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Abstract

The role of EGFR in lung cancer is well described with numerous activating mutations that

result in phosphorylation and tyrosine kinase inhibitors that target EGFR. While the role of

the EGFR kinase in non-small cell lung cancer (NSCLC) is appreciated, control of EGFR

signaling pathways through dephosphorylation by phosphatases is not as clear. Through

whole genome sequencing we have uncovered conserved V483M Ptprh mutations in PyMT

induced tumors. Profiling the downstream events of Ptprh mutant tumors revealed AKT acti-

vation, suggesting a key target of PTPRH was EGFR tyrosine 1197. Given the role of EGFR

in lung cancer, we explored TCGA data which revealed that a subset of PTPRH mutant

tumors shared gene expression profiles with EGFR mutant tumors, but that EGFR muta-

tions and PTPRH mutations were mutually exclusive. Generation of a PTPRH knockout

NSCLC cell line resulted in Y1197 phosphorylation of EGFR, and a rescue with expression

of wild type PTPRH returned EGFR phosphorylation to parental line values while rescue

with catalytically dead PTPRH did not. A dose response curve illustrated that two human

NSCLC lines with naturally occurring PTPRH mutations responded to EGFR tyrosine kinase

inhibition. Osimertinib treatment of these tumors resulted in a reduction of tumor volume rel-

ative to vehicle controls. PTPRH mutation resulted in nuclear pEGFR as seen in immunohis-

tochemistry, suggesting that there may also be a role for EGFR as a transcriptional co-

factor. Together these data suggest mutations in PTPRH in NSCLC is inhibitory to PTPRH

function, resulting in aberrant EGFR activity and ultimately may result in clinically actionable

alterations using existing therapies.

Author summary

One of the major genetic causes of lung cancer is EGFR activity. Traditionally this is

caused by mutations in the EGFR receptor tyrosine kinase resulting in unchecked activity,
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which ultimately results in lung cancer. A series of tyrosine kinase inhibitors have been

developed that treat these EGFR positive lung cancers, with remarkable efficacy. Here we

describe work from a mouse model that revealed mutations in PTPRH, a phosphatase that

we show dephosphorylates EGFR. We show that mutation or loss of wild type PTPRH

results in elevated EGFR activity. Searching for similar mutations in human lung cancer

revealed that 5% of all lung cancers had PTPRH mutations. Since activation of EGFR by

mutation and loss of PTPRH function would be redundant, we tested and demonstrated

that these events only occurred separately. Patient data revealed that a subset of PTPRH

mutant lung cancer did have elevated EGFR activity. Testing two tumor lines from

patients with naturally occurring PTPRH mutations revealed a sensitivity to EGFR inhibi-

tors. The broad implications of this work are that there are a large number of lung cancer

patients with PTPRH mutations that could potentially benefit from a revised treatment

based on sequencing. Currently the PTPTRH mutations are not detected and these

patients are treated with chemotherapy as a standard of care while they could potentially

be more effectively treated with EGFR inhibitors. The ability to use EGFR inhibitors in

PTPRH mutant lung cancers is a new area for investigation and is the primary impact of

this research.

Introduction

Lung cancer results in the greatest number of U.S. cancer deaths in both men and women, and

5 year survival rates remain poor [1]. Lung cancer is classified into two major histological sub-

types, including small-cell (SC) and non-small cell lung cancer (NSCLC) with NSCLC

accounting for approximately 85% of cases. NSCLC is further delineated into Adenocarci-

noma, Squamous cell carcinoma, and Large cell carcinoma subtypes [2]. 5-year survival rates

for localized NSCLC approach 63%, but with distant metastasis the 5 year survival rates drop

to 7% (American Cancer Society). Prognosis is complicated by a number of factors, including

EGFR mutation status [3].

A member of the ERBB family, EGFR plays a role in numerous cancers and functions

through pathways PI3K/AKT, Stat3, and Ras/Raf/Mek/Erk to increase cellular growth, prolif-

eration, and evasion of apoptotic signals. Ligand binding stimulates EGFR dimerization

through conformational shifts mediated by the extracellular domains [4, 5], resulting in a

switch to the active structure. Once in the active conformation, phosphorylation occurs on the

numerous tyrosine residues in the carboxy-terminal tail of EGFR [6–8]. Interestingly, specific

ligands are capable of inducing differential tyrosine phosphorylation and activation of various

downstream signaling pathways [9, 10]. Genetic mutations are also capable of inducing the

EGFR active state, and these mutations are common in multiple cancers. Common mutations

leading to constitutively active EGFR in NSCLC include a deletion in exon 19, and the L858R

point mutation [11, 12]. EGFR stimulation leads to transcription of numerous gene products,

from immediate early genes to secondary late response genes [13]. After signaling, EGFR is

internalized and returned to the cell surface or marked for degradation [14, 15]. Interestingly,

a body of literature also supports a role for EGFR in the nucleus. Indeed, EGFR has been

found to act as a transcriptional activator via direct binding to A/T-rich sequences (ATRS) in

the promoters of certain genes, such as cyclin D1 [16] and can act as a co-activator through

interactions with transcription factors such as STAT3 to recruit nuclear EGFR to the iNOS
promoter [17]. As a result, nuclear EGFR has prognostic value for a variety of cancers,
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including breast and non-small cell lung cancer [18, 19]. Taken together, EGFR is extensively

involved in cancer progression through a variety of mechanisms.

With the demonstrated importance of EGFR, it is not surprising that approximately 15% of

NSCLC patients have tumors presenting with amplification or activating mutations in EGFR,

with higher percentages in Asian patients [20]. 80% of these EGFR mutations are putative

oncogenic drivers, with the vast majority of these mutations being either missense L858R

mutations or a small deletion surrounding amino acid 750, potentially resulting in an

increased dimerization ability [21]. Tyrosine kinase inhibitors are standard of care for NSCLC

patients who have tumors presenting with these canonical EGFR activating mutations. First

generation Tyrosine Kinase Inhibitors (TKIs), such as Erlotinib and Gefitinib, were designed

to target the ATP binding domain of EGFR. These TKIs successfully enhanced progression

free survival, however resistance mechanisms develop in patients, usually in the form of a

T790M EGFR mutation which causes a structural shift and prevents binding of TKIs to the

ATP binding domain [22]. Second generation TKIs, such as Afatanib, have also been devel-

oped to target the ATP binding domain, but do so in an irreversible covalent manner. How-

ever, these second generation TKIs still suffer from resistance mechanisms due to the T790M

mutation. Third generation TKIs, such as osimertinib, circumvent this structural inhibition by

binding to a nearby cysteine residue and have begun to see use as first line treatment as it

increases survival rates [23]. Currently, 4th generation TKIs are being developed based on allo-

steric inhibition of EGFR to alleviate mutations associated with Osimertinib resistance. Taken

together, while oncogenic mutations in EGFR are impactful, patients with these mutations

have better 5-year survival outcomes due to a series of targeted tyrosine kinase inhibitors.

A critical component of EGFR activity is regulation of phosphorylation by phosphatases. A

recent global screen for EGFR phosphatases revealed Protein Tyrosine Phosphatase Receptor

Type H (PTPRH) as an EGFR phosphatase [24]. PTPRH, also known as Stomach Cancer-

Associated Phosphatase 1 (SAP-1) is a member of the receptor like protein phosphatases.

PTPRH has an extracellular region composed of several fibronectin domains, a transmem-

brane domain, and an intracellular phosphatase domain. The structure of PTPRH is largely

conserved between humans and mice, with humans having eight fibronectin domains and

mice having six [25]. In the phosphatase screening study, Yao et. al. found that PTPRH

dephosphorylated EGFR, suggesting a specificity for tyrosine residue 1197.

While some phosphatases, such as PTEN [26, 27], have well defined tumor suppressive

capabilities, many phosphatases are undefined roles in the context of cancer. PTPRH studies

have been largely carried out in hepatocellular tumors. Within cancers of the liver, lower

PTPRH expression is associated with poorly differentiated hepatocellular carcinomas (HCC)

relative to higher levels in normal liver tissue. Furthermore, overexpression of PTPRH in HCC

cell lines with low PTPRH expression drastically reduced cellular motility and growth rate in
vitro, suggesting PTPRH has a tumor suppressive role within hepatocellular carcinoma. Over-

expression of PTPRH has been noted in NSCLC, with correlative hypomethylation of PTPRH

being suggested as the cause [28].

Here we have examined mutations that inactivate PTPRH, resulting in aberrant phosphory-

lation of EGFR using a combination of cell lines and mouse models. The role of the mutant

PTPRH in NSCLC was not previously appreciated but this work illustrates that specific muta-

tions in PTPRH may be clinically actionable using EGFR TKIs.

Results

In our prior work involving whole genome sequencing of MMTV-PyMT FVB mice, we uncov-

ered a conserved V483M mutation in Pptrh that was associated with increased
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phosphorylation of EGFR [29]. Examination of exome sequence from MMTV-PyMT in other

background strains revealed a variety of other Ptprh mutations. Here we have sequenced a

total of 67 PyMT mouse tumors to show the conserved V483M mutation occurs in 82% of

tumors (Fig 1A). Analysis of publicly available data on other PyMT strains [30] revealed these

mutations were conserved between primary tumors and matched pulmonary metastases, sug-

gesting that the Ptprh mutation occurs early in tumor progression (Fig 1B). To directly test

when mutations arose in tumor progression, we extracted DNA from 21 and 35 day old

MMTV-PyMT mammary glands (Fig 1C) and tested the PCR amplified sequence for presence

Fig 1. Ptprh Mutant Mouse Tumors have Increased Phosphorylation of AKT. Conserved metastasis and downstream regulation of EGFR pathways is seen

in PyMT tumors with Ptprh mutations. A) Protein domain map of mouse PTPRH shows the location of conserved V483M mutated Ptprh within out PyMT

FVB mice. B) Exome sequencing data of PyMT FVB mice from Kent Hunter’s lab shows Ptprh mutations are not conserved to one location. Furthermore,

Ptprh mutation status is conserved between primary tumors and their matched metastasis. C) Wholemount of a day 21 MMTV-PyMT mammary gland with

the hyperplastic growth on the left and the lymph node embedded in the fat pad on the right. The entire gland was used for DNA extraction and sequencing of

PTPRH. D) Diagram shows the main tyrosine residues capable of being phosphorylated on the c-terminal tail of EGFR. While the diagram is not

comprehensive, as signaling pathways are convoluted and undergo numerous feedback mechanisms, some of the main downstream pathways that have been

characterized are shown. E) Western blotting of PyMT tumor lysates shows no increased phosphorylation of STAT3 or ERK in Ptprh mutant tumors as

compared to WT tumors. F) Western blotting shows increased phosphorylation of AKT within Ptprh mutant tumors as compared to WT tumors.

https://doi.org/10.1371/journal.pgen.1010362.g001
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of Ptprh mutations. This revealed that 9 of the 13 day 21 mammary glands and 7 of 8 day 35

mammary glands had already accumulated Ptprh mutations. Importantly, these samples were

only hyperplastic as tumors form on average at day 45 in this background. These data suggest

that there is a strong selective pressure for Ptprh mutations prior to overt tumor formation.

Given that specificity of EGFR signaling is mediated by specific tyrosine residues (Fig 1C),

we postulated that specific pathways would be activated based on which tyrosine site mutant

PTPRH was failing to dephosphorylate. In Fig 1C the canonical EGFR tyrosine residue num-

bers are listed. Given confusion in the literature and available antibodies to EGFR due to the

24 amino acid signaling peptide that is cleaved, we have also included the alternate residue

number. To investigate activation of downstream pathways, Ptprh wild type and mutant sam-

ples were assayed for STAT3, ERK and AKT activity. No alteration to STAT3 or ERK phos-

phorylation was noted with Ptprh mutation (Fig 1D). However, mutation of Ptprh was

associated with increased phosphorylation of AKT (Fig 1E). These data as well as our prior

work with a Y1197-EGFR antibody suggest a hypothesis that PTPRH dephosphorylates Y1197

on EGFR and that Ptprh mutation results in an inability to downregulate signaling, leading to

an increase in the PI3K / AKT signaling axis in these tumors. We have also examined pJNK /

JNK and found no alterations to pJNK levels.

To determine which human tumors contained PTPRH mutations, a pan-cancer search of

the International Cancer Genome Consortium (ICGC) and The Cancer Genome Atlas

(TCGA) data was completed (Fig 2A). Both datasets contained PTPRH mutations within sev-

eral cancers, including a mutation prevalence of approximately 5% in non-small cell lung can-

cer (NSCLC). Given the incidence of EGFR mutations in NSCLC, and our data suggesting that

mutations in mouse Ptprh resulted in increased EGFR activity, we hypothesized that PTPRH
mutant human tumors would have increased EGFR signaling. To test this, we predicted EGFR

activity in PTPRH mutant human tumors through a gene set enrichment analysis (GSEA)

approach (Fig 2B). As shown in the lollipop plot, there are numerous PTPRH mutant NSCLC

tumors with increased predicted EGFR pathway activity. These mutations were clustered

within the fibronectin and phosphatase domains with localized hotspots of EGFR activity.

Examining the relationship between EGFR and PTPRH mutation status from a collection of

databases revealed that mutations in these two genes were mutually exclusive (p<0.0001,

n = 307, Fig 2C). Interestingly, the mutations noted in PTPRH were largely missense muta-

tions (green squares). To examine the pathways that were activated in these tumors we used

single sample Geneset Enrichment Analysis (ssGSEA) on EGFR mutant tumors (L858R),

PTPRH mutant tumors, and tumors that were wild type for both EGFR and PTPRH mutations.

Unsupervised clustering of the ssGSEA results revealed that a subset of tumors with PTPRH
mutations clustered together with the EGFR mutant tumors, suggesting a similar pathway

activity profile (Fig 2D). Identity of each pathway is listed (S1 Table). Importantly, we con-

firmed the identification of the PI3K / AKT pathway and used GSEA to compare PTPRH
mutant tumors with high EGFR activity to wild type, revealing a significant enrichment of the

PI3K /AKT signaling axis (Fig 2E).

Given these results were correlative in nature, we sought to directly test whether loss of

PTPRH activity resulted in increased pY1197 EGFR. To test this, we used CRISPR to create

knockouts of PTPRH in the H23 NSCLC cell line and flow sorted into individual clones. The

generation of a knockout through insertion of an adenosine base pair at the cut site, leading to

a frameshift and early stop, is shown for clone 2 (Fig 3A). Given a lack of functional antibodies

for PTPRH, we instead sequenced PTPRH in the clonal cell lines. Importantly, we noted that

several clones with an engineered knockout of PTPRH resulted in elevated levels of pY1197

EGFR (Fig 3B). To ensure specificity, we then rescued the knockout by transfecting a plasmid

expressing wild type PTPRH. This restored endogenous levels of EGFR phosphorylation at
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Y1197 (Fig 3C). Moreover, rescue with a catalytically dead version of PTPRH (D986A) failed

to result in decreased phosphorylation of EGFR (Fig 3D).

Given that both the mouse and human computational predictions suggested a role for the

PI3K / AKT pathway but not the ERK or STAT3 pathways, we examined the various PTPRH

knockout lines for phosphorylation of these downstream pathways. As expected, no alterations

were noted in the ERK or STAT3 pathways (S1 Fig). In contrast, AKT phosphorylation was

noted but was variable between the knockout clones (Fig 3E). Given the potential for clonal

effects, Y1197F mutations in EGFR were engineered in the PTPRH KO clone with elevated

pAKT. Both heterozygous and homozygous Y1197F EGFR mutations were examined and a

step-wise reduction in EGFR Y1197 phosphorylation was detected (Fig 3F). Within the two

Y1197F clones we also noted a reduction in pAKT, consistent with the hypothesis that Y1197

was the target of PTPRH (Fig 3G).

Due to the potential for clonal effects that would impact analysis, pooled knockouts of

PTPRH were generated in the H23 cell line. Tracking of Indels by Decomposition (TIDE) [31]

analysis revealed a knockout efficacy of 45% (S2 Fig). As expected, Western blotting revealed

increased phosphorylation of EGFR at Y1197 in this pooled line (Fig 4A). Loss of PTPRH was

also associated with increased growth rate and proliferation in growth curves (Fig 4B) and

MTT assays respectively (Fig 4C).

Given that loss of PTPRH resulted in elevated phosphorylation of EGFR, we hypothesized

that these tumors would be susceptible to EGFR TKIs, demonstrating this in a proof of principle

experiment in PyMT tumors [29]. To test this hypothesis in human lung cancer cell lines, dose

response curves were completed for four cell lines using the EGFR TKI Osimertinib. NSCLC

lines A427 (WT for EGFR and PTPRH) was a negative control while the H1975 line with classic

L858R / T790D activating EGFR mutations was a positive control. Two NSCLC lines with natu-

rally occurring PTPRH mutations were also tested including H1155 with a M188I mutation in

the second fibronectin domain and H2228 with a Q887P mutation in the phosphatase domain.

Both of these spontaneous mutations were predicted to have moderate EGFR activation and

were not in the regions with the highest EGFR predicted activity for PTPRH mutations. As

expected, the A427 negative control had no response while the H1975 positive control had a

robust response. Interestingly, the two PTPRH mutant NSCLC lines had an intermediate

response (Fig 4D). To test whether this would have phenotypic effects in vivo, we used a strategy

of injecting H2228 cells into the flank of mice and treating with the EGFR TKI osimertinib once

tumors reached 6mm (Fig 4E). The positive control responded well with tumors rapidly shrink-

ing with TKI treatment (Fig 4F). While slower growing, the H2228 line with the PTPRH muta-

tion had an appreciable tumor reduction at 50 mg/kg dosage (Fig 4G) (p<0.001 at endpoint by

t-test), but had no effect at 25 mg/kg. The study was stopped at 14 days due to endpoint con-

cerns. While not as robust as the EGFR mutant result, these proof of principle data demonstrate

that PTPRH mutation status can induce a susceptibility for EGFR TKIs.

Fig 2. GSEA Predicts High EGFR Activity in PTPRH Mutant NSCLC Tumors. Numerous bioinformatics methods

illustrate the importance of PTPRH mutations in human non-small cell lung cancer. A) data analyzed from the

International Genome Consortium as well as The Cancer Genome Atlas show PTPRH mutations occurring in a

number of human cancers. Lung cancer is highlighted due to the relationship of PTPRH with EGFR, and EGFRs

importance in lung cancer. B) Lollipop plot of human PTPRH mutations correlated with predicted EGFR activity. Each

dot represents a human NSCLC tumor with a mutation in PTPRH. Dot color corresponds to EGFR activity predicted

through ssGSEA. C) CBIO oncoplot of NSCLC tumor mutation data from TCGA. Patient tumors with PTPRH
mutations are shown to be mutually exclusive from patient tumors with EGFR mutations. D) Clustered heatmap of

pathway activation prediction through GSEA. Each column represents a NSCLC tumor with mutation status

corresponding to the color coded top bar. Each row represents predicted activation of pathways through ssGSEA. E)

GSEA random walk plots show predicted activation of PI3K and AKT within PTPRH mutant tumors compared to

PTPRH WT tumors.

https://doi.org/10.1371/journal.pgen.1010362.g002
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Fig 3. Increased 1197 p-EGFR in H23 PTPRH CRISPR KO Cells. Western blotting using lysate from PTPRH KO

cells and PTPRH KO cells with transient overexpression of PTPRH plasmids demonstrates PTPRH indeed targets

EGFR within human lung cancer cells. A) Electropherogram of PTPRH KO clones shows an A insertion at the

CRISPR cut site. This indel was present for both clones in 3B. B) PTPRH KO CRISPR clones have increased 1197
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To determine how widespread EGFR activation was within Ptprh mutant mouse tumors,

and PTPRH knockout human tumors injected into the flank of mice, we employed an immu-

nohistochemistry approach using an antibody specifically recognizing phosphorylation at

Y1197 in EGFR. In a negative control (MMTV-PyMT) that was wild type for Ptprh mutations,

we noted no appreciable staining for pY1197 EGFR (Fig 5A and 5B). In MMTV-PyMT tumors

with a Ptprh mutation, there was widespread staining for pY1197 EGFR (Fig 5C). Interestingly,

higher magnification revealed that this staining was predominantly nuclear (Fig 5D). This was

present in multiple samples from multiple tumors, a second example is shown (Fig 5E and 5F).

Examining human NSCLC in the H23 PTPRH parental line revealed weak staining localized

to the membrane (Fig 5G 10x and 5H 40x). H23 with a PTPRH knockout revealed increased

pY1197 EGFR staining as compared to wild type controls (Fig 5I), but this staining was noted

to be primarily located on the membrane (Fig 5J).

The activity of PTPRH is likely not limited to Y1197 of EGFR. To determine what other

kinases were regulated by PTPRH, we screened a phosphorylated receptor tyrosine kinase

(RTK) array with lysate from wild type H23 cells (Fig 6A) and lysate from CRISPR PTPRH

KO H23 cells (Fig 6B). Several RTKs with differential phosphorylation patterns with PTPRH

knockout lysate were identified, including FGFR1 with a 3.8 fold increase and IGF-1R with a

2.4 fold increase (Fig 6A–6C). Examining these RTKs in the publicly available genomic data

through FGFR1 and IGF-1R ssGSEA signatures revealed predicted activation of these kinases

in many of the mutations that also resulted in EGFR activation, although others were unique

to each RTK (Fig 6D). To confirm predicted activation of FGFR1, Westerns were completed

using cell lysates from PTPRH WT and PTPRH KO H23 cells revealing a clear increase in

phosphorylation of FGFR1 within PTPRH KO cells (Fig 6E).

Discussion

Here we have identified conserved V483M Ptprh mutations in mouse mammary tumors from

MMTV-PyMT transgenic mice. In a mixed background these mutations were conserved in

matched pulmonary metastases, indicating this mutation occurs early in tumorigenesis. We

demonstrated mutation of Ptprh to be impactful since PTPRH no longer dephosphorylated

Y1197 of EGFR, as predicted by Yao et al [24], resulting in activation of the PI3K / AKT signal-

ing cascade. Given the importance of EGFR activity in lung cancer, we confirmed the causal

nature of PTPRH loss on EGFR activity through CRISPR mediated knockout of PPTPRH in a

NSCLC line by observing increased pEGFR and pAKT. Importantly, a rescue experiment

demonstrated that this was a specific event as plasmid expressed PTPRH was able to dephos-

phorylate EGFR while the rescue with a catalytically dead PTPRH did not. In addition, loss of

PTPRH resulted in increased growth rate, potentially as a function of activation of the EGFR /

PI3K / AKT signaling pathway. These results are summarized in Fig 7. This has potential to be

a tumor driving event as it occurs early in tumor etiology and allows activation of a major sig-

naling pathway to inappropriately persist. The conservation of the V483M mutation in over

80% of tumors from the genetically engineered mice in the FVB background also indicates

that there is a remarkable selective pressure for EGFR pathway activity.

phosphorylated EGFR. C) Overexpression of a wild type PTPRH plasmid within PTPRH KO clone 1 reduced 1197 p-

EGFR. D) Overexpression of a D986A mutant PTPRH plasmid within PTPRH KO clone 1 resulted in no reduction of

1197 p-EGFR. E) Increased p-AKT is seen within 1 of the PTPRH KO clones, but not the other. F) To investigate

potential clonal effects further, we created a Y1197F EGFR mutation within H23 PTPRH KO clone 1. G) Step-wise

reduction of 1197 EGFR phosphorylation is seen within heterozygous and homozygous Y1197F clones. These Y1197F

clones also have marked reduction in p-AKT.

https://doi.org/10.1371/journal.pgen.1010362.g003
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A pan-cancer analysis of human PTPRH mutations found numerous cancers harboring

mutations, suggesting mutated PTPRH may play a role in tumor development across the spec-

trum of cancer types. PTPRH mutations were found in approximately 5% of NSCLC patients,

Fig 4. PTPRH mutant cell lines respond to TKI osimertinib. Pooled PTPRH KO cells have increased proliferation, and PTPRH
mutant cell lines respond to osimertinib. A) Western blotting confirms increased p-EGFR at tyrosine 1197 within pooled KO cells

compared to WT cells. B) Cellular growth curves show increased growth in PTPRH pooled KO cells as compared to WT cells. C)

MTT assays completed with H23 WT and H23 PTPRH pooled KO cells show increased proliferation. D) Two PTPRH mutant cell

lines (WT for EGFR) from human non-small cell lung cancer tumors show response to the TKI osimertinib in vitro. E) Treatment

plan for in vivo treatment of H2228 PTPRH mutant cell line. Either H1975 (L858R EGFR mutant) or H2228 (Q887P PTPRH mutant)

cells were injected into the left flank of nude mice. Mice were then randomized into two treatment groups, vehicle control or

osimertinib. H1975 mice were treated with 25 mg/kg of osimertinib and H2228 injected mice were treated with either 25 mg/kg or 50

mg/kg of osimertinib. F) in vivo drug curve showing response to osimertinib of H1975 EGFR mutant injected mice. G) in vivo drug

curve showing response to osimertinib of H2228 PTPRH mutant injected mice.

https://doi.org/10.1371/journal.pgen.1010362.g004
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with far higher rates in skin in multiple datasets. There is therefore a compelling reason to

explore the role of PTPRH mutations in the future in skin cancer to determine if these muta-

tions act in the same manner. Focusing on NSCLC, we noted mutations spread across the

PTPRH exome. This is an interesting contrast to the conserved V645M mutation found within

PyMT tumors, with potential implications for which mutations may be impactful on tumor

growth. The human PTPRH mutations appear to cluster in several regions associated with

activity of the targets (Fig 7) but mutations are scatted across the coding sequence. This is simi-

lar to a recent report for PTPRT in Head and Neck cancer and suggests a tumor suppressor

type role [32]. While a mechanism has yet to be explored for each of the various PTPRH muta-

tions, it is likely that the mutations are acting in a different fashion from each other. Mutations

within the phosphatase domain may abrogate catalytic activity, while mutations in the fibro-

nectin domains may prevent dimerization and binding of target substrates [25]. Since some of

the phosphatase domain mutations with predicted high EGFR activity lie outside the con-

served phosphatase activity HC(X5) R motif, it is also possible that these mutations impact

access to the phosphatase domain and prevent recognition of substrate binding sites. Given

the lack of conserved human PTPRH mutations, eventual utility of PTPRH mutation screening

would need to be combined with a functional output screen. Ultimately the mutations in

PTPRH and their functional impact on EGFR and response to TKIs may be paired with

pEGFR or pFGFR1 status to predict response to EGFR TKI.

Our findings demonstrated increased phosphorylation of EGFR upon loss of PTPRH in

NSCLC in both in vitro and in vivo models. With this causality and given that 5% of NSCLC

tumors have mutations in PTPRH, and an estimated 235,000 cases of lung cancer occurring

yearly within the United States, over 10,000 patients who present with PTPRH mutations

could potentially benefit from EGFR targeted TKI therapy. Interestingly, the mutation types

may allow for prediction of the therapeutic response. For instance, here we identified two

NSCLC lines with PTPRH mutations that only had a medium level of predicted EGFR activity

and treated them with the TKI Osimertinib. While both responded in vitro, the H2228 cell line

also responded in vivo, with a decrease in tumor volume. The second line H1155 has a KRas

mutation and this likely provides resistance to Osimertinib. In the future, cataloging PTPRH

mutations with EGFR TKI response would allow for appropriate clinical action. Other poten-

tial options for treatment of PTPRH targets include dual inhibition of kinases whose signaling

pathways are altered by PTPRH loss, or targeting RTKs with proteolysis targeting chimera

(PROTAC) molecules, which target them for degradation. Overall, treatment of downstream

targets regulated by phosphatases, rather than the phosphatases themselves, may be a viable

solution, although this will would require considerable characterization of the pathways

affected by deregulated phosphatases. This is especially important to consider with the context

dependent nature of PTP regulation, such as PTPRH deactivating EGFR.

Beyond EGFR, a kinase array showed increased phosphorylation of numerous RTKs within

PTPRH knockout cell lines, including FGFR1 and IGFR1. Interestingly, increased phosphory-

lation of EGFR was not detected on the array. However, a closer examination of the phosphor-

ylated antibodies used in the array revealed that EGFR Y1197 was not included. The increased

Fig 5. Phospho-EGFR Immunohistochemistry reveals nuclear and membrane staining. A MMTV-PyMT tumor

that was wild type for Ptprh was used in immunohistochemistry for phosphoEGFR revealing essentially no staining at

low (10x) and high (40x) magnification (A and B respectively). A PyMT tumor with a V483M PTPRH mutation

revealed largely nuclear staining across the entire tumor and was reflective of these tumors. This was repeated in a

second tumor with identical results (E and F). IHC for pEGFR in the H23 parental line with wild type PTPRH revealed

low levels of expression, largely in the membrane (G and H). The H23 PTPRH CRISPR knockout human tumor line

grown in mice revealed membrane specific staining for phosphoEGFR (I and J).

https://doi.org/10.1371/journal.pgen.1010362.g005

PLOS GENETICS PTPRH mutations cause EGFR activity in lung cancer

PLOS Genetics | https://doi.org/10.1371/journal.pgen.1010362 September 2, 2022 12 / 20

https://doi.org/10.1371/journal.pgen.1010362.g005
https://doi.org/10.1371/journal.pgen.1010362


PLOS GENETICS PTPRH mutations cause EGFR activity in lung cancer

PLOS Genetics | https://doi.org/10.1371/journal.pgen.1010362 September 2, 2022 13 / 20

https://doi.org/10.1371/journal.pgen.1010362


phosphorylation of FGFR1 was further confirmed through western blotting. The activation of

the FGFR1 pathway has interesting implications, both at the level of cellular pathways that

may be affected, as well as potential treatment options for those with non-functional PTPRH.

Moreover, the role of FGFR1 in other cancers has potential to open EGFR therapy in the other

tumor types. In addition, with further preclinical work, a dual drug inhibition approach of tar-

geting FGFR1 and EGFR may be of clinical use.

Finally, Ptprh mutant mouse tumors have increased staining of nuclear EGFR. Nuclear

EGFR has been noted in times of cellular stress, as well as regenerating liver tissue. While in

the nucleus, EGFR can act as a cofactor, or direct transcriptional activator by binding to the

promoters of certain genes, such as cyclin D1. Increased nuclear EGFR upon loss of PTPRH

activity could have profound impacts on cellular signaling pathways. The mechanism behind

increased nuclear localization of EGFR with the V483M mutation is undetermined at this

point but could include potential alterations to dimerization or an inability to maintain mem-

brane localization. This is an area for future research which will be complemented by an

Fig 6. PTPRH Regulation of Receptor Tyrosine Kinases outside the ERBB Family. Ablation of PTPRH results in

differential activation of numerous receptor tyrosine kinases outside of EGFR. A) A human phosphorylated RTK array

shows differential phosphorylation of numerous RTKs when incubated with lysate from H23 PTPRH WT cells. B) A

human phosphorylated RTK array shows differential phosphorylation of numerous RTKs when incubated with lysate

from H23 PTPRH KO cells. Top five differentially phosphorylated RTKs are highlighted in red. C) Table showing the

RTKs with the top 5 largest fold changes between PTPRH KO and PTPRH WT lysates. D) The lollipop plot in Fig 2B

was recreated, adding predicted activation for FGFR1 and IGF-1R. Briefly, each dot on the PTPRH exome plot

corresponds to a PTPRH mutant NSCLC tumor. Color-coded bars above each dot correspond to the predicted activity

of EGFR, FGFR1, or IGF-1R. E) Western blotting confirms increased phosphorylation of FGFR1 at tyrosine residues

653/654, within PTPRH KO cell lysates compared to PTPRH WT lysates.

https://doi.org/10.1371/journal.pgen.1010362.g006

Fig 7. Schematic of Ptprh mutant mouse tumors failing to dephosphorylate EGFR. Ordinarily, PTPRH is

responsible for regulating EGFR signaling through dephosphorylation of tyrosine residues on the C-terminal tail of

EGFR. We have shown PTPRH mutant mouse tumors and PTPRH KO human cells to have increased phosphorylation

of EGFR, and subsequent increased activation of the PI3K/AKT pathway.

https://doi.org/10.1371/journal.pgen.1010362.g007
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exploration of a variety of human PTPRH mutants to determine if any mutants result in

human nuclear pEGFR.

Methods

Targeted Resequencing of PyMT tumors

DNA was extracted from flash frozen tumors using lysis buffer (50 mL Tris HCl, 5 mL 500 mM

EDTA, 10 mL 10% SDS, 20 mL 5M NaCl, H20 up to 500 mL), or FFPE tissue using the Qiagen

FFPE extraction kit. The region flanking V483M was PCR amplified using the following primers;

Forward 5’ GGCCTTAGGTTCAATTGTGAATAC 3’

Reverse 5’ CCTTAGCTTCCCGAGTATTGGTT 3’

Amplified DNA was sent to GeneWiz for Sanger sequencing with the following primer 5’

TCATCCAAACTACATCTATGATCCA 3’. Geneious software (https://www.geneious.com/)

was used for alignment to reference DNA.

Analysis of PTPRH Mutations in exome sequence data

Pre-annotated VCF files were downloaded for 64 tumors from GEO ascension number

GSE142387. Data was processed within R by reading in VCF files, then filtering to only keep

mutations within the Chr 7 bp 4548992–4604041 range (location of Ptprh in mouse genome).

These files were then converted to Annovar format, exported, and annotated using Annovar in

Linux based command. Statistical analysis was completed using a student’s t test (unequal vari-

ance, 2 tailed) between the metastasis group (mutations per met sample), and the primary

group (mutations per primary tumor).

PTPRH Mutations in human cancers

Pan-Cancer datasets from numerous sources, including TCGA and ICGC, were analyzed

through CBioPortal and the ICGC portal. Lung cancer mutation percentage were analyzed

specifically using TCGA 2016 dataset accessed through CBioPortal (https://www.cbioportal.

org/). The South Korean and U.S datasets showing discrepancy in percentage of PTPRH muta-

tions were analyzed on the ICGC portal (https://dcc.icgc.org/). Both datasets were filtered to

include only patients with exonic mutations.

All NSCLC datasets available on CBioPortal were used for mutual exclusivity analysis and

are listed below. PTPRH and EGFR SNV mutation data were downloaded and combined.

Duplicate samples were removed, and any sample with a PTPRH or EGFR mutation was con-

sidered. A 2x2 contingency table was run to determine mutual exclusivity. Datasets include;

MSK—Cancer Cell 2018, MSKCC—J Clin Oncol 2018, TRACERx—NEJM 2017, University of

Turnin, 2017, MSK—Science 2015, TCGA—Nat Genet 2016 (Pan), Broad—Cell 2012,

MSKCC—Science 2015, TCGA—Firehose Legacy, TCGA—Nature 2014, TCGA—Pan-cancer

Atlas, TSP—Nature 2008, MSKCC—Cancer Discov 2017, TCGA—Nature 2012

Demographics of PTPRH mutations

Age, overall survival, and race demographics were analyzed using the Lung Adenocarcinoma

TCGA Pan-Cancer Atlas data set downloaded from CBioPortal. Two-tailed Student’s T-Tests

assuming unequal variance were completed for PTPRH mutant VS. EGFR mutant samples, as

well as PTPRH mutant VS. WT (non-EGFR mutant) samples for age of diagnosis and overall

survival. Samples without age or OS data were excluded. Only samples with missense or trun-

cating mutations were included, and overexpression samples were excluded. Race was ana-

lyzed using a 2x2 contingency table.
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EGFR Activity and pathway activity predictions

TCGA pan-cancer RNA-seq dataset (downloaded from UCSC Xena) was analyzed for

PTPRH, EGFR, FGFR1, and IGF1R mutations. This mutation list was downloaded and filtered

to keep samples that had a mutation in PTPRH, EGFR, or that were wild type for PTPRH,

EGFR, FGFR1, and IGF1R. Any sample with a mutation in PTPRH was kept, resulting in 53

samples. 10 samples of each of the two categories were kept; WT for PTPRH and the above

three RTKs, and L858R mutant EGFR that were WT for PTPRH, FGFR1, or IGF1R. To decide

which WT and EGFR samples to keep, samples from those subsequent groups were assigned a

random number using the RAND() function in Excel. These numbers were then sorted from

highest to lowest, keeping the top 10 samples. RSEM(log2 X+1) normalization was applied to

the filtered sample list, resulting in 47 PTPRH mutant samples (WT for the kinases), 9 samples

that WT for PTPRH and the three kinases, and 8 samples with EGFR mutations (WT for

PTPRH, FGFR1, and IGF1R). ssGSEA was run on the samples to predict pathway activation

status. Pathways for each kinase were filtered down, selecting the most relevant and robust

pathway. A ranking sum score was applied to the pathway prediction data for each sample.

For GSEA analysis of PTPRH mutant tumors, the pan-cancer RNA-seq dataset was again

downloaded from UCSC Xena. Twelve tumors for each of the three categories were kept;

PTPRH mutant tumors predicted to have high EGFR activity, EGFR L858R mutants, and

tumors that were WT for both PTPRH and EGFR. GSEA was completed using the GenePattern

server.

CRISPR Knockout

Benchling was used to design the guide RNA (AGCACACACTAACATCACCG) targeting the

fourth exon of PTPRH. The guide was cloned into px458 using AgeI and EcoRI. Transient

transfection of px458 into H23 cells was completed using Promega’s Viafect. GFP positive cells

were sorted into single cell clones into 96 well plates using FACS. Once clones had grown into

a colony, they were subsequently moved to 24-well plates, then 6-well plates. DNA was har-

vested and sent to ACTG for sanger sequencing.

CRISPR Knock-In mutations

Guide RNA was designed in Benchling with the PAM (NGG) sequence 5 bp downstream of

the desired EGFR Y1197 mutation site. The single stranded region of homology was designed

in Benchling by choosing desired length for homology arms as well as the desired mutation,

then taking the reverse complement of that strand. The oligo was designed with 36 bp

upstream of the desired mutation site and 90 bp downstream. The desired mutation resulting

in a Y1197F amino acid substitution was added. This mutation also resulted in the addition of

an EcoRI cut site, which was used for downstream screening. The mutation also altered the

guide RNA enough to prevent re-annealing once HR mediated repair occurred. Guide RNA

was cloned into px458. H23 PTPRH KO cells were transfected using Viafect in a 6:1 ratio. 1 ug

of px458 with guide, and 4 ug of ss repair template were transfected. Sorting was completed

using FACS for GFP. Clones were screened using a digest for EcoRI and confirmed with

sequencing.

Western blotting

Tumor lysates were harvested from flash frozen tumors by crushing with a mortar and pestle,

then dissolving in TNE lysis buffer (5 mL 1 M Tris HCl pH 8, 3 mL 5M NaCl, 1 mL NP40, 400

uL .5M EDTA, 2.0 mL .5M NaF, H2O to 100 mL). Roche mini protease tablets and sodium
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orthovanadate were used as protease and phosphatase inhibitors respectively. Primary anti-

bodies were incubated overnight. Antibodies used were as follows; total EGFR (Cell Signaling

D38B1), 1197 EGFR (Invitrogen PA5-37553), total AKT (Cell Signaling 11E7), p-s473 AKT

(Cell Signaling D9E), total STAT3 (Cell Signaling 79D7), p-Y705 STAT3 (Cell Signaling

D3A7), total FGFR1 (Cell Signaling D8E4), p-Y653/654 FGFR1 (Cell Signaling 3471s), beta

tubulin (Proteintech 10094–1), vinculin (Cell Signaling E1E9V), total ERK (Cell Signaling

9102), p-ERK (Cell Signaling 4370).

Overexpression

PTPRH cDNA within plasmid PRc-CMV was kindly provided by Dr. Takashi Matozaki at

Kobe University. Site directed mutagenesis was used to achieve a D986A mutant. Both WT

and D986A mutant PTPRH plasmid constructs were transiently expressed in PTPRH KO cells

using Viafect.

RTK Array

The manufacturer’s protocol for RayBiotech Human RTK Phosphorylation Array C1 kit was

followed. Membranes were incubated with lysate from H23 WT cells or H23 PTPRH KO cells.

IHC Nuclear EGFR

Human cell lines H23 PTPRH WT or H23 PTPRH KO were injected into the left flank of

nude mice. H23 cell line tumors were grown to approximately 10 mm in the largest direction

prior to necropsy. Mouse PyMT tumors, and tumors grown from human H23 cells were nec-

ropsied with portions of tumor tissue preserved in formalin, and portions of tumor flash fro-

zen for further downstream analysis. Formalin fixed paraffin embedded tumors were

subjected to staining using an antibody specific for 1197 EGFR (Thermo PA5-37553).

Pooled CRISPR Knockout

Guide RNA (AGCACACACTAACATCACCG) for PTPRH was designed using Benchling.

And cloned into a lentiviral Cas9 plasmid (Addgene # 52961). Viral generation was completed

through transfection of 293T cells with packaging plasmid psPAX2 and envelop plasmid

pMD2.G in a ratio of 3.7:1.2:5 with the Cas9 plasmid respectively. Viral supernatant was col-

lected from 293T cells 3 days after transfection, and filtered through a .22 uM syringe filter. 1

mL of filtered viral supernatant was applied to H23 WT cells at ~30% confluency. Sanger

sequencing was used to confirm knockout, and for TIDE analysis.

MTT Assay and growth curves

MTT assay kit (Roche 11465007001) instructions were followed. Graphpad was used to plot

and statistically analyze results. A Welch’s two-tailed t-test yielded a p-value of .0137.

For growth curves 1.0 x 105 cells were plated in triplicate within 6-well plates. On days 1–5,

cells were trypsinized and cell number was read using an automated cell counter. Graphpad

was used to plot results.

Dose response curves

Cells were diluted to 5.0 x 104 cells per mL, and 20 uL of cell suspension was added to wells of

an opaque 384 well plate. After overnight recovery, cells were subjected to a dose response

curve of increasing drug concentration in half log steps. For single drug curves, osimertinib

(Cayman AZD9291) range was .00003 to 30 uM. For dual drug curves, osimertinib range was
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.03 to 10 uM, and either KRAS inhibitor (ARS853, Cayman) or FGFR1 inhibitor (PD166866,

Cayman) range was .00003 to 30 uM. 10 mM stocks of drugs were made by diluting with

DMSO, and half-log drug series were diluted fresh with complete media. Cell viability was

read after 48 hours using Promega’s Cell Titer Glo. Luminescence values were normalized to

non-drug treated controls, and plotted using Graphpad.

In vivo treatment

H2228 and H1975 cell lines were injected into the left flank of 6–12 week old nu/nu mice.

After tumors reached 6mm in the largest dimension, mice were randomized into treatment

groups; vehicle control, 25 mg/kg osimertinib, or 50 mg/kg osimertinib. The 50 mg/kg dose

was only used for mice with H2228 tumors. Osimertinib (AZD9291 Cayman) was diluted

using the following in order to achieve a final ratio: 5% DMSO, 40% polyethylene glycol, 5%

tween-80, 50% H2O. Max volume of treatment was 10 uL for 1 gram of body weight. Mice

were weighed on first day of treatment, and volume of drug was adjusted to achieve proper

dose.

KI67 scoring

Slides were scored on a scale of 1–10 by three blinded reviewers independently. The mean for

each tumor slide was then taken by averaging the three reviewer scores for each slide. A two-

tailed student’s T-test assuming unequal variance was then completed across the osimertinib

and vehicle control sample groups, using the means for each tumor slide (each group n = 4).
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