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A B S T R A C T

The endonuclease G gene (Endog), which codes for a mitochondrial nuclease, was identified as a determinant of
cardiac hypertrophy. How ENDOG controls cardiomyocyte growth is still unknown. Thus, we aimed at finding
the link between ENDOG activity and cardiomyocyte growth. Endog deficiency induced reactive oxygen species
(ROS) accumulation and abnormal growth in neonatal rodent cardiomyocytes, altering the AKT-GSK3β and
Class-II histone deacethylases (HDAC) signal transduction pathways. These effects were blocked by ROS sca-
vengers. Lack of ENDOG reduced mitochondrial DNA (mtDNA) replication independently of ROS accumulation.
Because mtDNA encodes several subunits of the mitochondrial electron transport chain, whose activity is an
important source of cellular ROS, we investigated whether Endog deficiency compromised the expression and
activity of the respiratory chain complexes but found no changes in these parameters nor in ATP content. MtDNA
also codes for humanin, a micropeptide with possible metabolic functions. Nanomolar concentrations of syn-
thetic humanin restored normal ROS levels and cell size in Endog-deficient cardiomyocytes. These results support
the involvement of redox signaling in the control of cardiomyocyte growth by ENDOG and suggest a pathway
relating mtDNA content to the regulation of cell growth probably involving humanin, which prevents reactive
oxygen radicals accumulation and hypertrophy induced by Endog deficiency.

1. Introduction

The mitochondrial endonuclease G (Endog) gene was identified as a
blood pressure-independent determinant of cardiac hypertrophy [1].
Reduced Endog expression was associated with abnormal cardiomyo-
cyte growth and increased reactive oxygen species (ROS) abundance in
the heart of rodents in vivo and Endog silencing was sufficient to induce
cardiomyocyte growth and to increase ROS production in vitro [1]. The
involvement of redox signaling in mediating cardiac hypertrophy in-
duced by several neurohormonal stimuli has been previously reported
[2]. ROS and the transduction signaling mediated by the protein kinase
AKT/PKB have been involved in hypertension-associated cardiac hy-
pertrophy [3–5], and oxidation of several Cysteine residues of the Class-
II HDAC4 induces its nuclear export, derrepressing positive mediators

of cardiomyocyte growth [6]. These results suggested that increased
ROS abundance in the heart of Endog null mice (Endog-/-) could mediate
cardiomyocyte growth, but the possibility was not yet assessed. Iden-
tifying the mechanisms relating Endog deficiency with hypertrophy is
important due to its potential clinical relevance. ENDOG-like activity
was first identified in extracts of bovine heart mitochondria [7] and,
despite further work characterizing its activity in vitro as a DNA/RNA
endonuclease, its biological function is presently unknown. Biochem-
ical studies showed that ENDOG cleaves mitochondrial RNA and DNA
(mtDNA), suggesting a potential role in mtDNA replication [8]. How-
ever, the role of ENDOG in mtDNA biology has never been assessed in
organelle or in cells. On the other hand, ENDOG was shown to induce
genomic DNA fragmentation upon its nuclear translocation during
caspase-independent cell death [9], in particular in cardiomyocytes
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[10], which repress apoptotic gene expression during differentiation
[11]. The fact that the adult myocardium silences the expression of
apoptotic genes but keeps the expression of Endog [10], coupled to its
identification as a candidate gene for the control of cardiac hypertrophy
whose deficiency induces ROS accumulation, prompted us to further
investigate these events. Here, we addressed the question whether ROS
are involved in cardiomyocyte growth induced by Endog deficiency and
which are the mechanisms involved, using in vivo and in vitro models.

2. Materials and Methods

2.1. Animal experimentation, primary cardiomyocyte and fibroblast
cultures

The investigation with experimental animals was approved by the
Experimental Animal Ethic Committee of the University of Lleida and
conforms to the Guide for the Care and Use of Laboratory Animals, 8th
Edition, published in 2011 by the US National Institutes of Health. The
EndoG mice (Mus musculus) line has a C57BL/6 J background and has
been crossed in our lab for several years [1]. Cardiomyocytes from
Endog+/+ and Endog-/- hearts were obtained as in [12] and either
stained for α-actinin to measure size [13] or cultured and treated as
described in the figure legends. Rat (Rattus norvegicus) neonatal cardi-
omyocytes were obtained from the ventricles of 1 to 4-day-old Sprague-
Dawley pups and cultured as previously described [11]. Four to six
microscopic images per condition (genotype, gene silencing and drug
treatment) were recorded at a resolution of 4080×3072 pixels with an
Olympus IX71 fluorescence microscope and U-RFL-T power supply
system (20× objective and 10× ocular magnifications plus 1.5× op-
tical enhancement). Cross-sectional areas of approximately 100 cells /
condition were measured using the Image-J software (NIH). In this
setting, 1 µm2 occupies 225 pixels. Cardiomyocyte cross-sectional areas
were transformed from pixels to µm2. Primary mouse embryonic fi-
broblasts (MEF) were prepared by mincing E14.5 embryos from EndoG
mice, treating them with trypsin for 20 to 30minutes, and plating in
complete DMEM media supplemented with 10% FBS and antibiotics.
The cells were split at 1:2–1:3 ratios when freshly confluent, passaged
two or three times to obtain a morphologically homogenous culture,
and then frozen or expanded for further studies. Primary cell cultures
were treated with N-acetyl-L-cysteine (NAC, Sigma-Aldrich; A7250), a
ROS scavenger. NAC was dissolved in PBS or complete DMEM media to
produce a 612mM stock solution. Following filter sterilization (0.2 μm
pore-size filters), NAC was added to the cell media at a concentration of
0.2 mM during the time required according to the experimental design.
NAC stocks were made fresh. L-Glutathione reduced (GSH, Sigma-Al-
drich; G4251) was stored at 163mM and prepared at a concentration of
10mM in culture medium at the time of the experiment, as previously
described [14]. MitoTEMPO (Sigma-Aldrich; SML0737) was stored at
20mM and prepared in water and added to the culture at a final con-
centration of 25 µM [15]. Lyophilized Humanin peptide, sequence
MAPRGFSCLLLLTGEIDLPVK (custom synthesized, purity> 90%; Gen-
Script, USA) was reconstituted in water to obtain a 2mM stock solution
that was subsequently dissolved in culture media to obtain the final
working concentrations.

2.2. Endog gene silencing

Endog gene silencing in cardiomyocytes was achieved by transduc-
tion of lentiviral particles containing either of two independent Endog-
specific small hairpin RNA constructs or a scrambled sequence that
were produced in Human Embryonic Kidney 293 cells (HEK293T) as
detailed in [1, 10, 11]. Silencing efficiency was checked by Western
Blot in each experiment.

2.3. Detection of reactive oxygen species

ROS production was determined by using the fluorescent probes
DHE (Sigma-Aldrich; D7008) and MitoSOXTM Red (Thermo Fisher
Scientific; M36008). DHE has been commonly used to detect cytosolic
superoxide anions (O2

.−) and MitoSOXTM Red, as a cationic derivative
of DHE, is rapidly and selectively targeted to the mitochondria where it
is oxidized mainly by superoxide anions (O2

.−). Detection of ROS
abundance with MitoSOX and DHE by in situ imaging is discouraged due
to detection of potential artifacts [16]. Therefore we used a flow cy-
tometry procedure as described below and accompanied it with a test
using mitochondria-specific and cytosolic inducers of ROS, as described
in the supplementary information. Rat neonatal cardiomyocytes trans-
duced with Endog-shRNA constructs and mouse neonatal cardiomyo-
cytes from Endog+/+ and Endog-/- hearts, both of them treated with N-
acetyl-L-cysteine (NAC) 0.2 mM for the indicated times, were washed
twice in PBS, tripsinized and counted using Neubauer cell chamber.
Equal amount of cells from each population were incubated in PBS
containing 5 μMMitoSOXTM Red for 10min or 10 μM DHE for 30min at
37 °C in the dark prior to ROS measurement. The fluorescence of the
cell population is proportional to the levels of intracellular ROS gen-
erated and measured with a BD FACSCanto II cytometer (Becton
Dickinson, Mountain View, CA, USA) using 488 nm laser excitation and
detection with BP 585/42 filter. Fluorescence values varied between
days. Therefore, before statistical comparisons, the full set of data for
each experiment was normalized to the mean value obtained the same
day for Endog+/+ mouse cardiomyocyte cultures or scrambled-trans-
duced neonatal rat cardiomyocyte cultures.

2.4. Subcellular fractionation, protein extraction and expression analysis by
Western Blot

Subcellular fractionation of primary neonatal cardiomyocytes from
Endog+/+ and Endog-/- hearts was performed with the Subcellular
Protein Fractionation kit for cultured cells (Thermo Scientific-Pierce;
78840) following manufacturer's guideline. In addition, Nuclear frac-
tion was obtained with the Nuclei EZ Prep Nuclei Isolation kit (Sigma-
Aldrich; NUC101) which includes a gentle and nonionic detergent,
Igepal CA-630 (NP-40), following supplier's instructions. Protein ex-
pression was analyzed in total protein extracts from tissues, cell cultures
and subcellular fractions diluted in Tris-buffered 2% SDS solution at pH
6.8 and SDS-PAGE was performed as described [10–12]. Western blots
were performed as reported in [10–12]. Antibody specifications are
described in Supplementary S1 table.

2.5. Mitochondrial DNA sequencing

Whole mtDNA was amplified from 8 Endog+/+ and 8 Endog-/- mice
in one amplicon by long range PCR (Takara LA PCR kit) using 50–100
ng of DNA and specific mtDNA primers (F:5’-GGTTCGTTTGTTCAACG
ATTAAAGTCCTACGTG-3’, R: 5’-GAGGTGATGTTTTTGGTAAACAGGC
GGGGT-3’). Quantification of amplified mtDNA was performed using
Qubit 2.0 Fluorimeter (Qubit dsDNA BR Assay kit; Invitrogen). Sample
libraries were prepared with Nextera XT DNA Sample Preparation kit
(Illumina) according to the manufacturer's protocol for fragments to
150pb and pair-end runs. One ng of amplified mtDNA was used to
prepare each library. After PCR clean up with Ampure beads XT
(Beackman Coulter), libraries were normalized and pooled. Pooled li-
braries were carried out into the MiSeq Reagent kit V2 (300 cycles and
2×150 chemistries) (Illumina) and sequenced in the MiSeq platform
and analyzed using MiSEq Control Software and MiSeq Reporter
Software. Libraries were multiplexed to obtain 3000× medium cov-
erage. The reference sequence was from Mus musculus C57BL/6 J strain
(GenBank Ref. NC_005089.1).
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2.6. Quantification of mtDNA replication in organello

Heart mitochondria from adult Endog-/- and Endog+/+ mice (n=7/
genotype) were isolated by differential centrifugation as described [17,
18]. Briefly, fresh heart tissue was homogenized in cold MIB mi-
tochondria isolation buffer (MIB, 320mM sucrose, 1 mM EDTA, 10mM
Tris-HCI, pH 7.4) with a Dounce homogenizer and centrifuged at 1,000
× g at 4 °C for 5min. The supernatant was centrifuged at 9,000 × g at
4 °C for 10min to obtain the mitochondrial pellet. For the in organello
labeling of de novo synthesized DNA we followed the protocol described
in [1]. Briefly, the mitochondrial pellets were washed 3 times in MIB
and once in incubation buffer (25mM sucrose, 75mM sorbitol, 100mM
KCl, 10mM K2HPO4, 0.05mM EDTA, 5mM MgCl2, and 10mM Tris-
HCl, pH 7.4), 250 µg of protein of the mitochondrial pellet (Coomassie
Plus Assay Kit, Thermo Scientific, Rockford IL) were resuspended at
1mg/ml in incubation buffer supplemented with 1mM ADP, 10mM
glutamate, 2.5mM malate and 1mg/mL fatty acid-free bovine serum
albumin, as well as 1 µM of dATP, dCTP and dGTP and 1 µM of radi-
olabeled dTTP ([methyl-3H]dTTP) and incubated at 37 °C in a rotary
shaker for 30min. As a control of even radionucleotide incorporation
between samples, total mitochondrial label was measured by scintilla-
tion counting of 25 µl of homogenate (Beckman Coulter LS 6500, Brea,
CA). Mitochondria were then pelleted (13,000 × g for 1min) and
washed twice with 10% glycerol, 0.15mM MgCl2, and 10mM Tris-HCl
(pH 6.8). For DNA extraction, the pellet was lysed with 500 µL of
20mM Hepes-NaOH, (pH 7.4) 75mM NaCl, 50mM EDTA, 20mg/mL
proteinase K, and incubated at 4 °C for 45min. Then, 17 µL of 30% N-
Lauroylsarcosine were added and the mixture was incubated at 50 °C
for 45 additional minutes. After classical phenol:chloroform:IAA ex-
traction, DNA was resuspended in TE buffer for 12 h at 4 °C and
quantified (Quant-iT PicoGreen dsDNA Reagent, Invitrogen). The DNA-
incorporated radiolabel was measured by scintillation counting. De
novo mtDNA replication was quantified as the apparent fmoles of 3H-
labeled nucleotide per ng DNA, calculated from the specific radio-
activity of the radiolabeled nucleotide used. Data are represented as the
values of Endog-/- vs. Endog+/+ mitochondria obtained, processed and
quantified in parallel. Statistical significance of the differences was
calculated using the sign test for paired data (SPSS software, IBM
Analytics).

2.7. MtDNA recovery in MEF mtDNA-depleted cells

We analysed mtDNA copy number recovery after Ethidium bro-
mide-forced depletion essentially as previously reported [19]. MEF
from 5 Endog +/+ and 5 Endog -/- mice were cultured with Ethidium
bromide solution (EtBr) 25 ng/ml (Sigma-Aldrich; E1510) during 1
week until the cells approached a state containing 10–20% of the
normal amount of mtDNA. After the treatment period, a subsequent
complete medium replacement without BrEt allowed recovery of
mtDNA. At the times required according to the experimental designs,
cells were harvested by trypsinization, washed with PBS, pelleted and
stored at −20 °C until DNA isolation. Total DNA was isolated from cell
pellets (QuiAmpDNA Mini kit, Qiagen), dissolved in 10mM Tris–HCl
(pH 8.0) and quantified by spectrophotometry (NanoDrop Spectro-
photometer, Thermo Scientific). Duplicates were assessed for each ex-
perimental condition. mtDNA copy number was calculated as mtDNA/
nDNA ratio and detection of mtDNA and nuclear DNA was performed as
a multiplex PCR reaction. Relative quantitation of mtDNA (16 S rRNA
and ND4 genes) versus nuclear DNA (ANG1 single copy gene) was
performed using an ABI PRISM® 7500 real-time PCR system (Applied
Biosystems). Custom designed primers and probes used for assessing
mtDNA copy number are listed in S2 Table, as previously described
[20]. Changes in the mtDNA amount were calculated using the 2-ΔΔCt

method [21] and represented as fold changes relative to the indicated
control. Trajectories over time for mtDNA were assessed using natural
splines that allow fitting nonlinear trends [22]. To assess the effect of

BrEt (comparing Endog +/+ and Endog -/- cultures) mixed effect models
[23] were used, including interaction term of cells type (Endog +/+ vs.
Endog -/-) with time. The additional effect of NAC was assessed in-
cluding the interaction with NAC. These analyses were performed with
the R software (R Core Team, https://www.R-project.org/).

2.8. Mitochondrial proteomics

Mouse cardiac mitochondria were isolated from Endog +/+ and
Endog -/- hearts following a differential centrifugation method as pre-
viously [24]. Two independent mitochondria enriched samples per
genotype were pooled and protein was quantified by Bradford assay.
Briefly, proteins were digested using the filter aided sample preparation
(FASP) protocol and the resulting peptides labeled with Isobaric tagging
for relative and absolute quantitation (iTRAQ), fractionated by cation
exchange and analyzed by LC-MS/MS. Quantitative data were analyzed
using statistical models developed in our laboratory. Detailed descrip-
tion of the procedures and references can be found in our previous work
[12].

2.9. Analysis of respiratory chain complex activity

Hearts were obtained from all mice and snap-frozen to be stored
subsequently at −80 °C until further use. Tissue homogenization was
always performed at 0–5 °C in mannitol buffer, pH 7.2 (mannitol
225mM, sucrose 75mM, Tris–HCl 10mM and EDTA 0.1mM) and
Complex I, complex II, complex II+III, complex IV and citrate synthase
(CS) activities were determined as previously described [25]. Protein
content was determined using Coomassie Plus protein assay reagent
(Pierce, Rockford, IL, USA). Enzyme activities were expressed as nmol/
min.mg protein and results were expressed as relative activity (specific
respiratory chain complex activity / citrate synthase activity).

2.10. Quantification of cardiac ATP content

ATP was quantified using 1H NMR spectra of tissue extracts using
Chenomx software (Chenomx Inc, Canada) as described previously [26].

2.11. Statistical analysis

Statistics were performed with GraphPad Prism (GraphPad
Software, San Diego, CA, USA), unless indicated otherwise. The effect of
Endog expression on the experimental values was assessed by the
Mann-Whitney U test. The Kruskal-Wallis test was used when com-
paring more than two groups, followed by the Dunn's test for selected
post hoc comparisons, and the Dunnett test when comparing to a con-
trol. Moreover, two-way analysis of variance (ANOVA) was performed
to determine the impact of Endog expression and drug addition on the
experimental values and for possible interaction. In order to assess the
different effect of HN concentration by Endog expression, a linear re-
gression model with interaction was fitted for cardiomyocyte cross-
sectional area (in logarithm scale for model validation purposes) and
adjusted means with 95% confidence interval were obtained in the
original scale with the R software (R Core Team). The same approach
was used to assess the differential effect of NAC, GSH and the super-
oxide dismutase (SOD) mimetic MitoTEMPO to block hypertrophy in
cardiomyocytes with low ENDOG levels. SPSS Software was used to run
the sign test to analyze differences between pairs of observations in the
mtDNA replication in organelle experiment, and the R software was
used to analyze the mtDNA recovery experiments, as described in the
corresponding sections. Statistical analysis of quantitative proteomics
data was performed using the WSPP model developed by Dr. Jesús
Vázquez (CNIC, Madrid, Spain) as described previously [12]. Experi-
ments were performed at least three times, the exact number is speci-
fied in each figure legend. All statistical tests were two-sided at a sig-
nificance level of 0.05.
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Fig. 1. ENDOG deficiency induces hypertrophy and ROS accumulation in neonatal cardiomyocytes that can be prevented by ROS scavengers. (A) Violin plots showing areas of mouse
cardiomyocytes (CM) isolated from 8–10 P2–3 neonatal Endog+/+ and Endog-/- pups seeded, fixed and stained with anti-α-actinin (sarcomere, green) and Hoescht 33342 stain (nucleus,
blue). Cell area was quantified with the ImageJ software as described in the Materials and Methods section in at least 100 cardiomyocytes per genotype obtained in three independent
experiments; *** P< 0.001 (Mann-Whitney U test). Points are individual data. Standard boxplot is also included. Representative images are shown on the right. (B) ROS abundance was
detected with the MitoSOXTM mitochondrial superoxide indicator in five independent CM cultures of P2–3 neonatal Endog+/+ and Endog-/- mice cultured 48 hours in the presence or
absence of 0.2mM NAC and calculated as indicated in the M&M section. Medians± interquartile ranges are shown. The Kruskall-Willis test (P<0.01) followed by the Dunn's test were
performed. **, P< 0.01 vs. Endog+/+; *, P< 0.05 vs. NAC, ns = not significant differences vs. Endog+/+. (C) CM areas were measured as in (A) for each of the treatments described in
(B); Two-way ANOVA indicated ***, P<0.001 for interaction, Endog expression and NAC treatment. Points are individual data. (D) MitoSOXTM and DHE signals in neonatal rat
cardiomyocytes transduced with two different Endog shRNA or scrambled (Scr shRNA) lentiviral vectors and cultured 48 hours in the absence or presence of 0.2mM NAC.
Medians± interquartile ranges are shown. The Kruskall-Wallis test (P< 0.001) followed by the Dunn's test were performed. *, P< 0.05; **, P< 0.01, ns = not significant differences vs.
Scr. N=5–8 (MitoSOX) and N=5 (DHE) independent experiments. (E) Rat neonatal CM areas were measured as in (A) from 3 independent experiments (at least 100 CM/condition) in
non-transduced cultures (NT) or cultures transduced with two different Endog shRNA or scrambled (Scr shRNA) lentiviral vectors and cultured 48 hours in the absence or presence of
0.2 mM NAC; Two-way ANOVA indicated ***, P< 0.001 for interaction, Endog expression and NAC treatment. Points are individual data. (F) Cross-sectional cardiomyocyte areas were
measured as in (A) after treatment of non-transduced (NT), Scr or Endog shRNA-transduced cultures in absence or presence of the ROS scavengers NAC, GSH or MitoTEMPO for 48 hours.
Between 150 and 200 areas were recorded per condition and shown in the violin plot, which includes a standard boxplot. The Dunnett's post hoc test comparing all conditions against NT
indicated significant differences of Endog shRNA1 without ROS scavenger and with MitoTEMPO. ***, P< 0.001. Additional two-way ANOVA showed same results, with significant
interaction (P<0.001).
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3. Results

3.1. Endog deficiency triggers cardiomyocyte hypertrophy dependent on
ROS accumulation

We previously showed that cardiomyocytes of adult Endog-/- mice
were bigger than those of Endog+/+ mice, by using a histological
procedure [1]. Here we dissected and digested neonatal hearts, seeded
the cells in culture dishes and stained them with α-actinin to identify
cardiomyocytes. The mean cross-sectional area of neonatal cardio-
myocytes from cultures of both genotypes was quantified.

Cardiomyocytes of Endog-/- neonatal mice were bigger than those of
Endog-/- mice (Fig. 1A) and the increase in size was accompanied by an
increase in ROS accumulation as measured using the O2

•- indicator
MitoSOX by flow cytometry (Fig. 1B), following the recommendations
published elsewhere [16, 27], which are commented in the discussion
and material and methods sections. Mitochondria were the most
probably source of ROS in Endog-deficient cells given the published
specificity of MitoSOX to react with ROS in these organelle [27].
Nevertheless, we checked the specificity of MitoSOX for mitochondrial
ROS in our model by quantifying MitoSOX signal in myocytes treated
with the mitochondrial superoxide-inducer Antimycine A or with

(caption on next page)
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Fig. 2. Lack of ENDOG induces downregulation of the AKT-GSK3β transduction signaling due to ROS accumulation and promotes the release MEF2 activity through nuclear export of
HDAC4. (A) Expression of ENDOG, phospho-AKT Ser473 (pAKT), total AKT (AKT), phospho-GSK3β Ser21/9 (pGSK3β) and total GSK3β (GSK3β) in neonatal Endog+/+ and Endog-/- mice
hearts by Western Blot. Representative Western blots with equal loading verified by naphtol blue (NB) membrane staining are shown in the upper panel. Quantitative analysis of
densitometric data is shown in the graph. Bars depict means± standard errors of the phosphorylated/total expression quotients from three independent experiments. Two-way ANOVA
indicated that Endog expression and age influenced the ratios of pAKT/AKT and pGSK3/GSK3 *, P<0.05; **, P< 0.01; ***, P< 0.001.Inter: Interaction between both variables in the
experimental value. (B) Analysis of the effect of NAC treatment (0.2mM) on the phosphorylation of AKT and GSK3β in primary neonatal rat cardiomyocytes transduced with lentiviral
vectors containing Endog shRNA or a scrambled sequence (Scr) or not transduced (NT). Expression was checked by Western Blot (upper panel) and equal loading was verified by
membrane staining with naphtol blue (NB). Due to important inter-experiment signal differences, densitometric data were normalized dividing the values by the mean of the Scrambled
signal and represented as means± standard errors of three independent experiments (bar graph). Two-way ANOVA indicated whether Endog expression and NAC influenced the ratios of
pAKT/AKT and pGSK3/GSK3. (C) Subcellular distribution of HDAC4 and MEF2A in primary mouse cardiomyocytes from neonatal Endog+/+ and Endog-/- hearts. Fractions were
analyzed by Western Blot to detect HDAC4 and MEF2A in cytosolic (left panel) and nuclear fractions (right panel), using GAPDH as a cytosolic marker and Lamin as a nuclear marker to
control fractionation. Quantification of HDAC4 and MEF2A Western Blot signals are shown in the graphs. Bars depict means± standard errors of two independent experiments (8–10
hearts / condition / experiment). The Mann-Whitney U test indicated significant differences between groups *, P< 0.05; **, P<0.01; ***P<0.001. Nuc Ins: nuclear insoluble fraction
(membranes); Nuc Sol: nuclear soluble fraction. (D) Densitometric quantification of ENDOG, MEF2A and α-actinin expression in rat neonatal cardiomyocytes not transduced (NT),
transduced with a scrambled construct (Scr) or transduced with Endog-specific shRNA1 and 2 viruses; in the absence or presence of 0.2mM NAC. Bars are means± standard errors of
densitometric values related to their respective Scr signal. Two-way ANOVA indicated whether Endog silencing and NAC influenced the expression of ENDOG, MEF2A and α-actinin. *,
P<0.05; **, P<0.01; ***, P< 0.001; ns: not significant.
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Fig. 3. EndoG deficiency has no effect on mtDNA stability but hinders
mtDNA synthesis independently of ROS accumulation. (A)
Sequencing of mitochondrial DNA extracted from hearts of
Endog+/+ and Endog-/- neonatal mice did not show any nucleotide
variant associated to the Endog genotype. A single mutation
(59 C>T) was detected in heteroplasmy (% frequency vs. re-
ference sequence) within the Phe tRNA (MT-TF) gene in 2
Endog+/+ and 4 Endog-/- mice; N=8 per genotype, ns: not sta-
tistically significant differences. (B) Incorporation of dTTP-3H in
mtDNA was quantified simultaneously in isolated Endog+/+ and
Endog-/- cardiac mitochondria preparations; N=7. Non-para-
metric sign test for paired observations indicated significant dif-
ferences due to genotype, P=0.01. (C) MtDNA of MEF from
Endog+/+ and Endog-/- mice was depleted with EtBr (25 ng/ml) in
order to reach minimum similar levels in both genotypes.
Removal of the drug from the culture medium (day 0) allowed
recovery of mtDNA content and the mtDNA copy number was
determined in Endog+/+ and Endog-/- MEF at the indicated time
intervals. The relative mtDNA copy number was quantitated and
analyzed as described in the Materials and Methods section. N=5
per genotype. (D) Mitochondrial ROS abundance was quantified
using the MitoSOXTM mitochondrial superoxide indicator in
Endog+/+ and Endog-/- fibroblasts cultured in the absence or
presence of ROS scavenger NAC (0.2mM). Due to important inter-
experiment basal signal oscillations, data were normalized di-
vinding by the Endog+/+ mean before statistical treatment. The
Kruskall-Wallis test (P=0.03) was followed by the Dunn's test for
pair wise comparisons; *, P<0.05 vs. Endog+/+; **, P<0.01 vs.
Endog+/++NAC. Medians± interquartile ranges are shown.
N=6. (E) MtDNA copy number recovery was analyzed in the
presence of ROS scavenger NAC. After removal of BrEt (day 0),
Endog+/+ and Endog-/- MEF were divided into two groups during
one week recovery period. In both genotypes, one group was
cultured in a medium with NAC (0.2mM) and the other group
served as control without NAC. At the indicated time intervals,
the relative mtDNA copy number was determined in cells from
each group as in Fig. 3.C. N=5 per genotype.
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phorbol myristate acetate (PMA), an activator of cytosolic NADPH
oxidase [27], confirming that MitoSOX signal increased only in myo-
cytes with enhanced mitochondrial ROS production (Fig.S1). Increased
ROS accumulation was hampered by the presence of 0.2 mM N-acetyl-
L-cysteine (NAC) in the culture medium (Fig. 1B) and NAC addition was
associated with a reduction in the cross-sectional area of Endog-/- car-
diomyocytes (Fig. 1C). These results were complemented with the
analysis of cardiomyocyte size, ROS accumulation and effects of NAC in
rat neonatal cardiomyocytes transduced with control (scrambled, Scr)
or two different Endog-specific shRNA constructs to silence Endog ex-
pression (shRNA1, 2). Endog knockdown was sufficient to induce ROS
accumulation in rat cardiomyocytes (Fig. 1D), and hypertrophy
(Fig. 1E) and NAC addition suppressed both effects (Fig. 1D,E). This
suggested that, whatever the ROS generated, they were transformed in
H2O2, as NAC has been described to neutralize ROS mostly through
enhancing glutathione (GSH) synthesis and GSH-dependent detox-
ification of H2O2 by glutathione peroxidase. In our model, NAC addi-
tion induced increased ThiolTrackerTM signal (an indicator of GSH
abundance, according to the manufacturer) in cells with low expression
of Endog (Fig.S2). Based on these results, we assessed the efficiency of
GSH and the superoxide dismutase (SOD) mimetic MitoTEMPO to block
hypertrophy in cardiomyocytes with low ENDOG levels. Only NAC and
GSH, which act mainly by neutralizing H2O2, but not MitoTEMPO,
which transforms O2

.- in H2O2, prevented hypertrophy (Fig. 1F), in-
dicating the potential role of H2O2 in Endog-deficient cardiomyocyte
hypertrophy. These results showed that Endog deficiency induces the

increase of cardiomyocyte size at the neonatal stage and that blocking
the concomitant mitochondrial production and accumulation of ROS is
sufficient to hamper hypertrophy.

3.2. Lack of Endog expression induces changes in the AKT/PKB and Class-II
HDAC transduction signaling pathways in cardiomyocytes

The above results showed that cardiomyocyte hypertrophy induced
by Endog deficiency was dependent on ROS accumulation. The cellular
redox status has been shown to modify signaling transduction involved
in cell growth, including the AKT/PKB pathway [3–5] and the nucleo-
cytoplasmatic shuttling of Class-IIa HDACs, in particular HDAC4 [6].
Therefore, we characterized both pathways comparing control and
Endog-deficient cardiomyocytes. Analysis of AKT phosphorylation at
Ser473 (pAKT), which is an indicator of its kinase activity, showed that
the Endog-/- myocardium had a marked reduction of the pAKT/AKT
ratio both at birth (P0) and at three days of extra-uterine life (P3). In
agreement with this finding, phosphorylation of its direct target GSK3B
was reduced in the Endog-/- myocardium (Fig. 2A). Replication of the
experiment in vitro using neonatal rat cardiomyocytes allowed checking
the effects of NAC addition. Endog silencing by two independent shRNA
constructs caused a decrease in the phosphorylation of AKT and GSK3β
and, thus, in the pAKT/AKT and pGSK3B/GSK3β ratios (Fig. 2B).
However, the effects were not as marked as in Endog-/- myocytes
probably because of the residual Endog expression after gene knock-
down (Fig. 2B). The presence of the antioxidant compound NAC was

Fig. 4. Mitochondrial respiratory chain expression and activity is not affected by ENDOG deficiency. (A) Left, relative abundance profiles of mitochondria-encoded components of the Electron
transport chain in both Endog+/+ and Endog-/- in cardiac mitochondria extracts (FDRq, false discovery rate quotient, significant difference FDRq<0.01). Right graph, sigmoid plot
showing the cumulative distributions of log2-ratios in units of the standard deviation at each level (Zq, protein to grand mean variability) (Endog-/- / Endog+/+) of proteins belonging to
all oxidative phosphorylation complexes in Endog-/- (red line) and in Endog+/+ (blue line) and the null hypothesis distribution (black line), where a trend to the left would denote
increased abundance and a trend to the right would indicate lower abundance vs. the null hypothesis. (B) Complex I, complex II, complex II+III, complex IV and citrate synthase (CS)
activities were determined in heart mitochondria extracts from Endog+/+ and Endog-/- mice and expressed as relative activity (specific respiratory chain complex activity / citrate
synthase activity), see Materials and Methods section for procedure and statistics. N=5. (C) ATP content of Endog+/+ and Endog-/- mouse hearts. N=3. The Mann-Whitney U test showed
no significant differences.
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able to block the changes in the phosphorylation status of both kinases
(Fig. 2B, graph). Because hypertrophy has been associated with higher
pAKT/AKT ratio [3–5] and our results showed the opposite in the case
of Endog-deficient myocytes, we also assessed the cytosolic and nuclear
expression of HDAC4. In the nucleus, HDAC4 repress Myocyte Enhancer
Factor-2 (MEF2)-dependent activation of hypertrophic genes [28].
Dissociation of HDAC4 from MEF2 and posterior nuclear export of
HDAC4 allows MEF2-dependent gene transcription and hypertrophy
[29], and this pathway has been shown to be also regulated by redox
signaling [6]. We obtained the cytosolic fraction of neonatal Endog+/+

and Endog-/- mice's ventricles and assessed the expression of HDAC4.
Cytosolic abundance of HDAC4 was higher in hearts of Endog-/- mice

than in control hearts (Fig. 2C, upper panel). Using this technique, we
were unable to detect HDAC4 in the nuclear fraction. However, when
we used a specific protocol to obtain nuclear extracts, we observed
lower HDAC4 presence in the nuclear fraction of Endog-/- mice's myo-
cardium, coinciding with higher expression of MEF2A (Fig. 2C, right
panel and bottom graph). Combined, these results were in agreement
with lower repression of nuclear MEF2A by HDAC4 in the hearts of
Endog-/- mice. Despite our attempts, we were unable of assessing the
role of ROS in this event, due to the requirement of millions of mouse
myocytes for the subcellular fractionation procedure and lack of rat
HDAC4 specific antibodies. Nevertheless, MEF2A and α-actinin ex-
pression were higher in Endog-deficient rat cardiomyocytes in vitro
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cultured cardiomyocytes of Endog+/+ and Endog-/- neonatal mice. Two-way ANOVA indicated ***, P<0.001 for interaction, Endog expression and HN treatment on cell size. Points are
individual data.
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compared to their controls (Fig. 2D) and addition of 0.2mM NAC
blunted this effect (Fig. 2D), supporting a role of ROS in the control of
MEF2A-dependent transcription.

3.3. Endog loss-of-function compromises mitochondrial DNA replication
independently of ROS accumulation

Once we found that ENDOG regulates cardiomyocyte hypertrophy
through the control of ROS accumulation, we investigated the mole-
cular events mediating this event. We reasoned that the influence of
ENDOG on mtDNA biology could be upstream of ROS accumulation and
ROS-dependent cardiomyocyte hypertrophy. We sequenced the cardiac
mitochondrial genome of Endog+/+ and Endog-/- mice and found a
single nucleotide polymorphism compared to the standard genome that
was present at similar frequencies in both genotypes (Fig. 3A). These
results suggested that ENDOG is not required to maintain mtDNA re-
plication fidelity in the heart. Our previous results showed that lack of
ENDOG associates with lower abundance of cardiac mtDNA [1]. We
isolated cardiac mitochondrial preparations from Endog+/+ and
Endog-/- mice and quantified the incorporation of labeled deox-
ynucleotides to mtDNA. Our results showed that incorporation of
deoxynucleotide to the DNA of Endog-/- mitochondria was slower than
in Endog+/+ mitochondria, suggesting the requirement of ENDOG to
sustain normal mtDNA synthesis (Fig. 3B). To further investigate this
event and the potential influence of ROS, we quantified the mtDNA
content of Endog+/+ and Endog-/- mouse embryonic fibroblasts (MEF)
in which we induced mtDNA depletion by ethidium bromide (EtBr)
treatment (MEF-Depl) and then MEF-Depl were let to recover their
mtDNA content in the absence of EtBr. Treatment with EtBr reduced
MEF's mtDNA content at similar levels in both genotypes. Recovery of
the mtDNA was faster in Endog+/+ MEF (P<0.001) and Endog-/- MEF-
Depl were unable to sustain a net gain of mtDNA copies reaching a
plateau by the end of the studied period (Fig. 3C). Then, we questioned
whether ROS accumulation in Endog-/- MEF-Depl determined the lower
capacity to mtDNA synthesis. The presence of NAC, which hampered
ROS accumulation (Fig. 3D), did not improve mtDNA replication in
Endog-/- MEF-Depl (P=0.9) (Fig. 3E). These results showed that Endog
deficiency compromises mtDNA replication upstream, or at least in-
dependently, of ROS accumulation.

3.4. Electron Transport Chain subunit expression, respiratory chain
complex activity and ATP concentration are normal in the Endog-/-

myocardium

Mitochondrial Electron Transport Chain (ETC) activity is an im-
portant source of cellular ROS. Thirteen ETC subunits are coded by the
mtDNA. We previously found lower mtDNA content in the heart of
Endog-/- mice and here we report reduced mtDNA replication in Endog-
deficient mitochondria. Thus, we assessed whether the expression of
mtDNA-encoded ETC subunits was compromised in the heart of Endog-/-

mice. An Isobaric tag for relative and absolute quantitation (iTRAQ)-
based comparative proteomics of cardiac mitochondrial extracts from
Endog+/+ and Endog-/- mice showed no overall significant differences
by genotype between the abundance of eleven detected mtDNA-en-
coded ETC subunits with only the Cytochrome c Oxidase complex
subunit-2 (COX2) showing very slight but significant increase in
Endog-/- mitochondria (Fig. 4A, panel). No changes were observed in the
abundance of the whole cardiac mitochondrial proteome (Fig. 4A,
graph). This was in accordance with the lack of genotype-associated
changes in the activity of the different ETC complexes, as quantified in
vitro (Fig. 4B), and the cardiac ATP concentration (Fig. 4C). Together,
these results show that reduced mtDNA abundance and impaired
mtDNA replication due to Endog deficiency have no relevant impact on
ETC expression and activity and, thus, the origin of mitochondrial ROS
accumulation in Endog-deficient cells is probably due to external reg-
ulation of the ETC and/or independent of it.

3.5. Humanin, a synthetic micropeptide based in an ORF within the mtDNA
prevents ROS accumulation and cardiomyocyte growth induced by Endog
deficiency

MtDNA has been suggested to contain small ORFs that could code
for micropeptides [30]. Humanin was identified as an ORF within the
sequence of the 16 S ribosomal RNA gene (MT-RNR2), potentially coding
for a 2.6 kDa peptide and addition of synthetic HN to cell cultures has
several metabolic effects [30, 31]. However, up to date, no reliable
detection of the HN peptide or transcript has been published and at-
tempts from our lab to detect HN in human and rodent samples suggest
that commercial antibodies are not specific (data not shown). Never-
theless, we reasoned that reduced mtDNA content due to Endog defi-
ciency, although insufficient to affect the abundance of the mtDNA-
encoded ETC subunits, could hinder HN expression and, thus, addition
of HN to Endog-deficient cardiomyocytes could affect ROS abundance
and cell growth. Indeed, addition of 0.1 µM HN hampered mitochon-
drial ROS accumulation in Endog-deficient cardiomyocytes (Fig. 5A).
The anti-hypertrophic effect of HN was markedly dose-dependent in
cardiomyocytes with reduced Endog expression (Fig. 5B) and practically
without effect in cardiomyocytes from control groups (Fig.S3). This
pattern was accompanied by normalization of MEF2A and α-actinin
expression (Fig. 5C). Humanin was also able of blocking abnormal
growth of Endog-/--derived mouse cardiomyocytes cultured in vitro
(Fig. 5D).

4. Discussion

In the present study we aimed at identifying the mechanism by
which Endog loss-of-function impacts on cardiomyocyte growth. This is
relevant because the Endog locus was identified as a determinant of
blood pressure-independent cardiac hypertrophy by integrative func-
tional genomics and Endog deficiency was shown to induce cardio-
myocyte hypertrophy [1] but the signaling involved remain to be
characterized. The main novelty of our contribution is the identification
of ROS as the major mediators of hypertrophy in Endog-deficient car-
diomyocytes. To our knowledge, we also contribute for the first time
biological data supporting that ENDOG is important to sustain mtDNA
replication. Despite the lack of overt effects on the expression and ac-
tivity of the mitochondrial ETC, reduced mtDNA content could hinder
HN expression, a mtDNA-encoded micropeptide that has been sug-
gested to be relevant for cell metabolism [30, 31]. Although we cannot
yet provide evidence of possible changes in the expression of HN in
Endog-deficient cardiomyocytes, our results show that addition of na-
nomolar concentrations of HN can revert and prevent ROS accumula-
tion and abnormal cardiomyocyte growth induced by Endog deficiency,
indicating that this micropeptide could hold therapeutic potential.

ENDOG activity on DNA was discovered three decades ago in car-
diac mitochondria extracts [7]. Although its nuclease activity has been
well characterized at the molecular level, its biological roles are not
completely understood. Some reports show that ENDOG may have a
role in DNA recombination in HeLa cells [32] and leukemia cells [33],
but the interest about ENDOG rose for its role in cell death as the in-
ducer of genomic DNA degradation [34] in certain cell types including
cardiomyocytes [10, 11]. However, Endog was later identified as a de-
terminant of blood pressure-independent cardiac hypertrophy [1] and
cardiomyocytes with low ENDOG expression accumulated ROS [1]. Our
results help to understand the events mediating Endog-dependent car-
diomyocyte hypertrophy by showing the relevant contribution of ROS.

Cardiomyocyte hypertrophy proceeds through mechanical, endo-
crine- and neurohumoral-induced signal transduction pathways, which
can imply the phosphorylation (activation) of the PI3K-AKT/MEK/ERK
axes, phosphorylation (inhibition) of GSK3β, and mTOR complex acti-
vation, all promoting transcription and protein synthesis [35], and/or
the nuclear export of HDAC4 that releases MEF2A to induce tran-
scription of several genes including MEF2A itself [29]. These pathways
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can be stimulated by mitochondrial ROS [36] and, if sustained, lead to
heart failure. Hydrogen peroxide has been shown to drive the redox-
dependent signaling influencing cardiac hypertrophy [6, 36]. Our ex-
perimental approach combining MitoSOX and DHE fluorescence de-
tection by flow cytometry, combined with the controls presented as
supplementary information, suggest that O2

.- is produced in the mi-
tochondria with reduced abundance of ENDOG. However, electron
paramagnetic resonance (EPR)-based or HPLC-based techniques are
required to confirm this [16]. NAC and GSH but not the SOD mimetic
MitoTEMPO, blunted Endog deficient cardiomyocyte growth suggesting
that H2O2 is the main inductor of the signaling leading to cardiomyo-
cyte hypertrophy. The results presented here suggest that the AKT
pathway is not involved in Endog-deficient myocyte growth because
Endog deficiency both in vivo and in vitro lead to a reduction, not in-
duction, of AKT and GSK3β phosphorylation, despite ROS accumula-
tion, and NAC restored ROS and pAKT to normal levels in parallel to
alleviate cell growth. However, Endog-/- hearts had higher HDAC4
abundance in the cytosol and lower nuclear HDAC4 protein level than
Endog+/+. These results together with the induced expression of
MEF2A and α-actinin, support the role of the activation of the HDAC/
MEF2 pathway. Unfortunately, technical limitations due to insufficient
mouse cardiomyocyte yield to perform large cell culture experiments
and lack of rat HDAC4-specific antibodies, prevented to settle an in vitro
model to check the influence of ROS in HDAC4 export to the cytosol in
Endog-deficient myocytes.

Radical oxygen species are important mediators of hypertrophy
triggered by extracellular signals, either neurohumoral, endocrine or
mechanical [36, 37]. However, Endog loss of function, which occurs in
several widely studied rodent models of cardiac hypertrophy such as
the spontaneously hypertensive rat (SHR) due to mutations in the Endog
locus [1], could be an intrinsic mechanism driving ROS-dependent
cardiomyocyte hypertrophy. These results suggest the interest of
studying the impact of Endog expression and ROS abundance in human
heart failure unrelated to adrenergic or endocrine cues.

Our findings also show that, concomitant to increased ROS accu-
mulation but independently of it, lack of ENDOG hindered mtDNA re-
plication and provoked a 35% drop of the mtDNA content. Decreased
mtDNA content causes ROS accumulation and oxidative stress when
mtDNA replication capacity is limited [38, 39]. Taken together, these
facts suggest that the reduced mtDNA content due to Endog deficiency
could be upstream of ROS accumulation and cardiomyocyte hyper-
trophy. However, we did not identify any overt change in mtDNA-en-
coded ETC subunit expression, mtDNA mutation rate nor in ETC ac-
tivity that could justify ROS accumulation. A search for alternative links
between the changes in mtDNA and ROS accumulation brought our
attention to humanin, which has been identified as an ORF within the
mitochondrial 16 S rRNA gene with metabolic and cytoprotective
functions [31, 40]. We reasoned that a modest drop of mtDNA abun-
dance could still sustain ETC subunit expression but compromise the
production of the peptide HN. Despite reports claiming the detection of
HN protein in muscle samples of humans [41] and rodents (Rattin)
[40], our attempts to detect it led us to question the specificity of the
commercial antibodies. In addition, a search in our iTRAQ-based car-
diac proteomics database did not detect HN (nor Angiotensin-II),
showing that the procedure is not presently prepared to detect such
small peptides. Nevertheless, addition of HN to Endog-deficient cardi-
omyocytes was sufficient to block ROS accumulation and hamper car-
diomyocyte growth in cardiomyocytes with reduced Endog expression.
In conclusion, the results presented here together with the existing
bibliography, suggest a potential link between ENDOG activity, mtDNA
replication, HN expression, ROS production and cardiomyocyte hy-
pertrophy that deserves further investigation due to its therapeutic
potential.
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