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Abstract: The study compares the diagnostic performance of deep learning (DL) with that of the
former radiologist reading of the Kellgren–Lawrence (KL) grade and evaluates whether additional
patient data can improve the diagnostic performance of DL. From March 2003 to February 2017, 3000
patients with 4366 knee AP radiographs were randomly selected. DL was trained using knee images
and clinical information in two stages. In the first stage, DL was trained only with images and then in
the second stage, it was trained with image data and clinical information. In the test set of image data,
the areas under the receiver operating characteristic curve (AUC)s of the DL algorithm in diagnosing
KL 0 to KL 4 were 0.91 (95% confidence interval (CI), 0.88–0.95), 0.80 (95% CI, 0.76–0.84), 0.69 (95% CI,
0.64–0.73), 0.86 (95% CI, 0.83–0.89), and 0.96 (95% CI, 0.94–0.98), respectively. In the test set with image
data and additional patient information, the AUCs of the DL algorithm in diagnosing KL 0 to KL 4
were 0.97 (95% confidence interval (CI), 0.71–0.74), 0.85 (95% CI, 0.80–0.86), 0.75 (95% CI, 0.66–0.73),
0.86 (95% CI, 0.79–0.85), and 0.95 (95% CI, 0.91–0.97), respectively. The diagnostic performance of
image data with additional patient information showed a statistically significantly higher AUC than
image data alone in diagnosing KL 0, 1, and 2 (p-values were 0.008, 0.020, and 0.027, respectively).The
diagnostic performance of DL was comparable to that of the former radiologist reading of the knee
osteoarthritis KL grade. Additional patient information improved DL diagnosis in interpreting early
knee osteoarthritis.
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1. Introduction

Osteoarthritis (OA) is the most common musculoskeletal disorder that involves inflammation
and major structural changes of the joint [1]. This results in irreversible damage to the joint cartilage
and bony structures [2]. The prevalence and economic burden of OA is very high; specifically,
lower extremity OA is the eleventh highest global disability, with prevalence rising with age [1].
Moreover, it has been shown that the prevalence of symptomatic knee OA is especially high in Asians,
with an estimated prevalence of 38% among those older than 65 years [3]. Possible risk factors
of knee OA include age, obesity, gender (i.e., female), repetitive knee trauma, and life style, i.e.,
frequent kneeling [4]. The current gold standard for screening of OA is plain radiographic evaluation
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due to its relative safety, availability, and cost-efficiency [5,6]. The Kellgren–Lawrence (KL) grading
system is the most commonly used knee OA severity grading scale. It divides knee OA into five
severity grades, from 0 to 4 [7]. However, some previous studies have asserted that the KL grading
system may be too ambiguous, due to disagreements between intra- and inter-rater reliability of
quadratic Kappa, ranging from 0.56 to 0.67 [8–10]. These kinds of disagreements make the diagnosis of
knee OA challenging and unreliable.

Deep learning (DL) using convolutional neural network (CNN) is an emerging technology. It has
been recognized for its strengths in image classification, and as such, implementation of DL in
diagnostic medicine has been heavily investigated, including the diagnosis of maxillary sinusitis with
conventional radiography, detection of osteonecrosis of the femoral head with digital radiography,
detection of moyamoya disease in plain skull radiography, and diagnosis of the severity of knee
OA from plain radiographs [6,11–13]. To date, many studies have strived to improve the diagnostic
performance, but to the best of our knowledge, they have mostly focused on using only radiologic
data [14].

However, clinicians usually use various types of patient information to diagnose OA, determine the
treatment modality, and predict the prognosis. Patient demographic data, additional radiologic data,
such as alignment, and metabolic data, such as combined morbidity, can all be helpful in making
the diagnosis. It was assumed that a combination of patient information and radiologic data in
DL would increase the accuracy of diagnosing OA. However, to date, whether this was possible
remained uncertain.

Therefore, this study intended to increase the performance of DL in diagnosing OA by combining
additional patient information and radiologic data compared with radiologic data alone in DL. Hence,
the purpose of this study was twofold: (1) to compare the diagnostic performance of DL with radiologic
data alone compared with that of the former radiologist reading of the knee OA KL grade; and (2) to
evaluate whether combining additional patient information (demographic, alignment, and metabolic
data) with radiologic data in DL can improve diagnostic performance. Hypotheses of this study were
as follows: (1) the diagnostic performance of DL would be unsatisfactory when compared with that
of the former radiologist reading of knee OA; and (2) additional patient information would improve
diagnostic performance of DL.

2. Materials and Methods

2.1. Dataset

From March 2003 to February 2017, a total of 72,258 patients suffering from knee pain and who
subsequently underwent standing knee anteroposterior (AP) radiograph with formal reading of KL
grade system were enrolled in this retrospective cohort study. Among them, 3000 patients with 4366
knee AP radiographs were randomly selected using stratified random sampling [15]. To avoid cluster
effect between multiple radiographs in a single patient, only the initial knee AP radiograph was used.

The additional patient information, which might affect OA progression, was gathered from
the clinical data warehouse (CDW). This information was categorized as demographic, alignment,
and metabolic data. Age, gender, and body mass index (BMI) were included in the demographic data.
The weight-bearing line (WBL) ratio was evaluated as a radiologic data. The WBL ratio was calculated
as the percentage of the crossing point of the mechanical axis, from the medial edge of the tibial plateau
to the entire width of the tibial plateau. The metabolic data were the history of diabetic mellitus (DM)
and hypertension (HTN).

The image data and data regarding factors affecting OA were divided into training, validation,
and test sets based on the ratio of KL grade. The training and validation set was divided by 9:1 ratio in
proportion to KL grade (Table 1) [11,16].
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Table 1. Baseline characteristics.

Characteristic Training Set Validation Set Test Set Total p-Value

Age (Year) 62.3 ± 12.5 63.2 ± 12.6 61.5 ± 14.9 62.3 ± 2.8 0.359
Gender (M/F) 701/2763 74/312 146/370 921/3445 <0.001 *
BMI (kg/m2) 25.5 ± 3.19 25.4 ± 2.96 25.9 ± 3.42 25.5 ± 3.20 0.025 *
WBL Ratio 0.31 ± 0.17 0.32 ± 0.15 0.36 ± 0.14 0.32 ± 0.16 <0.001 *
DM/HTN 629/1552 63/181 64/184 756/1917 0.005/<0.001 *

K-L 0 473 53 74 600
K-L 1 574 64 117 755
K-L 2 889 99 125 1113
K-L 3 1055 117 147 1319
K-L 4 473 53 53 579
Total 3464 386 516 4366

BMI: body mass index, WBL: weight bearing line, DM: diabetic mellitus, HTN: hypertension, K-L: Kellgren–Lawrence
grade, *: statistically significant

All test set images were after July 2016.
The institutional review boards approved this study. The requirement for informed consent was

waived due to the retrospective nature of this study and the use of anonymized patient data.

2.2. Labeling

All anonymized Digital Imaging and Communications in Medicine (DICOM) files of the enrolled
patients were downloaded from the picture archiving and communication system (PACS) and used.
All DICOM files were matched with radiologists’ former reading of KL grade.

All radiographs were labeled according to the semi-quantitative KL grade, which was divided
into five categories; KL-0 (no presence of OA changes), KL-1 (doubtful narrowing of joint space with
possible osteophyte formation), KL-2 (possible narrowing of the joint space with definite osteophyte
formation), KL-3 (definite narrowing of joint space, moderate osteophyte formation, some sclerosis,
and possible deformity of bony ends), and KL-4 (large osteophyte formation, severe narrowing of the
joint space with marked sclerosis, and definite deformity of bone ends) [7,17].

2.3. DL Algorithm

In our study, DL algorithm was applied to a knee x-ray without cropping the joint area [14]. In the
image of both knees, the right and left knees were cropped respectively. The right knee was cropped to
280 × 224 mm with a height of 0.5 and width of 0.25 in the knee image. The left knee was cropped to
the same size as the right knee, with a height of 0.5 and a width of 0.75. The cropped knee was resized
to 320 × 256 pixels. For data augmentation, horizontal or vertical shift and horizontal flip were applied
to the training set. Pydicom library (version 1.2.0, Python software Foundation, Wilmington, DE, USA)
was used for image processing in DICOM format.

We performed the training on CUDA/cuDNN (versions 9.0 and 7.4, respectively) and TensorFlow
library (version 1.12, Google Brain Team, Mountain View, CA, USA) for graphic processing unit
acceleration on a Linux operating system (Ubuntu 16.04, Canonical Ltd., London, UK).

Knee images and clinical information were trained by DL algorithms in two stages. In the first
stage, a convolutional neural network was constructed by stacking six squeeze-and-excitation ResNet
(SE-ResNet) modules to train only images [18]. The number of features in the last SE-ResNet module
was 5, and after this block, Log-Sum-Exp pooling and Softmax activation function were sequentially
applied to predict the KL grade, which ranged from 0 to 4. Xavier initialization was used as the
initial value of parameters. In training the network, the learning rate, decay rate, and decay step were
set to 0.01, 0.94, and 5000, respectively. The mini-batch size was set to six. Cross-entropy loss was
minimized by applying the RMS Prop optimizer. L2 regularization was applied to prevent overfitting
of the algorithm.
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In the second stage, a neural network was designed accepting the clinical information with the
features resulting from the first stage as input data. Specifically, the input variables were constructed
by concatenating the five probabilities (probability to be KL grade 0~4 each), age, gender, BMI, DM,
and HTN. The KL grade was finally predicted by applying 5-way Softmax activation function after
going through 2 layers with 6 parameters each. In the second stage, the same weight initialization,
learning rate, decay rate, decay step, and mini-batch size as the first stage were set. The same method
as the first stage was used to minimize the loss function and prevent overfitting of the algorithm.

Class activation mapping (CAM) was used to find out how the DL algorithm detected KL
stage. Class activation mapping was obtained by resizing the output to the input size using bilinear
interpolation just before log-sum-exp pooling. Since KL grade was predicted by the 5-way Softmax
activation function, class activation mappings for each KL grade could be obtained separately. In class
activation mappings, Rectified Linear unit activation function (ReLU) was additionally applied to
highlight the most sensitive regions in predicting KL grade.

3. Statistical Analysis

Sensitivity, specificity, and area under the receiver operating characteristic curve (AUC) were
measured to evaluate the diagnostic performance of DL algorithm. An asymptotic calculation based
on DeLong et al. [19] was used to obtain the 95% confidence interval for AUC. The AUC of the DL
algorithm with sole image data and those of image and patient information were compared using
the nonparametric test by DeLong et al. [19]. To calculate the sensitivity and specificity of the DL
algorithm, three types of cutoffs were calculated based on the validation set: an optimal cutoff based
on Youden’s J statistic was set, a cutoff with a sensitivity of 90%, and a cutoff with specificity of 90%.

All statistical analyses were performed using SPSS ver. 22.0 (IBM, Armonk, NY, USA). The data
were presented as the means and standard deviations for continuous variables. The differences in the
quantitative variables (i.e., age, BMI, and WBL ratio) were analyzed using Student’s t-test or Fisher
exact test, as appropriate. Pearson chi-squared test or Fisher’s exact test were used to compare the
qualitative variables (i.e., sex and patient’s history of DM and HTN). A p value less than 0.05 was
considered statistically significant.

3.1. Results

The mean age and BMI of patients at the time of knee x-ray exams were 62.3 ± 12.8 years
and 25.5 ± 3.19 kg/m2, respectively. The final inclusion of baseline characteristics of patients and
distribution of labels in training, validation, and test sets is summarized in Table 1.

3.1.1. Performance of DL with Sole Image Data

The AUCs of DL algorithm in diagnosing KL 0 to KL 4 with sole image data were as follows.
In the validation set, the AUCs of DL algorithm in diagnosing KL 0 to KL 4 were 0.91 (95% confidence
interval (CI), 0.87–0.95), 0.78 (95% CI, 0.72–0.84), 0.79 (95% CI, 0.74–0.84), 0.82 (95% CI, 0.78–0.86),
and 0.95 (95% CI, 0.92–0.97), respectively. In the test set, the AUCs of DL algorithm in diagnosing KL 0
to KL 4 were 0.91 (95% CI, 0.88–0.95), 0.80 (95% CI, 0.76–0.84), 0.69 (95% CI, 0.64–0.73), 0.86 (95% CI,
0.83–0.89), and 0.96 (95% CI, 0.94–0.98), respectively (Figure 1A,B).
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Figure 1. Area under the receiver operating curve (AUC) of the validation set (A) and the test set (B) for
the deep learning (DL) algorithm of Kellgren–Lawrence (KL) grade 0 to 4 with sole image data.

3.1.2. Performance of DL with Image Data and Additional Patient Information

The performance of DL with image and additional patient data in diagnosing KL grade was
competitive. In the validation set, the AUCs of DL algorithm in diagnosing KL 0 to KL 4 were 0.97
(95% confidence interval (CI), 0.95–0.98), 0.83 (95% CI, 0.78–0.87), 0.79 (95% CI, 0.75–0.84), 0.82 (95%
CI, 0.78–0.87), and 0.95 (95% CI, 0.92–0.97), respectively. In the test set, the AUCs of DL algorithm in
diagnosing KL 0 to KL 4 were 0.97 (95% confidence interval (CI), 0.71–0.74), 0.85 (95% CI, 0.80–0.86), 0.75
(95% CI, 0.66–0.73), 0.86 (95% CI, 0.79–0.85), and 0.95 (95% CI, 0.91–0.97), respectively (Figure 2A,B).
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J. Clin. Med. 2020, 9, 3341 6 of 12

3.1.3. Comparison of the Accuracy and Diagnosing Performance Between Sole Image Data and Image
Data with Additional Patient Information

The diagnostic performance of image data with additional patient information had statistically
significantly higher AUC than image data alone in diagnosing KL grades 0, 1, and 2 (p-values were
0.008, 0.020, and 0.027, respectively). The results are summarized in Table 2.

Table 2. Comparison of AUC of test sets.

DL with
Sole Image Data

DL with
Image Data and

Patient’s Information
p-Value

KL Grade 0 0.91 (0.88–0.95) 0.97 (0.94–1.00) 0.008 *
KL Grade 1 0.80 (0.76–0.84) 0.85 (0.82–0.89) 0.020 *
KL Grade 2 0.69 (0.64–0.73) 0.75 (0.71–0.79) 0.027 *
KL Grade 3 0.86 (0.83–0.89) 0.86 (0.82–0.89) 0.553
KL Grade 4 0.96 (0.94–0.98) 0.95 (0.93–0.97) 0.580

DL: deep learning, KL: Kellgren–Lawrence, *: statistically significant.

Higher sensitivity and specificity were observed in KL grades 0,1, and 2 of DL with the combination
of image data and patient information. The sensitivity and specificity of the DL algorithm with image
data alone and with combination of image data with additional patient information are listed in Table 3.

Table 3. Diagnostic performance of DL algorithm.

Optimal
Cutoff

Sensitivity of
90%

Specificity of
90%

DL With
Sole Image

Data

KL Grade 0
Sensitivity 64.9 (48/74)

(52.9–75.6)
83.8 (2/74)
(73.4–91.3)

64.9 (48/74)
(52.9–75.6)

Specificity 94.8 (419/442)
(92.3–96.7)

84.2 (372/442)
(80.4–87.4)

94.8 (419/442)
(92.3–96.7)

KL Grade 1
Sensitivity 94.0 (110/117)

(88.1–97.6)
99.1 (116/117)
(95.3–100.0)

58.1 (68/117)
(48.6–67.2)

Specificity 49.6 (198/399)
(44.6–54.6)

38.6 (154/399)
(33.8–43.6)

80.5 (321/399)
(76.2–84.2)

KL Grade 2
Sensitivity 80.0 (100/125)

(71.9–86.6)
78.4 (98/125)
(70.2–85.3)

29.6 (37/125)
(21.8–38.4)

Specificity 51.2 (200/391)
(46.1–56.2)

51.9 (203/391)
(46.8–57.0)

82.4 (322/391)
(78.2–86.0)

KL Grade 3
Sensitivity 75.5 (111/147)

(67.7–82.2)
93.9 (138/147)

(88.7–97.2)
56.5 (83/147)
(48.0–64.6)

Specificity 78.3 (289/369)
(73.8–82.4)

61.5 (227/369)
(56.3–66.5)

89.2 (329/369)
(85.5–92.1)

KL grade 4 Sensitivity 77.4 (41/53)
(63.8–87.7)

84.9 (45/53)
(72.4–93.3)

75.5 (40/53)
(61.7–86.2)

Specificity 90.7 (420/463)
(87.7–93.2)

87.3 (404/463)
(83.9–90.2)

92.0 (426/463)
(89.2–94.3)
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Table 3. Cont.

Optimal
Cutoff

Sensitivity of
90%

Specificity of
90%

DL With
Image Data

and
Patient’s

Information

KL Grade 0
Sensitivity 97.3 (72/74)

(90.6–99.7)
97.3 (72/74)
(90.6–99.7)

97.3 (72/74)
(90.6–99.7)

Specificity 92.3 (408/442)
(89.4–94.6)

93.9 (415/442)
(91.2–95.9)

88.5 (391/442)
(85.1–91.3)

KL Grade 1
Sensitivity 92.3 (108/117)

(85.9–96.4)
90.6 (106/117)

(83.8–95.2)
48.7 (57/117)
(39.4–58.1)

Specificity 56.9 (227/399)
(51.9–61.8)

62.2 (248/399)
(57.2–66.9)

90.2 (360/399)
(86.9–93.0)

KL Grade 2
Sensitivity 76.0 (95/125)

(67.5–83.2)
88.8 (111/125)

(8.19–93.7)
27.2 (34/125)
(19.6–35.9)

Specificity 61.6 (241/391)
(56.6–66.5)

51.4 (201/391)
(46.3–56.5)

90.5 (354/391)
(87.2–93.2)

KL Grade 3
Sensitivity 73.5 (108/147)

(65.6–80.4)
89.8 (132/147)

(83.7–94.2)
51.0 (75/147)
(42.7–59.3)

Specificity 81.8 (302/369)
(77.5–85.6)

61.5 (227/369)
(56.3–66.5)

91.1 (336/369)
(87.7–93.8)

KL Grade 4
Sensitivity 73.6 (39/53)

(59.7–84.7)
92.5 (49/53)
(81.8–97.9)

73.6 (39/53)
(59.7–84.7)

Specificity 91.4 (423/463)
(88.4–93.8)

84.2 (390/463)
(80.6–87.4)

91.1 (422/463)
(88.2–93.6)

DL With
Sole Image

Data

KL Grade 0
PPV 67.6 (48/71)

(55.5–78.2)
47.6 (62/132)
(38.2–55.8)

67.6 (48/71)
(55.5–78.2)

NPV 94.2 (419/445)
(91.6–96.1)

96.9 (372/384)
(94.6–98.4)

94.2 (419/445)
(91.6–96.1)

KL Grade 1
PPV 35.4 (110/311)

(30.1–41.0)
32.1 (116/361)

(27.3–37.2)
46.6 (68/146)
(38.3–55.0)

NPV 96.6 (198/205)
(93.1–98.6)

99.4 (154/155)
(96.5–100.0)

86.8 (321/370)
(82.9–90.0)

KL Grade 2
PPV 34.4 (100/291)

(28.9–40.1)
34.3 (98/286)
(28.8–40.1)

34.9 (37/106)
(25.9–44.8)

NPV 88.9 (200/225)
(84.0–92.7)

88.3 (203/230)
(83.4–92.1)

78.5 (322/410)
(74.2–82.4)

KL Grade 3
PPV 58.1 (111/191)

(50.8–65.2)
49.3 (138/280)

(43.3–55.3)
67.5 (83/123)
(58.4–75.6)

NPV 88.9 (289/325)
(85.0–92.1)

96.2 (227/236)
(92.9–98.2)

83.7 (329/393)
(79.7–87.2)

KL Grade 4
PPV 48.8 (41/84)

(37.7–60.0)
43.3 (45/104)
(33.6–53.3)

51.9 (40/77)
(40.3–63.5)

NPV 97.2 (420/432)
(95.2–98.6)

98.1 (404/412)
(96.2–99.2)

97.0 (426/439)
(95.0–98.4)

Accuracy 51.9 (268/516) (47.5–56.3)
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Table 3. Cont.

Optimal
Cutoff

Sensitivity of
90%

Specificity of
90%

DL With
Image Data

and
Patient’s

Information

KL grade 0 PPV 67.9 (72/106)
(58.2–76.7)

72.7 (72/99)
(62.9–81.2)

58.5 (72/123)
(49.3–67.3)

NPV 99.5 (408/410)
(98.2–99.9)

99.5 (415/417)
(98.3–99.9)

99.5 (391/393)
(98.2–99.9)

KL grade 1 PPV 38.6 (108/280)
(32.8–44.5)

41.2 (106/257)
(35.2–47.5)

59.4 (57/96)
(48.9–69.3)

NPV 96.2 (227/236)
(92.9–98.2)

95.8 (248/259)
(92.5–97.9)

85.7 (360/420)
(82.0–88.9)

KL Grade 2
PPV 38.8 (95.245)

(32.6–45.2)
36.9 (111/301)

(31.4–42.6)
47.9 (34/71)
(35.9–60.1)

NPV 88.9 (241/271)
(84.6–92.4)

93.5 (201/215)
(89/3–96.4)

79.6 (354/445)
(75.5–83.2)

KL Grade 3
PPV 61.7 (108/175)

(54.1–68.9)
48.2 (132/274)

(42.1–54.3)
69.4 (75/108)
(59.8–77.9)

NPV 88.6 (302/341)
(84.7–91.7)

93.8 (227/242)
(90.0–96.5)

82.4 (336/408)
(78.3–85.9)

KL Grade 4
PPV 49.4 (39/79) 40.2 (49/122)

(31.4–49.4)
48.8 (39/80)
(37.4–60.2)

NPV 96.8 (423/437)
(94.7–98.2)

99.0 (390/394)
(97.4–99.7)

96.8 (422/436)
(94.7–98.2)

Accuracy 61.6 (318/516) (57.3–65.8)

DL: deep learning, KL: Kellgren–Lawrence, NPV: negative predictive value, PPV: positive predictive value.

Diagnosing KL grade 2 was most challenging with the DL algorithm. Both analyses (one with
image data alone and another with image data and additional patient information) tended to have
difficulty in diagnosing KL grade 2 (Figures 3 and 4).
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Figure 5. Qualitative results: Gradient-weighted class activation mapping.

They are key image data representing KL grades 0 to 4. The DL algorithm diagnosed all image
data correctly in our study. For raw image data of KL grades 0, 3, and 4, the heat map signals appear
on the knee joint area. Therefore, it appears that the DL algorithm and image data that we used detect
the knee joint and can diagnose knee osteoarthritis without cropping image data. However, in the
raw image data of KL 1, the heat map signal appeared only in the lateral side of the knee joint. In the
raw image data of KL 2, the heat map signal did not appear on the knee joint. Thus, it would be
complicated for the DL algorithm to detect and diagnose KL 1 and 2 with only raw image data.
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4. Discussion

The principal findings of this study were as follows. DL was applied to diagnose knee OA on
knee AP radiographs, and its performance was assessed with two distinct test sets. The diagnostic
performance of DL was comparable to that of the former radiologist reading of knee OA KL grade;
however, diagnosing KL 2 was most challenging in DL with or without additional patient information.
Adding additional patient information to the image data increased the diagnostic performance
(increased accuracy) of DL in diagnosing KL grades 0,1, and 2, with statistical significance. This is
meaningful because our method could be used as an objective tool to support clinicians in their decision
making of early OA.

Even the most commonly used KL grade scale is semi-quantitative and suffers from ambiguity.
In the current study, the KL grading system was used to classify the severity of knee OA since it is
most commonly used grading system. Based on this system, image data was labeled with the former
radiologist KL grade reading. Then, using the DL algorithm, the accuracy of DL in diagnosing knee
OA was tested. The performance of DL algorithm in diagnosing knee OA was comparable with other
studies. Moreover, adding additional patient information improved the diagnostic performance of
DL in knee OA. However, diagnosing KL grade 2 was challenging with or without additional patient
information added. The AUCs of the DL algorithm in diagnosing KL 2 were 0.69 for image data alone
and 0.75 for the combination of image data and additional patient information.

There were several studies that tried to enhance the performance and accuracy of making a
diagnosis using DL algorithms [6,14,21]. To the best of our knowledge, most studies annotated the
knee joint area in image data. Rather than converting the image data, the same image data used in the
outpatient clinic was used. Additional patient data were added to the DL algorithm, just like a doctor
sees a patient in the outpatient clinic. Therefore, it was possible to replicate a real outpatient clinical
situation for diagnosing OA, determining the treatment modality, and predicting the prognosis.

Diagnosis of early OA is difficult in clinical practice for several reasons. It is well known that
plain radiography is insensitive when attempting to detect early OA changes despite its advantages.
This can be explained by several facts: first, a hallmark of OA and the best measure of its progression
is the degeneration and wear of the articular cartilage—a tissue that cannot be directly seen in plain
radiography; second, although the evaluation of the changes in the joint should be a three-dimensional
problem, the image modality uses only a two-dimensional projection; and finally, the interpretation
of the resulting image requires significantly-experienced radiologists. Eventually, the cartilage
degeneration and wear are indirectly estimated by the assessment of joint-space narrowing and bony
changes, like osteophytes and subchondral sclerosis [7]. Apart from the aforementioned limitations
of plain radiography, OA diagnosis is also highly subjective due to the absence of precisely defined
grading guidelines.

This study also has several limitations. First, the former reading of the KL grade was read by
different radiologists, increasing the subjectivity of the reads. Second, we added limited patient
information to the DL algorithm. Information regarding the physical examination of patients could also
improve the diagnostic accuracy of DL. Third, the DL algorithm used in this study did not go through
the process of localizing the knee joint. If this process was added before the KL grade prediction phase,
an algorithm similar to the radiologist’s diagnosis could be designed. Fourth, even though the ratio of
validation and test set is adequate, the number of test sets is small. In addition, the KL grade system’s
ordinal properties were reflected in the loss function when designing the algorithm.

5. Conclusions

The diagnostic performance of DL was comparable to that of the former radiologist reading of the
knee osteoarthritis KL grade. Additional patient information improved the diagnostic performance of
DL for knee osteoarthritis.
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