway management strategy, whether in a peri-

intubation or extended apnoea/shared airway context. This

involves other processes and techniques, many of which may

be aerosol generating. NHFO/THRIVE may generate and

disperseaerosolsanddroplets,butdoes itproduce: (i)morethan

alternative oxygen delivery devices; (ii) more than other

methods of aerosol generation (e.g. coughing); and (iii)

increased viral transmission and infection?
NHFO aerosol and droplet dispersion compared with
other oxygen delivery devices

In a high-fidelity patient simulator breathing spontaneously

with NHFO at 10, 30, and 60 L min�1, mean (SD) exhaled air

dispersion distances were 6.5 (1.5) cm, 13.0 (1.1) cm, and 17.2

(3.3) cm (P<0.001), respectively.34 Dispersion distances were

lower than historical results of 5 L min�1 O2 via nasal cannula

(42 cm), 12 L min�1 non-rebreather mask (<10 cm), noninva-

sive ventilation (NIV) 18/4 cm H2O (45 to >95 cm, dependent on

mask/device).35 Additionally, computational fluid dynamic

modelling on manikins suggests 85% of droplets (>5 mm) with

NHFO are captured by applying a simple type 1 surgical

mask.36

A study of aerosol generation in healthy volunteers during

normal breathing found that NHFO did not increase aerosol

generation compared with other modes of oxygen delivery (4 L

min�1 simple nasal cannula [0.060 particles cm�3], 15 L min�1

face mask [0.059 particles cm�3], NHFO 30 L min�1 [0.046 par-

ticles cm�3], NHFO 50 L min�1 [0.041 particles cm�3], NIV 12/5

[0.056 particles cm�3], and NIV 20/10 cm H2O [0.057 particles

cm�3]).37
NHFO aerosol and droplet generation compared with
coughing and sneezing

Roberts and colleagues38 imaged droplets/aerosols within the

exhaled breath of healthy volunteers with violent exhalation

(snorting), comparing noNHFOwith NHFO at 30 Lmin�1 or 60 L

min�1
. The number of droplets produced was greatest during

violent exhalation without NHFO, 43% less with NHFO 60 L

min�1 and 56% less with NHFO 30 L min�1.38 Higher gas flow

rates generated more droplets, but NHFO actually reduced

droplet/aerosol dispersion during sneezing, as the inward gas

flow opposed nasal expiration. Gaeckle and colleagues37 re-

ported greater levels of aerosol and droplet generation with

coughing, but that NHFO did not increase this. These limited

studies suggest NHFO may reduce droplet dispersion during

sneezing and does not increase droplet dispersion during

coughing compared with other oxygen delivery devices.
Environmental contamination and healthcare worker
infection

Environmental SARS-CoV-2 contaminationwith NHFO has not

been assessed, however a study in 19 adult ICU patients with

Gram-negative pneumonia found no difference in environ-

mental bacterial contamination between NHFO at 60 L min�1

and standard facemask oxygen, but whether this is translat-

able to viruses is unclear.26 NHFO has been used for respira-

tory support in patientswith COVID-19, and does not appear to

have influenced infectivity rate within cohorted patient
groups. An observational study in 28 patients with COVID-19

pneumonitis receiving NHFO wearing a surgical mask, found

that all 73 healthcare workers wearing airborne personal

protective equipment (PPE) who were exposed for a period of

48 h per person tested negative for SARS-CoV-2 during the

study and 14 days afterwards.39

Taken together these findings support recent international

expert consensus recommendations that there is currently no

convincing evidence that NHFO increases the risk of COVID-19

cross-infection to healthcare workers, with appropriate PPE.40
Conclusions

THRIVE has facilitated a change in terms of the concept of per-

oxygenation during airway management. In the future, it

might be inconceivable to anaesthetise a patient without

adequate per-oxygenation, just as now we would not anaes-

thetise without adequate pre-oxygenation. THRIVE peri-

intubation oxygenation might be used routinely in all pa-

tients undergoing anaesthesia, as the positive predictive value

of airway assessments to identify a difficult airway is notori-

ously poor.

In the COVID-19 era, use of NHFO/THRIVE involves

balancing the advantages of extending the safe apnoea time to

facilitate a less hurried and more-controlled intubation pro-

cess and having a technique to provide ‘tubeless’ anaesthesia

for shared-airway surgery, against the risk of aerosol and

droplet formation and potential virus transmission. Since the

initial UK guidance for NHFO in patients with COVID-19 was

published, there is now experience frommany countries using

NHFO in COVID-19 patients; adequate protection for health-

care workers with appropriate PPE; evidence that NHFO aero-

sol dispersion is less than with coughing and comparable with

other oxygen delivery devices; and laboratory modelling sug-

gesting limited viral environmental contamination.
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