
R E V I E W Open Access

© The Author(s) 2025. Open Access  This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 
International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you 
give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the 
licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or 
other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or 
exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit ​h​t​t​p​​:​/​/​​c​r​e​a​​t​i​​
v​e​c​​o​m​m​​o​n​s​.​​o​r​​g​/​l​​i​c​e​​n​s​e​s​​/​b​​y​-​n​c​-​n​d​/​4​.​0​/.

Arjmandmazidi et al. Journal of Translational Medicine          (2025) 23:678 
https://doi.org/10.1186/s12967-025-06488-1

Journal of Translational 
Medicine

†Elnaz Mehdizadeh Aghdam and Soheila Montazersaheb 
contributed equally to this work.

*Correspondence:
Elnaz Mehdizadeh Aghdam
mehdizadehe@tbzmed.ac.ir
Soheila Montazersaheb
smontazersaheb@gmail.com

Full list of author information is available at the end of the article

Abstract
Artificial Intelligence (AI) offers a revolutionary approach to improve decision-making in medicine through the 
use of advanced computational tools. Its ability to analyze large and complex datasets enables a thorough 
evaluation of multiple factors, leading to a deeper understanding of medical procedures. Numerous studies have 
demonstrated that AI has made significant advancements in areas such as organ allocation, donor-recipient 
matching, and immunosuppression protocols in organ transplantation. The transplantation process consists of three 
key stages: pre-transplant evaluation, the surgical procedure, and post-transplant management. AI can enhance all 
three stages by analyzing and integrating data from histopathological reports, lab results, radiological features, and 
patient demographics to aid in matching donors and recipients. Additionally, AI supports robotic-assisted surgery 
and optimizes post-transplant regimens while evaluating complications. Various researches have utilized machine 
learning (ML) to predict medication bioavailability immediately after transplantation and assess the risk of post-
transplant complications based on factors like genetic phenotypes, age, gender, and body mass index. This review 
aims to gather information on AI applications across various stages of organ transplantation and elaborate the 
strategies and tools relevant to these processes.
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Introduction
Artificial intelligence (AI) refers to the utilization of 
machine learning (ML) and deep learning (DL) algo-
rithms to perform tasks usually performed by humans, 
like reasoning, discovering, generalizing, and learning 
from experiences and past events [1, 2]. AI has numer-
ous applications in medicine, revolutionizing diagnostics, 
treatment planning, and patient care. Machine learning 
algorithms can analyze vast amounts of medical data to 
detect diseases early, predict patient outcomes, and per-
sonalize treatments. AI-powered imaging tools assist 
radiologists in identifying abnormalities with greater 
accuracy, while predictive analytics help hospitals man-
age resources efficiently. In surgery, robotic-assisted 
systems enhance precision and reduce recovery times. 
Additionally, AI-driven chatbots and virtual assistants 
improve patient engagement and streamline admin-
istrative tasks. These advancements not only enhance 
efficiency but also contribute to better clinical decision-
making, ultimately improving patient outcomes across 
various medical fields [3].Clinical practice and health 
systems have benefited from this technology, from labo-
ratory practice to replacing humans in the surgery rooms 
[4–7]. Currently, the realm of AI has reached a point 
where it can autonomously detect diabetic retinopathy, 
without the need for confirmation by ophthalmologists. 
Moreover, AI applications are venturing into the physi-
cal domain, showcasing advancements such as robotic 
prostheses, systems offering support for physical tasks, 
and mobile manipulators that play a pivotal role in 

telemedicine delivery [8]. Various endoscopy manufac-
turers have successfully launched their AI devices in the 
market, having secured regulatory approval in Europe 
and Asia [9]. Organ transplantation is no exception to 
this rule. To realize the significance of the improvement 
and update of the organ transplantation field, there are 
some facts given from the CDC website which show how 
many human lives depend on a suitable organ received; 
in 2022 about 100,000 patients were added to the waiting 
list of organ transplantation each day while only 15,000 
deceased or alive organ donors are available annual in the 
United States. The most commonly transplanted organs 
in the United States are the kidney, liver, heart, lungs, 
pancreas, and intestines [10]. As the demands increase 
over time, the organ availability decreases [11]. Given 
that artificial intelligence has demonstrated its signifi-
cant value in numerous aspects of healthcare, including 
gastroenterology, endoscopy, medical diagnosis, medi-
cal statistics, and genetics, it stands to reason that organ 
transplantation could also benefit from AI applications 
[12–14]. Several studies showed that AI had conquered 
areas like organ allocation and donor-recipient matching, 
transplant oncology, and immunosuppression regimes in 
organ transplantation [15–19].

The organ transplantation procedure comprises three 
main steps: pre-transplant evaluation of donors and 
recipients, transplantation surgery, and post-transplant 
management. AI can facilitate the recipient-donor 
matching through the analysis and integration of infor-
mation from histopathological reports, laboratory test 
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outcomes, radiological characteristics, and patient demo-
graphic data. In addition, AI can aid robotic guided sur-
gery and optimize post-transplantation regimens and 
evaluate complications [20]. For instance, a considerable 
body of literature delves into the utilization of AI in vari-
ous facets of kidney transplants. Some researchers have 
employed Machine Learning (ML) to anticipate the bio-
availability of tacrolimus in the immediate post-trans-
plant phase and assess the likelihood of post-transplant 
diabetes mellitus based on the genetic phenotypes, age, 
gender, and body mass index [21]. Accordingly, in this 
review we aimed to gather information regarding the 
application of AI in the different steps of organ trans-
plant, focusing more on the strategies and tools regarding 
different stages of transplant procedures.

AI types used in transplant process
There are various types of AI tools using in the different 
areas of medicine. They mainly include Machine learn-
ing, Deep learning, and Neural Networks. The most com-
mon AI methodologies regarding these three strategies 
are summarized in Table 1. However, Machine Learning, 
as the most common branch of AI, is explained more in 
the following section.

Machine learning (ML) as important tool for organ 
transplant
ML constitutes a pivotal domain within AI, character-
ized by a suite of automated computational algorithms. 
At its core, ML employs algorithms to repetitively refine 
predictive and classificatory capacities based on prior 
data instances, enabling capable of extrapolation to novel 
datasets [22–24]. In the medical field, datasets are grow-
ing rapidly, including millions of patient profiles collected 
from various sources like imaging, electronic health 
records, telemedicine, and genetic databases. Some algo-
rithms can be applicable for managing computational 
workflows in organ transplant dataset generation. As an 
example Khaledian et al. used a hybrid Particle Swarm 
Optimization and Simulated Annealing algorithm (PSO–
SA) as energy-efficient and deadline-aware workflow 
scheduling algorithm in the fog and cloud environment 
[25].

Nonetheless, the widespread challenge of data qual-
ity persists as a serious obstacle highlightening the need 
for precise data cleansing efforts. This is a demanding 
process that aims to correct inconsistencies and ensure 
accuracy, relevance, and coherence within datasets. This 
task becomes even more important when combining dif-
ferent data sources, as complex and disordered data can 
hinder AI innovation. In the past, this process depended 
on manual work, but modern advancements now pro-
vide smart data-cleaning tools with advanced algo-
rithms. Some ML based tools can also be used for feature 

selection and medical data classification. As an example 
manta ray foraging optimizer-based SVM is developed 
for giving insights into feature selection in complex data-
sets [26]. The effectiveness of the suggested method is 
evaluated and contrasted with four algorithms based on 
Support Vector Machines (SVM) using eight benchmark 
datasets. Furthermore, the method is tested on a Covid-
19 disease dataset. The outcomes of these experiments 
demonstrate the method’s strong capability in identify-
ing suitable SVM parameters and its satisfactory perfor-
mance in addressing the challenge of feature selection 
[26].

Some tools employ discriminatory rule sets to fix 
deviations within expansive datasets, limiting the time 
and resources required to uphold the integrity and pre-
cision of medical databases. Recent scholarly inquiries 
have also proposed novel models fitted to adjust irregu-
lar medical records and determine complicated feature 
interdependencies, improving individualized healthcare 
prognosis [27–31]. Fundamentally, an algorithm repre-
sents an in-depth and defined set of rules that compose 
sequential operations. Within ML, algorithms separately 
assemble insights from data without human interven-
tion, leveraging constant adjustment and adaptation 
mechanisms. These algorithms decrypt latent patterns 
by analyzing dataset nuances, clarifying consequential 
conclusions essential for informed decision-making pro-
cesses [32, 33]. ML encompasses three main strategies: 
[1] supervised learning, entailing the manual mapping of 
observational features to known outcomes; [2] unsuper-
vised learning, focused on uncovering intrinsic patterns 
within unlabeled data; and [3] reinforcement learning, 
which requires training ML models within interactive 
environments, facilitating sequential decision-making 
through constant trial and error, guided by ongoing feed-
back [23]. In the following sections, three main phases of 
organ transplant including Pre-Transplantation, Trans-
plant Surgery and, Post-Transplant steps were covered 
regarding possible applied AI tools in each area. When-
ever possible, the classified tools commonly used in 
different organ transplants are discussed separately. Fig-
ure  1 depicted some of AI applications in solid organ 
transplants.

AI tools in pre-transplantation step
Organ allocation and predictive prioritizing modeling for 
optimizing waitlists
During the pre-transplant phase, individuals being con-
sidered for organ transplantation undergo thorough 
assessments that cover medical, societal, and economic 
factors. The current standards for evaluation and place-
ment on the transplant list are based on “clinical judg-
ment” and “generalized heuristics”. Transplant candidates 
with increased medical complexity, characterized by 
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Category AI Model Brief explanation
Neural 
Networks 
& Deep 
Learning

Deep Learning a subset of machine learning that focuses on using neural networks with many layers (deep neural networks) to 
model and understand complex patterns in data. It is particularly powerful for tasks.

Deep Neural 
Network (DNN)

a type of artificial neural network with multiple layers of neurons between the input and output layers. These layers 
are known as hidden layers, and the depth of the network refers to the number of these hidden layers. DNNs are 
a subset of machine learning models and are a key component of deep learning, which is a branch of artificial 
intelligence

DeepSurv a deep learning-based approach for survival analysis, specifically designed to predict the time to an event (such as 
failure or death) and the associated risk based on complex, high-dimensional data. It extends traditional survival 
models by leveraging the power of deep neural networks to handle complex relationships and interactions 
between predictors

Generative Adver-
sarial Networks 
(GAN)

a type of deep learning architecture used for generating new data samples that resemble a given dataset. Intro-
duced by Ian Goodfellow and his colleagues in 2014, GANs consist of two neural networks that compete with each 
other in a process that drives them to improve over time.

Multilayer Percep-
tron (MLP)

a type of artificial neural network used for various machine learning tasks, including classification and regression. 
It consists of multiple layers of nodes (neurons) arranged in a layered architecture. Each layer performs a specific 
function, and the network learns by adjusting weights through training

Ensemble 
Methods

Ensemble 
Learning

By merging multiple decision trees into a unified model, the strengths and weaknesses of individual predictions 
are effectively utilized

Random Forest A collection of independent decision trees with superior accuracy compared to the cumulative accuracy of each 
individual tree

AdaBoost AdaBoost (Adaptive Boosting) is a popular ensemble learning technique designed to improve the performance of 
machine learning models by combining the predictions of multiple weak learners to create a strong classifier.

Random Survival 
Forests

a machine learning technique used for analyzing and predicting time-to-event data, often referred to as survival 
data. This method is an extension of the Random Forest algorithm, which is commonly used for classification and 
regression tasks

Extreme Gradi-
ent Boosting 
(XGBoost)

a highly efficient and scalable machine learning algorithm for supervised learning problems, particularly for 
classification and regression tasks. XGBoost is known for its ability to handle large datasets and its high predictive 
accuracy.

Traditional 
Machine 
Learning

Support Vector 
Machine (SVM)

are a powerful and versatile class of supervised learning algorithms primarily used for classification tasks, but they 
can also be applied to regression problems.

Logistic 
Regression

a statistical model used for binary classification tasks. Despite its name, logistic regression is used for classification 
rather than regression. It estimates the probability of a binary outcome based on one or more predictor variables.

Multivariable Lo-
gistic Regression

Multivariable Logistic Regression (often referred to as Multivariate Logistic Regression or simply Logistic Regression 
with multiple predictors) is an extension of logistic regression that includes more than one predictor variable.

Cox Proportional 
Regression

Cox Proportional-Hazards Regression (often simply called Cox Regression) is a statistical method used for analyzing 
survival data and understanding the effect of explanatory variables on the time until an event occurs. Developed 
by Sir David Cox in 1972, it is widely used in medical research, epidemiology, and other fields dealing with time-to-
event data.

Survival Tree type of decision tree specifically designed for analyzing survival data, which involves time-to-event outcomes. They 
are used to predict the time until an event occurs (such as failure, death, or relapse) based on various predictor 
variables.

Memetic Pa-
reto Evolutionary 
NSGA-II

an advanced multi-objective optimization algorithm. It combines the strengths of memetic algorithms and NSGA-II 
to efficiently solve complex optimization problems involving multiple conflicting objectives.

MoRAL-AI MoRAL-AI (Model of Responsibility for AI) is a framework designed to address the ethical and responsible develop-
ment and deployment of artificial intelligence systems. It focuses on integrating ethical considerations and respon-
sible practices into AI models and processes

Optimiza-
tion & 
Evolutionary 
Algorithms

Adaptive-net-
work-based Fuzzy 
Inference System

a type of artificial neural network that combines fuzzy logic with neural network learning capabilities. ANFIS is used 
for modeling complex, non-linear systems and can be employed in various applications such as prediction, clas-
sification, and control

Decision Tree a popular machine learning and statistical technique used for classification and regression tasks. They represent a 
model that makes decisions based on a series of binary or categorical splits in the data, visualized as a tree struc-
ture. Each node in the tree represents a decision based on a feature, and each branch represents the outcome of 
that decision

Fuzzy Logic 
& Inference 
Systems

Conditional Infer-
ence Tree

a type of decision tree designed to avoid some common issues in traditional decision tree algorithms, such as bias 
towards variables with more categories or continuous variables. They use statistical tests to determine the best split 
points, ensuring that splits are selected based on statistical significance rather than just algorithmic criteria.

Table 1  Different AI models used in organ transplant
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Fig. 1  Applications of AI in the realm of solid organ transplant

 

Category AI Model Brief explanation
Decision 
Trees & 
Pruning 
Methods

Case-Based 
Reasoning

an approach within artificial intelligence and machine learning where new problems are solved based on the solu-
tions of similar past problems

Case Retrieval 
Nets

a sophisticated method used in case-based reasoning (CBR) to efficiently retrieve relevant cases from a large case 
base.

Case-Based 
Reasoning & 
Retrieval

Spreading Activa-
tion Algorithm

a family of techniques used in artificial intelligence, cognitive science, and information retrieval to find and rank 
related concepts or nodes within a network. These algorithms simulate how human memory might work, by 
“activating” certain nodes and allowing this activation to spread to related nodes, thereby identifying relevant or 
related information.

Reinforcement 
Learning

Enhances the likelihood of attaining a goal within a specific circumstance or setting.

Finite Impulse 
Response (FIR)

a type of digital filter used in signal processing. FIR filters are characterized by their response to an impulse input 
that settles to zero in a finite amount of time. They are widely used due to their stability and linear phase properties.

Reinforce-
ment 
Learning

Lund DLTrans-
plant Algorithm

a specific set of criteria and scoring system used to prioritize patients for liver transplantation. It is particularly fo-
cused on pediatric liver transplants and aims to optimize outcomes by effectively allocating liver donations based 
on the urgency of need and potential benefit.

Signal 
Processing

MUSA-UNet an advanced variation of the UNet architecture specifically designed for medical image segmentation tasks. It 
incorporates several enhancements to improve performance and accuracy, particularly in challenging medical 
imaging scenarios

Specialized 
Models

Binary 
Thresholding

a simple image processing technique used to segment an image into two distinct regions based on pixel intensity 
values. It is commonly used in various applications, including image binarization, object detection, and feature 
extraction.

Multiple Regres-
sion Models

a statistical technique used to understand the relationship between one dependent variable and two or more in-
dependent variables. This method extends simple linear regression, which involves only one independent variable, 
to analyze and predict the dependent variable based on the combined influence of several predictors

Table 1  (continued) 
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older age, metabolic risk factors, and cardiovascular 
comorbidities, face higher risks of illness and death both 
while waiting for transplantation and after the proce-
dure. This increased risk is linked to various complica-
tions, including infections, cancers, and adverse effects 
from medications. Consequently, allocating organs to 
recipients who can derive most optimal benefits from 
transplantation with the least possible risk is a significant 
challenge [34–37].

Based on prior research, the utilization of “extended 
criteria donors (ECD),” identified as donors aged 60 
or older or those over 50 with a history of hyperten-
sion, creatinine > 1.5  mg/dL, or death from stroke, has 
proven advantageous for older patients and individuals 
in regions with prolonged waiting times. However, over 
the past 15 years, the landscape has evolved into greater 
complexity, with donors exhibiting more adverse char-
acteristics and recipients bearing increased comorbidity 
burdens. This example, specific to kidney transplantation, 
holds relevance for other solid organ transplantations 
[38]. To address these challenges, the development of 
more sophisticated risk calculators incorporating recipi-
ent, donor, and center-specific characteristics can offer 
personalized risk assessments for each patient. Such an 
approach aims to optimize organ utilization, reduce dis-
cards, and decrease waitlist mortality [39]. In this regard, 
the optimization algorithms of AI techniques can be 
helpful for organ allocation purposes, Shehab et al. pres-
ents an overview of black widow optimization (BWO), 
a recently developed nature-inspired optimization algo-
rithm. The review examines the primary components of 
BWO, discussing its advantages and limitations. It also 
explores the evolution of BWO, its various iterations, and 
its effectiveness across diverse fields and applications, 
including the management of medical data [40].

Harnessing the capabilities of ML, analysts can navi-
gate through vast, complex, and heterogeneous data-
sets, yielding refined insights and highly sophisticated 
predictive models. In the medical domain, where com-
plex datasets abound, ML techniques have emerged as 
potent tools, looking after the development of pivotal 
predictive models poised to enhance clinical practice 
across diverse medical disciplines [41]. For instance, 
visualization prediction of the 10-year survival rate of 
kidney grafts was performed as an complicated attempt 
wherein the algorithm is presented with a rich database 
containing countless variables, ranging from recipient 
demographics to medical histories. Each instance, or 
kidney transplant, is precisely labeled based on its even-
tual outcome—survival or failure by the decade mark. 
Utilizing this information, the system accurately identi-
fies the underlying relationship between input variables 
and their corresponding outcomes. With this newfound 
understanding, the algorithm generates a predictive 

framework capable of estimating results for unfamiliar 
inputs, extending beyond the scope of its initial train-
ing dataset [42]. Existing organ allocation policies often 
hinge upon a limited arrangement of criteria, primarily 
centered on recipient need and donor-recipient compat-
ibility. Yet, an optimal allocation framework necessitates 
a broader consideration of factors, including those influ-
encing waitlist mortality (list of patients who are wait-
ing for an organ transplant and are at risk of dying while 
waiting). ML, with its capacity to identify significant vari-
ables from both donor and recipient datasets, presents a 
promising opportunity for enhancing the sophistication 
of organ allocation systems. By probing complex, non-
linear relationships within the data, ML can illuminate 
novel insights, thereby facilitating more nuanced and 
intelligent organ allocation practices [43]. Other ML-
based studies have combined donor and recipient traits 
to enhance post-transplant outcomes rather than solely 
focusing on waitlist mortality.

On the other hand, Artificial Neural Networks (ANN) 
mimic the human brain’s behavior, enabling algorithms 
to identify patterns and tackle common issues in AI, ML, 
and DL. ANN models employ neurons to process input 
features and generate output without explicit rules.

Additionally, technology-driven algorithms introduced 
by the United Network for Organ Sharing (UNOS) aim to 
offer organs to the centers likely to utilize them precisely. 
UNOS piloted the Organ Offer Explorer tool to compare 
new offers with prior accepted organs by surgeons, for-
warding only compatible offers to transplant programs 
[44]. This decision-making aid relies on past acceptance 
behavior data, reorganizing organ offers, and lighten-
ing burdens, particularly amid recent kidney allocation 
reforms, which have heightened organ placement com-
plexity [45–47].

Various ML tools exist to aid surgeons in understand-
ing novel situations and their impact on transplant pro-
cedures. Amid the backdrop of the COVID-19 pandemic, 
a ML model has emerged to discern the potential benefits 
or risks associated with kidney transplants during this 
crisis. This study shows how adaptable machine learning 
(ML) is in rapidly changing clinical and social settings, 
helping to provide evidence-based care without relying 
heavily on traditional clinical trials. In pre-transplant 
assessments, AI has the potential to improve how we 
evaluate candidates, accept donors, and educate patients 
[48–51]. Techniques like transfer learning address data 
shortages by using prior knowledge to perform new 
tasks. For example, a transfer learning model can use 
public medical records to identify relevant medical fea-
tures for tasks like assessing COVID-19 prognosis or pre-
dicting mortality in end-stage renal disease [52].

Some studies have developed models of using ML 
techniques in organ allocation. Hsich et al.. conducted a 
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study in 2019 focusing on the mortality of adults await-
ing heart transplants, using the Scientific Registry of 
Transplant Recipients database spanning from 2004 to 
2015. They employed Random Survival Forests to iden-
tify critical variables influencing waitlist mortality [53]. 
Medved et al.. devised the Lund DLTransplant Algorithm 
(LuDeLTA), which simulates the heart allocation process 
using a discrete event model and a neural network algo-
rithm [54].

Moreover, there are several studies designing AI mod-
els for pre-transplant different types of predictions. Here 
are some examples. Ayllón et al. [55] designed an ANN 
model in 2018, leveraging King’s College Hospital patient 
data to predict 3- and 12-month survival rates. Dorado-
Moreno et al. [56]. utilized data from seven Spanish hos-
pitals and King’s College Hospital (UK) in 2017 to create 
a dynamically weighted evolutionary ordinal neural net-
work, addressing imbalances in liver transplantation. Pla-
cona et al. [57]. developed a model in 2020 to predict the 
likelihood of a delay or discard of adult deceased kidney 
donors between 2010 and 2018, utilizing donor free text 
data. These studies exemplify the diverse applications of 
ML in optimizing organ allocation processes.

Optimizing donor-recipient matching
From a purely measured standpoint, transplantation can 
be broken down into several problems where the donor’s 
characteristics must be combined with the recipient’s 
variables to achieve one of three results: both the graft 
and recipient survive, the graft is lost, or both the graft 
and recipient are lost. The allocation of organs is closely 
related to donor-recipient matching. Despite thorough 
analysis and modification, traditional donor-recipient 
matching models still require improvement and could 
profit from AI. Donor selection is a complex, multifac-
eted decision influenced by donor and recipient factors 
as well as matching considerations. Regrettably, an ideal 
donor-recipient matching system remains elusive due to 
inconsistent evidence and unreliable endpoints.

A major challenge for researchers in classifying donor-
recipient matching data is selecting the most appropriate 
classifiers for the challenge. Some classifiers are derived 
from biostatistics, others from AI and data mining (like 
rule-based classifiers or decision trees), while some 
use connectionist approaches (ANNs) or cooperative 
approaches, and others utilize regression or clustering 
approaches [58].

AI models should offer two elucidations: support 
decision-making with existing metrics based on logistic 
regression and enhance likelihood. While hundreds of 
classifiers could handle this issue, not all are effective for 
donor-recipient pairing. Assigning a donor to a candidate 
on the waiting list involves managing numerous variables 
related to the donor, recipient, logistics, and perioperative 

factors (Fig. 2). There are several algorithms for cluster-
ing and managing these variables. In operational analysis 
and Artificial Intelligence fields, meta-heuristics employ 
diverse search techniques to tackle complex real-world 
challenges, such as data clustering problems and tradi-
tional optimization issues. Abualigah et al. introduces 
an innovative approach that combines elements from 
intelligent optimization algorithms to address a range of 
problems requiring sophisticated methods. The proposed 
technique, named GNDAOA, incorporates three pri-
mary components: Arithmetic Optimization Algorithm 
(AOA), Generalized Normal Distribution Optimization 
(GNF), and Opposition-based Learning strategy (OBL). 
These elements are integrated using a novel transition 
mechanism, which coordinates the execution of the 
various methods during the optimization process. This 
approach aims to overcome the principal limitations of 
the original techniques [59].

Experience from the team can indirectly infer some of 
the latter variables. Two AI model groups used in donor-
recipient matching are ANNs and random forests (RF) 
[60]. In liver donor-recipient matching, ANNs, which 
are biologically inspired computational networks, con-
sist of input, hidden (in most cases), and output layers. 
They excel at identifying complex patterns that clinicians 
might miss and can produce highly accurate predictions 
based on the data they are trained on [61].

However, ANNs are highly sensitive to database qual-
ity and essentially function as black-box models where 
all variables are significant. These models do not pro-
vide clear insights into the weight of each variable [60]. 
Conversely, RF builds decision trees that is effective 
with small cohorts. They can select top variables like 
logistic regression but struggle with large databases due 
to the high number of decision trees produced, making 
them impractical. Their performance can decay when 
faced with numerous features and relatively weak sig-
nals. Despite their complexity, RF algorithms offer sev-
eral advantages. They can effectively manage non-linear 
variables, withstand noise in data, and allow for easy fine-
tuning and parallel processing. Additionally, these algo-
rithms incorporate an initial step to prioritize features, 
thereby reducing the variable space. The construction of 
each tree within a random forest relies on a random sub-
set of observations, typically utilizing either a bootstrap 
sample or a portion of the original dataset [62, 63].

Biostatistics-based metrics predict the most likely out-
comes (survival, the majority class) well but are poor at 
foreseeing the least likely outcomes (loss, the minor-
ity class). This is where ANNs can benefit significantly, 
as they handle numerous variables and consequences, 
allowing them to generalize in the minority class. 
Another benefit of ANNs is their ability to foretell mul-
tiple outcomes. Using the same dataset, multi-objective 



Page 8 of 30Arjmandmazidi et al. Journal of Translational Medicine          (2025) 23:678 

ANNs can independently guess the probabilities of sur-
vival and loss. However, ANNs do not provide infor-
mation on the factors involved in their computational 
decisions. A computer-driven allocation based solely 
on statistical likelihoods would always assign the donor 
to the candidate with the highest survival probability, 
regardless of the recipient’s severity. Therefore, it is nec-
essary to set conditions for the computer to make donor 
assignments based on a combination of numerical prob-
abilities and clinical judgment through a rule-based 
system, allowing the computer to adapt its decisions to 
the candidate’s significance and resolve ties with similar 
probabilities.

In 2014, Bricen˜o et al. utilized 64 donor and recipient 
variables from 1003 liver transplants across 11 Spanish 
centers. They calculated simple and multiple regression 
models and ANN formulae for each donor-recipient 
pair for two non-complementary probability models 
of 3-month graft survival and loss: a positive-survival 
(NN-CCR) and a negative-loss (NN-MS) model. They 
used the Neural Net Evolutionary Programming (NNEP) 
algorithm to cultivate the NN models. They validated 
ANNs against other scores using receiver-operating 
curves (ROC), indicating the predominance of ANNs in 
donor allocation over biostatistics-based prioritization 

scoring. Due to its rule-based system, the model excel-
lently assigned patients with higher MELD scores [64].

In 2013, Cruz-Ramírez et al. used the memetic Pareto 
evolutionary non-dominated sorting genetic algorithm 2 
(MPENSGA2), a multi-objective evolutionary algorithm, 
to educate radial basis function neural networks, assess-
ing model performance using accuracy and minimum 
sensitivity measurements. The neural network models 
from the Pareto fronts helped develop a rule-based sys-
tem aiding medical experts in organ allocation. This sys-
tem is objective, avoiding biases from medical experts, 
though an expert must still make the final decision [17]. 
For RF in liver transplantation, the original dataset is 
split into training and test sets. About two-thirds of the 
donor-recipient pairs are used for training (bootstrap 
sample) with the remaining pairs forming the test set. 
This methodology, known as the estimation of errors out-
of-the-bag, certifies no overlap between training and test 
sets [62].

In order to compare the traditional methods for pre-
diction modeling such as MELD scores and novel AI 
tools, we gather the information in Table 2. As shown in 
Table  2, AI-based methods are generally advantageous 
regarding prediction accuracy, data processing, personal-
ization and Real-Time adaptability. However, traditional 

Fig. 2  Using artificial intelligence in the area of donor recipient matching considerations and decision making
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clinical scoring systems shows more explainability, inte-
gration with clinical workflow, regulatory approval and 
validation and has better cost and implementation.

Transplant pathology
AI has demonstrated remarkable efficacy in image pro-
cessing, particularly in handling complex information in 
medical images. Pathological slides, rich in structured 
and unstructured data, often require expert interpreta-
tion. However, the insufficiency of trained pathologists 
poses a challenge. Here, AI intervenes to extract, process, 
analyze, and even learn from this wealth of information 
to guide therapy and enhance diagnostic accuracy [1, 65]. 
Furness et al. [66] developed an ML algorithm in 1999 
that surpassed expert pathologists in diagnosing acute 
kidney allograft rejection. Tong et al. [67]. predicted 
heart rejection using deep neural networks and histo-
pathological whole-slide imaging, achieving superior 
accuracy compared to manual assessment by examining 
43 patients. Advancements in computing power, data 

storage, and network speed have led to more efficient 
image analysis. Hermsen et al. [68] successfully imple-
mented a DL algorithm to segment kidney biopsies into 
anatomical components, utilizing convolutional neural 
networks for multiclass segmentation of digitized tissue 
sections. Furthermore, Perez-Sanz et al. [69] developed a 
computer vision-based application in 2021 for rapid and 
objective quantification of macrovesicular steatosis in 
liver histopathological slides. These advancements high-
light the transformative potential of AI in medical imag-
ing and pathology. Since pathology is a common area for 
AI tool applications in medical transplants, individual 
tools for heart, lung, kidney, and liver transplants are dis-
cussed separately in the following sections.

Heart transplant 
Endomyocardial biopsy (EMB) with histopathology grad-
ing remains the gold standard for diagnosing cardiac 
allograft rejection, a critical concern in heart transplan-
tation. Recent reports have addressed key issues, such 
as the reliability of grading systems, challenges in biopsy 
interpretation, the natural history of rejection, the need 
for late surveillance biopsies, and the effectiveness of 
noninvasive techniques in rejection diagnosis or predic-
tion [70].

Giuste et al. [71] pioneered the development of a DL 
model to automatically quantify rejection risk within dig-
ital images of biopsied tissue. Their approach employed 
explainable synthetic data augmentation, utilizing pro-
gressive and inspirational Generative Adversarial Net-
works (GANs). By generating high-resolution synthetic 
images that feature rejection signs, they enhanced the 
performance of their allograft rejection classifier model. 
Similarly, Seraphin et al. [72] conducted a comprehen-
sive study involving 1079 histopathology slides from 325 
patients across three transplant centers in Germany. They 
trained an attention-based deep neural network to pre-
dict rejection in the primary cohort. They evaluated its 
performance through cross-validation and deployment to 
additional cohorts. Their findings showed the potential of 
AI in detecting patterns of cellular transplant rejection, 
even with training on relatively small cohorts.

In a separate endeavor in 2022, Lipkova et al. [73] 
introduced a deep learning-based artificial AI system 
designed for the automated assessment of gigapixel 
whole-slide images obtained from endomyocardial 
biopsy (EMB). Their pre-trained deep residual Convolu-
tional Neural Network (CNN) model exhibited remark-
able performance in detecting, subtyping, and grading 
cardiac allograft rejection, boasting a notable Area under 
the Curve (AUC) of 0.962. These groundbreaking stud-
ies highlight the significant progress made in leveraging 
AI to advance the diagnosis and management of cardiac 
allograft rejection. Figure 3 demonstrates the application 

Table 2  Comparison between AI-based prediction models and 
traditional clinical scoring systems
Features of pre-
diction method

AI-Based Models Traditional Models

Example Models Artificial Neural Networks 
(ANNs), Random Forest, 
XGBoost, DeepSurv

MELD (Model for End-
Stage Liver Disease), 
SOFA (Sequential 
Organ Failure Assess-
ment), APACHE (Acute 
Physiology and Chronic 
Health Evaluation)

Prediction 
Accuracy

Higher accuracy due to 
deep learning and large 
dataset analysis

Lower accuracy, relies 
on predefined clinical 
scores

Data Processing Can analyze high-dimen-
sional data (genomics, 
imaging, EHRs, biometrics)

Limited to structured 
clinical variables and 
statistical models

Personalization Tailors predictions based 
on patient-specific 
features using adaptive 
learning

More generalized risk 
assessment using 
population-based 
scores

Real-Time 
Adaptability

Continuously updates with 
new data and improves 
over time

Static models that 
require manual 
recalibration

Explainability Often criticized as a “black 
box”; some models (e.g., 
SHAP-based) improve 
interpretability

More transparent and 
widely understood by 
clinicians

Integration with 
Clinical Workflow

Requires advanced IT 
infrastructure and clinician 
training

Already integrated 
into routine clinical 
decision-making

Regula-
tory Approval & 
Validation

Needs extensive validation 
(e.g., FDA approval) due to 
complexity and variability

Established and widely 
accepted in practice

Cost & 
Implementation

High initial investment in 
AI infrastructure, expertise, 
and data management

Lower cost, as tra-
ditional models are 
already in use
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of machine learning algorithms to interpret Endomyo-
cardial biopsy (EMB) slide data, obtained before and after 
transplantation, to determine cardiac allograft rejection.

Lung transplant
Despite advancements in immunosuppressive therapies 
and drugs, a significant proportion of lung transplant 
recipients encounter at least one treated acute rejection 
episode within the initial year post-transplantation, as 
reported by the International Society of Heart and Lung 
Transplantation registry [74]. However, the reproducibil-
ity of diagnosing acute cellular rejections (ACR) remains 
variable, even among seasoned transplant patholo-
gists. ML has emerged as a valuable tool for develop-
ing predictive models, aiding clinicians in making more 
informed and reliable decisions. The abundance of data 
collected throughout the lung transplant process enables 
the extraction of hidden patterns through ML methods 
[75]. These approaches promise to improve patient out-
comes and refine clinical management strategies in lung 
transplantation.

Gholamzadeh et al. [76] organized a comprehensive 
systematic review utilizing five electronic databases from 
January 2000 to June 2022. Their study investigated clas-
sical ML-based techniques to enhance lung transplanta-
tion outcomes and mitigate complications. The resulting 
prediction models offer clinicians valuable insights, 
empowering them to make more informed and reliable 

decisions by digging out novel knowledge from the vast 
reservoir of lung transplantation data. Meanwhile, Davis 
et al. [77] Looked into the detection of ACR in lung trans-
plant biopsies using AI. Notably, their AI model achieved 
a remarkable validation accuracy of 95% in distinguish-
ing the vascular component of ACR from normal alveolar 
lung tissue. Their findings present encouraging prospects 
for identifying ACR, a precursor to chronic lung allograft 
rejection, in lung transplant patients. However, the pri-
mary limitation lies in the lack of multi-institutional vali-
dation testing, emphasizing the need for further research 
validation.

Kidney transplant
Kidney transplantation stands as the most frequently 
conducted solid organ transplant globally. Despite the 
increasing necessity for kidney transplantation, the 
pathology field struggles with a deteriorating workforce. 
According to the Organ Procurement and Transplan-
tation Network (OPTN), as of July 23, 2023, there are 
88,629 patients in the US awaiting a kidney transplant 
[78]. Similar to other organ transplant procedures, kid-
ney transplantation and rejection assessment necessi-
tate biopsies and pathologist evaluations. Integrating AI 
into this domain is a novel approach that holds impres-
sive promise, facilitating the evaluation of kidney biopsy 
histopathology, guiding the treatment and manage-
ment of transplant patients, and diagnosing rejection 

Fig. 3  Using machine learning models for interpreting the date from Endomyocardial biopsy (EMB) slides, both pre and post-transplant, for establishing 
cardiac allograft rejection
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episodes. Several distinguished kidney biopsies scoring 
system models have emerged to fulfill these objectives, 
including the Remuzzi, Banff, Leuven, and Maryland 
Aggregate Pathology Index (MAPI), each with distinct 
scoring criteria tailored to the patient’s needs. The 
Remuzzi scoring system hinges on factors such as glo-
merulosclerosis, tubular atrophy, interstitial fibrosis, 
and arterial narrowing. In contrast, the Banff system 
focuses on vascular and other histologic abnormali-
ties. The Leuven criteria closely resemble the Remuzzi 
model, incorporating elements such as Glomeruloscle-
rosis, donor age, interstitial fibrosis, and tubular atro-
phy. On the other hand, the MAPI scoring system solely 
relies on histologic parameters, including glomerular 
sclerosis, arteriolar hyalinosis, cortical scar, and periglo-
merular fibrosis [79–83]. These scoring systems serve 
as invaluable tools in the comprehensive evaluation 
and management of kidney transplant patients, with AI 
revolutionize their implementation and enhance patient 
outcomes.

In 2023, Smith et al. [84] introduced a pioneering 
approach utilizing binary thresholding and a UNet 
model (a convolutional neural network that was devel-
oped for biomedical image segmentation [74]) for 
glomeruli segmentation in assessing interstitial inflam-
mation from CD45-stained digital slides. Their study, 
encompassing 60 biopsies from 53 patients, uncovered 
a robust correlation between their automated inflamma-
tion scoring and the established Banff scoring system. 
Similarly, Hermsen et al. [85] Leveraged a UNet model 
to compute inflammatory and chronic characteristics in 
kidney transplant biopsies. They demonstrated a high 
correlation between the computed tissue features and 
Banff scoring by employing a structure segmentation 
CNN and a lymphocyte detection CNN on 125 whole-
slide image pairs. In another breakthrough Zhengzi Yi et 
al. [86]. developed a DL model for characterizing patho-
logical abnormalities in kidney transplant biopsies. Their 
model exhibited exceptional precision in spotting kidney 
tissue partitions and mononuclear leukocytes. Notably, 
the digital features revealed a significant correlation with 
revised Banff 2007 scores, offering heightened sensitivity 
to delicate pathological changes below the thresholds in 
the Banff scores.

Furthermore, Kers and colleagues conducted a study 
using 5,844 digital images of kidney transplant biopsies 
from 1,948 patients conducting a backdated, multicenter 
proof-of-concept. They tested different CNN models and 
showed that deep learning could help diagnose kidney 
transplant rejection [87]. These groundbreaking studies 
underscore the transformative potential of DL in revo-
lutionizing the assessment and management of kidney 
transplant biopsies, ultimately enhancing patient care 
and outcomes.

Liver transplant
Despite the persistent gap between organ supply and 
demand, more than a third of donor livers face rejection 
due to the perceived risk of early allograft dysfunction 
(EAD), as indicated by histopathological discoveries. The 
pivotal role of pathologist evaluation in assessing donor 
liver biopsies cannot be overstated, as it informs the deci-
sion to accept or reject probable donor livers. Moreover, 
liver fibrosis staging holds immense clinical significance 
in forecasting disease progression. Notably, the quantity 
and size of fibrotic portal tracts in liver biopsies are asso-
ciated directly with the fibrosis stage, highlighting the 
critical importance of detailed portal tract region analy-
sis in clinical practice. However, manual clarifications of 
portal tract regions pose significant challenges, including 
time constraints and substantial inter- and intra-observer 
variability. These limitations highlight the pressing need 
for more efficient and standardized approaches to portal 
tract analysis. Furthermore, donor livers undergo rigor-
ous subjective pathologist review for steatosis assessment 
prior to transplantation, aiming to alleviate the risk of 
early allograft dysfunction [88].

The integration of advanced computational techniques, 
such as AI, holds promise in revolutionizing portal tract 
analysis, streamlining the evaluation process, and ulti-
mately optimizing donor liver utilization and transplan-
tation outcomes. In 2022, Narayan et al. [89] delved into 
the realm of AI for predicting donor liver allograft ste-
atosis and early post-transplantation graft failure. Their 
groundbreaking research introduced a Computer Vision 
AI platform (CVAI) tailored to score donor liver ste-
atosis. Comparative analysis against pathologist steato-
sis scores revealed that the CVAI steatosis EAD model 
exhibited slightly superior calibration. This finding war-
rants further exploration to determine which modality 
offers the most accurate and trustworthy prediction of 
post-transplantation outcomes.

Likewise, In 2022, Yu et al. [90]. Devised a revolution-
ary Multiple Up-sampling and Spatial attention-guided 
UNet model (MUSA-UNet) aimed at segmenting liver 
portal tract regions in liver whole-slide images (WSI), 
thereby correlating with liver fibrosis stage. Their inno-
vative DL model, MUSA-UNet, demonstrated astonish-
ing strictness in segmenting portal tract regions from 
liver tissue biopsy WSIs. It presents a hopeful potential 
to enhance liver disease diagnosis through computational 
means.

Furthermore, in 2022, Sun et al. [91] pioneered the 
development a DL convolutional neural network (CNN) 
capable of generating a steatosis probability map from 
hematoxylin and eosin-stained frozen section whole-
slide images (WSIs). Subsequent calculations of percent 
steatosis revealed strong correspondence and agreement 
with interpretations in training and novel input test sets. 
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Notably, these measurements exceeded estimates pro-
vided by pathologists at the time of initial evaluation. 
These advancements highlight the transformative poten-
tial of AI in improving liver disease diagnosis and pre-
dicting outcomes after transplantation.

AI tools in transplant surgery
At some point, AI is expected to offer pioneering solu-
tions that enhance surgical efficiency and improve patient 
outcomes in various surgical fields, including transplant 
surgery. By integrating AI into surgical practices, there 
is potential to revolutionize procedures, heralding a new 
era of personalized and data-driven healthcare. The field 
of surgery has been transformed by robotic assistance, 
which has enhanced surgical accuracy and patient out-
comes across multiple specialties. The incorporation of 
cutting-edge technologies has bolstered the capabilities 
of surgical robots, resulting in improved patient care and 
fewer complications [92, 93].

Compared to conventional surgical techniques, robotic 
systems offer numerous benefits. These include enhanced 
three-dimensional stereoscopic visualization, articulated 
instruments for improved dexterity, and software that 
eliminates tremors, thereby increasing surgical precision 
[92]. These attributes enable surgeons to execute intricate 
procedures with greater accuracy, particularly in gyne-
cologic oncology and urologic operations [92, 94]. The 
improved 3D perspective and magnified view of the sur-
gical area contribute to a relatively blood-free operating 
environment and reduced surgeon exhaustion [94].

Artificial intelligence tools have been instrumental in 
advancing robotic-assisted surgery. Real-time analysis of 
surgical field images is facilitated by image recognition 
algorithms, while instrument movements are optimized 
by motion control systems [95]. Tasks such as suturing 
and tissue dissection have been enhanced through AI-
driven automation, improving consistency and decreas-
ing surgeon workload [95]. Surgical decision-making 
is supported by machine learning algorithms, which 
enhance the identification of minute and complex ana-
tomical structures (94).

Notably, while robotic-assisted surgery generally 
improves precision, it may lead to extended operative 
durations compared to free-hand methods, especially 
in spine surgery. However, it typically results in reduced 
radiation exposure times, benefiting both patients and 
surgical teams [96].

AI algorithms analyze patient data to enhance organ 
compatibility during allocation. Robotic systems like 
the da Vinci Surgical System enable complex operations 
with fewer complications and quicker recovery times. 
The advent of robotic-assisted surgery has significantly 
altered how transplant procedures are conducted. Robots 

provide enhanced agility, immovability, and precision, 
allowing surgeons to perform complex tasks more accu-
rately. Technologies such as the da Vinci Surgical System 
have been magnificently employed in kidney and liver 
transplants, reducing blood loss, minimizing surgical 
stress, and increasing the speed of patient recovery. By 
merging the precision of robotic equipment with the ana-
lytical power of AI algorithms, transplant surgeons have 
overpowered many challenges, paving the way for a more 
effective and easily reached era of organ transplantation 
[16]. The Hugo Robotic-Assisted Surgery (RAS) System 
by Medtronic represents another AI-integrated robotic 
technology with significant potential in the field of trans-
plantation. Designed as a cost-effective platform for vari-
ous surgical specialties, Hugo is still in the early stages of 
adoption for organ transplantation. However, its modular 
architecture and advanced imaging capabilities position 
it as a promising solution for kidney and liver transplants 
in the future. Key features of the Hugo system include its 
scalability and adaptability, allowing it to accommodate 
multi-surgeon teams seamlessly. Additionally, its cost-
efficiency makes it particularly appealing for hospitals 
managing a high volume of transplant procedures. These 
advantages suggest that Hugo could play a pivotal role in 
advancing robotic-assisted surgeries within transplanta-
tion as the technology continues to evolve [97].

To summarize, robotic-assisted surgery, enhanced by 
AI tools, has transformed surgical practices by providing 
unprecedented levels of precision and control. As these 
technologies continue to develop, we can anticipate fur-
ther improvements in surgical outcomes, fewer compli-
cations, and broader applications across various surgical 
specialties [93, 95]. The integration of AI in robotic sur-
gery shows great potential for advancing surgical care, 
although challenges such as high costs and the need for 
specialized training must be addressed for widespread 
adoption.

But at the final point, Integrating AI into the surgical 
process presents several challenges, including regula-
tory hurdles, the need for specialized surgeon training, 
and high implementation costs. Regulatory bodies must 
establish clear guidelines to ensure AI-driven surgical 
systems meet safety and ethical standards, which can 
delay adoption. Additionally, surgeons require extensive 
training to effectively use AI-assisted tools, as reliance 
on automated decision-making without proper oversight 
could lead to complications. The costs associated with 
acquiring and maintaining AI-powered surgical tech-
nologies, such as robotic systems and machine-learning 
software, can be prohibitive for many healthcare insti-
tutions. Balancing innovation with patient safety, legal 
compliance, and financial feasibility remains a key chal-
lenge in AI-driven surgery [98].
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AI tools in Post-transplant step
Prediction of post-transplant outcome and mortality
Valuable decision-making and management in transplan-
tation heavily hinge on perfectly predicting patient sur-
vival both on the waiting list and post-transplant. This is 
crucial for increasing efficacious transplant numbers and 
enhancing overall outcomes. To this end, several deep 
learning-based survival models have been developed. For 
instance, Luo et al. [99] utilized ML algorithms to create 
an analytical model identifying kidney transplant patients 
at higher risk of severe pneumonia during their post-
transplant hospital stay. They analyzed recipient features 
using a variety of classifiers, including tree-based ensem-
ble methods like Random Forest and AdaBoost, and non-
ensemble classifiers such as support vector machines, 
Naïve Bayes, and logistic regression. The models’ effec-
tiveness was assessed using the area under the precision-
recall curve (AUPRC) and the area under the receiver 
operating characteristic curve (AUROC) through ten-
fold cross-validation. The Random Forest model was 
beneficial for predicting severe pneumonia. It suggests 
that recipients with preoperative pulmonary infections, 
older patients, and those needing reoperation should be 
closely monitored to prevent severe pneumonia.

Several studies have utilized artificial neural networks 
(ANNs) for predicting graft outcomes following liver 
transplantation. ANNs have shown superior perfor-
mance compared to traditional scoring systems, with 
one study reporting an area under the receiver operating 
characteristic curve (AUROC) of 0.82 for an ANN model 
versus 0.62 for the balance of risk (BAR) score and 0.57 
for the Survival Outcome Following Liver Transplanta-
tion (SOFT) score [100]. Another ANN-based model 
was devised to forecast waitlist mortality post-transplant 
survival and simulate heart allocation processes. Trained 
on donor and recipient data, it accurately predicted wait-
list and post-transplant mortality (AUROC = 89% and 
AUROC = 66%, respectively) [54, 101]. Another ANN 
model achieved an AUROC of 0.84 compared to 0.68 for 
the donor risk index (DRI) and 0.64 for SOFT. Random 
forests have also been applied successfully, achieving 
AUROCs of 0.74, 0.68, and 0.64 for predicting 1-, 3-, and 
5-year mortality respectively in pediatric heart transplan-
tation [102]. Additionally, the performance of these mod-
els can be limited by data quality, small sample sizes, and 
the need for validation across different populations [103]. 
In pediatric heart transplantation, despite fair predic-
tive utility, ML algorithms demonstrated poor sensitivity 
(0.07–0.49) in testing data, possibly due to missing data 
on key determinants of long-term survival [102].

Delayed graft function (DGF), a frequent early post-
transplant complication, is predictive of adverse out-
comes like hospital readmission, diminished long-term 
graft function, and lower graft and patient survival rates 

[104]. DGF impacts immediate and long-term results, 
making the prediction of graft failure before kidney 
transplantation vital for managing chronic kidney disease 
patients. Despite the existence of several ML-based pre-
diction models for kidney graft outcomes, many rely on 
small datasets and do not incorporate time-to-event (sur-
vival) data, focusing instead on binary outcomes (failure 
or not).

Irish et al. [105] introduced a model to predict DGF 
following renal transplantation. This model was devel-
oped using multivariable logistic regression analysis on 
data from 24,337 deceased donor renal transplant recipi-
ents between 2003 and 2006. They created a nomogram 
to illustrate the relative contributions of risk factors and 
developed a web-based calculator (​h​t​t​p​​:​/​/​​w​w​w​.​​t​r​​a​n​s​​p​l​a​​n​
t​c​a​​l​c​​u​l​a​t​o​r​.​c​o​m​/​D​G​F) for easy access. With a c-statistic 
of 0.704, this model was the first to use patient charac-
teristics for DGF prediction and proved generalizable to 
external populations [106].

Senanayake et al. [107] developed two distinct ML-
based models to predict graft failure in live and deceased 
donor kidney transplants, utilizing time-to-event data 
from a large national dataset from Australia and New 
Zealand Dialysis and Transplant Registry. This data-
set encompassed 3,758 live donor transplants and 7,365 
deceased donor transplants performed between January 
1, 2007, and December 31, 2017. They employed three 
ML methods (survival tree, random survival forest, and 
survival support vector machine) alongside the tradi-
tional Cox proportional regression method to develop 
predictive models for both transplant types.

Kawakita et al. [108] compared various ML algorithms 
(logistic regression, elastic net, random forest, artifi-
cial neural network, and extreme gradient boosting) to 
evaluate their effectiveness in predicting DGF in kidney 
transplant recipients. Their models, which incorporated 
30 variables (13 donor-related, eight recipient-related, 
and five transplant-related), demonstrated improved dis-
crimination compared to standard regression models, as 
evidenced by higher areas under the receiver operating 
characteristic curves.

Agasthi et al. [109] used ML to develop a risk predic-
tion model for survival and graft failure (GF) five years 
post-orthotopic heart transplant (OHT). Analyzing data 
from the International Society of Heart and Lung Trans-
plant (ISHLT) registry, they examined 15,236 patients 
who underwent OHT from January 2005 to December 
2009. Using 342 variables, they developed a gradient-
boosted machine (GBM) model to predict GF and mor-
tality five years after hospital discharge. They found that 
length of hospital stays, recipient and donor age, body 
mass index, and ischemic time were the most influential 
factors in predicting five-year mortality and graft failure.

http://www.transplantcalculator.com/DGF
http://www.transplantcalculator.com/DGF
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The findings from these studies suggest that AI and ML 
models generally outperform traditional regression anal-
yses in predicting graft failure and mortality. However, 
while ML models show strong prognostic power for one-
year outcomes, their accuracy diminishes for longer-term 
forecasts. These models are limited by the data available 
to them, demonstrating a need for more comprehensive 
data to better calculate long-term outcomes in post-
transplant patients. Fascinatingly, the predictive variables 
differ based on the time horizon, with different variables 
being noteworthy for one-year versus five-year mortality 
predictions [110, 111].

Rejection risk evaluation
Numerous studies have underscored the profound influ-
ence of acute rejection (AR) on long-term graft survival, 
establishing it as a pivotal factor in chronic graft dys-
function and failure. To tackle these challenges, the FDA 
convened public workshops in June 2010 and April 2017, 
focusing on antibody-mediated rejection (AMR) treat-
ment and the design of clinical trials aimed at enhancing 
long-term outcomes. With AI advancements, these tri-
als have become more feasible [112, 113]. While various 
studies have attempted to predict rejection and identify 
high-risk patients, their accuracy has often been limited 
due to the complexity of contributing factors. ML offers a 
solution by managing extensive data points and integrat-
ing clinical, genetic, metabolomic, and pathology-based 
variables for improved predictive capability. ANNs have 
consistently demonstrated superior accuracy in predict-
ing graft rejection for renal and liver transplants com-
pared to traditional models [114–116].

Shaikhina et al. [117] applied ML algorithms to a small 
dataset of 80 kidney transplants, considering factors like 
age, gender, HLA Class I and II, years on dialysis, IgG 
subclass levels, highest IgG DSA level, and number of 
previous transplants. Their model achieved an 85% accu-
racy in predicting acute antibody-mediated rejection 
(AMR) 30 days post-transplant.

Tapak et al. [116] identified extrapolative elements 
coupled with kidney transplant rejection using the ANN 
approach and compared the results with those acquired 
by logistic regression (LR). They used information 
regarding 378 patients who had undergone kidney trans-
plantation from a reflective study conducted in Hama-
dan, Western Iran, from 1994 to 2011. ANN was used to 
pinpoint potential essential risk factors for chronic non-
reversible graft rejection. They point out that the ANN 
model overtook LR in predicting kidney transplantation 
failure.

In 2016, Esteban et al. [118] utilized a recurrent neural 
network (RNN) for foretelling acute rejection in kidney 
transplant using Prescribed medication (Cyclosporin, 
Furosemide…) Creatinine (high/normal/low) Leukocytes 

(high/normal/low) as predictive elements. RNN com-
bines static and dynamic information to predict upcom-
ing events. They worked with a database collected in the 
Charité Hospital in Berlin that contains complete infor-
mation concerning patients who experienced kidney 
transplantation.

Suthanthiran et al. [119] collected 4300 urine speci-
mens from 485 kidney-graft recipients from day 3 
through month 12 after transplantation. Messenger 
RNA (mRNA) levels were quantified in urinary cells and 
connected with allograft-rejection status using logis-
tic regression with the knowledge that the standard test 
for diagnosing acute rejection in kidney transplants is 
renal biopsy. The authors obtained an AUC of 0.85 with 
a three-gene expression signature for the perception 
between acute rejection and no rejection in their cohort 
and an AUC of 0.74 upon external validation.

Zare et al. [115] achieved a predictive model based on 
ANN technique and figure out the best time for early 
predicting acute allograft rejection after transplantation 
in liver transplant recipients. Feed-forward, back-prop-
agation neural network was developed to predict acute 
rejection in liver transplant recipients using clinical and 
biochemical data from 148 liver transplant recipients 
over days 3, 7, and 14 post-transplantations. Their study 
suggests that ANN could be a valuable addition to con-
ventional liver function tests for monitoring liver trans-
plant recipients in the early postoperative period.

Abdeltawab et al. [120] combined diffusion-weighted 
MRI data with clinical biomarkers such as creatinine 
clearance and serum plasma creatinine. Their convo-
lutional neural network (CNN) accurately identified 
92.9% of rejected kidney grafts, regardless of scanner 
type and image collection protocol variations. Reeve 
et al. [121, 122] employed clustering analysis to classify 
phenotypes linked to kidney transplant rejection. Train-
ing an algorithm on 1,208 kidney biopsies, they aimed to 
replace binary histologic diagnoses with a probabilistic 
model, identifying subtypes of T cell-mediated rejection 
(TCMR) and antibody-mediated rejection (AMR).

Post-transplant complications
Clinical outcomes following transplantation are sig-
nificantly impacted by the prompt identification of 
complications in the immediate postoperative period. 
Post-transplant management protocols can vary based 
on factors such as the institution, surgeon, and individ-
ual patient characteristics. While cardiac, lung, and liver 
transplant recipients typically require admission to a sur-
gical intensive care unit after their procedure, the length 
of stay in the unit may not necessarily correlate with the 
severity of the patient’s condition. Early identification of 
potential decompensation on surgical wards can help pre-
vent failure-to-rescue scenarios by promptly transferring 
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patients back to intensive care units. Although the lit-
erature does not offer a definitive explanation for the 
strong association between length of hospital stay and 
graft patency and mortality, it is well-established that 
an increase in complications such as bleeding or infec-
tions, as well as the severity of these complications, can 
lead to a prolonged hospital stay [123, 124]. Post-trans-
plant complications are often detected through biopsy, 
but the integration of ML into imaging techniques may 
eliminate the need for invasive procedures and reduce 
the associated risks of hemorrhage, infection, and dam-
age to nearby anatomical structures. Diffusion-weighted 
MRI images have been incorporated into models of non-
imaging inputs, such as creatine clearance and serum 
plasma creatine, to identify early graft dysfunction with 
over 90% sensitivity and specificity. Prior to liver trans-
plantation, the degree of graft steatosis is a crucial factor 
for surgeons in predicting post-transplant graft function. 
Given the high cost and inefficiency of biopsy and his-
tological methods for assessing steatosis, physicians rely 
on donor clinical characteristics and visual evaluations 
of the graft. However, the subjective and variable nature 
of this process poses a challenge, prompting researchers 
to utilize ML tools on photographic data for detecting 
hepatic steatosis.

Conversely, acute kidney injury (AKI) is a common 
complication following liver transplantation (LT). It 
serves as an indicator of poor prognosis. Predicting the 
risk of this complication before or after transplantation 
can be instrumental in preventing adverse outcomes. 
As previously discussed, delayed graft function (DGF) 
in kidney transplantation refers to the need for dialysis 
within the first-week post-transplantation and is linked 
to a higher risk of graft loss, prolonged hospitalization, 
and increased costs. ML algorithms have the potential 
to identify valuable prognostic markers. In the case of 
lung transplant recipients, chronic lung allograft dys-
function (CLAD) affects over 50% within the initial 5 
years post-transplantation, significantly impacting long-
term survival. Bronchiolitis obliterans syndrome (BOS) 
represents an obstructive form of CLAD resulting from 
chronic immune-mediated rejection, leading to reduced 
airflow indicated by decreased forced expiratory volume 
in the first second (FEV1).

Kidney transplant
Williams et al. [125] employed The RF methodology 
to detect urine proteins that have predictive value for 
delayed graft function (DGF) using a targeted urine 
proteome assay. They collected urine samples from 52 
patients with intermediate, slow, and delayed graft func-
tion within 12–18  h post-surgery. Their analysis identi-
fied four key urine proteins that exhibited changes in 

recipients with DGF. The sensitivity of these proteins in 
predicting DGF was 77.4%, with a specificity of 82.6%.

Daher Costa et al. [126] conducted a retrospective anal-
ysis of 443 kidney transplants from brain-dead deceased 
donors in two Brazilian centers. Using predictive model-
ing, they evaluated various donor maintenance variables, 
including arterial blood gas pH, serum sodium, blood 
glucose, urine output, mean arterial pressure, vasopres-
sor use, and reversed cardiac arrest. Their study high-
lighted the significance of donor maintenance variables 
such as urine output and mean arterial pressure, which 
were not considered in other regression-based risk scores 
for predicting post-transplant DGF. However, it is impor-
tant to note that the retrospective nature of the study may 
limit the timeliness of the data and its ability to represent 
the overall picture of donor kidney maintenance fully.

Villeneuve et al. [127] utilized The RF approach to 
assess the health-related quality of life (HRQOL) and its 
determinants in 337 kidney transplant recipients during 
the first three years post-transplantation. Their analysis 
revealed a significant association between HRQOL one 
month after transplantation and HRQOL three and 36 
months after transplantation. Unlike conventional mod-
els, the ensemble of ML algorithms employed in this 
study allowed for analyzing both quantitative and qualita-
tive variables without limitations on the covariates tested.

Liver transplant
Moccia et al. [128] utilized a semi-supervised classifi-
cation technique to assess graft steatosis in liver trans-
plantation. They employed 40 liver images taken by a 
smartphone camera in the operating room, resulting in 
600 liver patches. Alongside clinical variables and blood 
sample tests, they used an SVM model to evaluate the 
steatosis of the grafts qualitatively. The model achieved 
an accuracy of 0.88, sensitivity of 0.95, and specificity of 
0.81, with liver biopsy as the reference method.

Bhat et al. [129] conducted a study to determine sig-
nificant predictors and survival outcomes of new-onset 
diabetes after transplant (NODAT) in liver transplant 
(LT) recipients. They analyzed data from the Scientific 
Registry of Transplant Recipients, including all adult liver 
transplantation recipients between October 1, 1987, and 
March 31, 2016. Various ML methods were utilized, and 
the data were split into training and validation sets. The 
study found that older, male, and obese recipients are at 
a higher risk of developing NODAT. Donor characteris-
tics, however, do not impact the risk. Additionally, using 
sirolimus-based immunosuppression was linked to a sig-
nificantly increased risk of NODAT compared to other 
immunosuppressants.

Tanaka and Voigt [130] employed a decision tree 
approach to categorize liver transplant (LT) recipients 
based on their risk of developing non-melanoma skin 
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cancers (NMSCs). NMSCs are the most common de novo 
malignancies in LT recipients. They are known for their 
aggressive behavior, leading to higher mortality rates. The 
researchers conducted Cox regression analysis to identify 
the predictive variables for inclusion in the decision tree 
analysis. The data used in the study were sourced from 
the Organ Procurement Transplant Network (OPTN) 
STAR files of September 2016, comprising a total of 
102,984 cases. The decision tree model effectively strati-
fied the long-term risk of developing NMSCs post-LT.

Lee et al. [131] devised a new scoring system utiliz-
ing the LASSO regression method to forecast the likeli-
hood of persistent alcohol consumption following a liver 
transplant in patients with alcohol hepatitis. The aim 
was to prioritize individuals with a lower risk of relapse 
for early transplantation. The study involved 134 liver 
transplant recipients, and the resulting model achieved 
a C-statistic of 0.76 after internal cross-validation. Four 
key pre-transplant variables were identified as significant 
predictive risk factors for sustained alcohol consumption 
post-transplant: consuming more than ten drinks per day 
upon initial hospitalization, a history of illicit substance 
abuse, a history of alcohol-related legal issues, and a his-
tory of multiple rehabilitation attempts.

Lee et al. [132] conducted a study to compare the effec-
tiveness of ML approaches and logistic regression anal-
ysis in predicting AKI after liver transplantation. The 
researchers examined a total of 1211 patients and col-
lected data on preoperative and intraoperative anesthe-
sia and surgery-related variables. The primary outcome 
of interest was the occurrence of postoperative AKI, as 
defined by the acute kidney injury network criteria. The 
researchers employed various ML techniques to assess 
the predictive performance of different methods, includ-
ing decision tree, random forest, gradient boosting 
machine, support vector machine, naïve Bayes, multi-
layer perceptron, and deep belief networks. These tech-
niques were then compared to logistic regression analysis 
based on the area under the receiver-operating character-
istic curve (AUROC). Among the patients included in the 
study, 365 individuals (30.1%) developed AKI. The results 
indicated that the gradient boosting machine exhibited 
the highest performance in terms of AUROC among all 
the analyzed techniques for predicting AKI at all stages. 
Therefore, the gradient boosting machine demonstrated 
superior predictive ability with the highest AUROC 
value.

He et al. [133] utilized 493 recipients (donations after 
cardiac death LT) to study AKI, which was defined based 
on the clinical practice guidelines of kidney disease: 
improving global outcomes (KDIGO). The clinical data of 
patients with AKI and those without AKI were compared. 
In addition to logistic regression analysis, four predictive 
ML models were developed using various algorithms: 

random forest, support vector machine, classical decision 
tree, and conditional inference tree. The random forest 
model, which was based on ML algorithms for predicting 
AKI after DCDLT, exhibited superior predictive power 
compared to the other models in the study. This indicates 
that ML techniques could serve as effective tools for fore-
casting AKI following DCDLT.

Chen et al. [134] conducted a study on developing and 
evaluating novel ML models to predict pneumonia after 
liver transplantation. They retrospectively extracted data 
from electronic medical records of 786 adult patients 
who underwent liver transplantation at the Third Affili-
ated Hospital of Sun Yat-sen University between Janu-
ary 2015 and September 2019. The data was randomly 
divided into a training set and a testing set, with a total 
of 591 LT patients included in the analysis. Among them, 
253 patients (42.81%) were diagnosed with postopera-
tive pneumonia, which was linked to increased postop-
erative hospitalization and mortality. The study revealed 
that the XGBoost model, utilizing 14 common variables, 
could effectively predict postoperative pneumonia in LT 
patients.

Nam et al. [135] developed a novel model to forecast 
the recurrence of hepatocellular carcinoma (HCC) after 
liver transplantation (LT). Their study involved 563 
patients undergoing LT for HCC at three prominent LT 
centers in Korea. The researchers derived a MoRAL-AI 
(Model for Recurrence of HCC after Liver Transplanta-
tion using AI from the derivation cohort, utilizing a deep 
neural network based on residual blocks. Among the 
parameters considered in the MoRAL-AI, tumor diam-
eter exhibited the highest weighted significance, followed 
by alpha-fetoprotein levels, age, and protein induced by 
vitamin K absence-II. Notably, the MoRAL-AI demon-
strated superior predictive capability for tumor recur-
rence after LT compared to conventional models.

Similarly, Ivanics et al. [136] developed a calculator to 
assess the risk of hepatocellular carcinoma recurrence 
following liver transplantation. The researchers identified 
patients with HCC who were listed for LT between 2000 
and 2016, with a subset of 739 patients undergoing LT 
utilized for modeling purposes. The dataset encompassed 
serial imaging, alpha-fetoprotein (AFP) levels, locore-
gional therapies, treatment response, and post-transplan-
tation outcomes. The mean cross-validated concordance 
index was employed to evaluate the performance of vari-
ous ML algorithms, including CoxNet (regularized Cox 
regression), survival random forest, survival support vec-
tor machine, and DeepSurv. The selected CoxNet model 
was subsequently validated by comparing it with other 
existing recurrence risk algorithms using a separate test 
set and the Hazard Associated with Liver Transplanta-
tion for Hepatocellular Carcinoma.
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Jain et al. [137] conducted a study where they developed 
ML Models to forecast Major Adverse Cardiovascular 
Events (MACE) following Orthotopic Liver Transplan-
tation (OLT). The study encompassed a comprehensive 
dataset of 1,459 consecutive patients who underwent LT 
between January 2008 and December 2019. To construct 
their models, the researchers employed a Retrospec-
tive cohort study design. Logistic regression, least abso-
lute shrinkage and selection surgery regression, random 
forests, support vector machine, and gradient-boosted 
modeling (GBM) were utilized to model all-cause mor-
tality and cardiovascular mortality. The data was divided 
into training and testing cohorts to build the models, and 
their performance was evaluated using five-fold cross-
validation based on the area under the receiver operating 
characteristic curve and Harrell’s C statistic.

In a separate study, Nitski et al. [138] investigated the 
effectiveness of deep-learning algorithms in predicting 
complications leading to mortality after liver transplan-
tation across different time points. The study involved 
a cohort of 3,269 patients, and 63 input variables were 
recorded in the Canadian University Health Network 
(UHN) database. Both databases exhibited minimal 
missing values, ensuring the reliability of their predic-
tive capabilities. The ANNs models generated impressive 
AUCs ranging from 0.847 to 0.871 for predicting death 
due to graft failure within the first-year post-transplan-
tation. These results were successfully replicated in the 
testing group, further validating the accuracy of the 
models.

Lung transplant
In their study, Barbosa Jr et al. [139] utilized a Support 
Vector Machine (SVM) to examine quantitative CT 
imaging data from 71 patients as a means of early detec-
tion for Chronic Lung Allograft Dysfunction (CLAD). By 
analyzing the quantitative CT scans taken during the ini-
tial post-transplant visit, the SVM algorithm successfully 
identified individuals at a higher risk of developing Bron-
chiolitis Obliterans Syndrome (BOS) soon. Interestingly, 
pulmonary function tests did not exhibit any significant 
changes during the early stages of the disease. The model 
achieved an impressive accuracy rate of 85% by utilizing 
three specific features extracted from the patient images.

In a separate study conducted by Sadat Hosseini-Baha-
ranchi et al. [140], a Bayesian Competing Risks Analysis 
was employed to evaluate the occurrence of BOS-related 
deaths in Iranian Lung Transplant Recipients. This ret-
rospective cohort study included 44 recipients of lung 
transplants who survived for a minimum of three months 
post-transplantation at the Masih Daneshvari Hospital 
in Tehran, Iran, between 2000 and 2014. The primary 
outcome of interest was the time interval between lung 
transplantation and the development of BOS and/or 

death (excluding deaths caused by BOS). The researchers 
utilized competing risk analysis to assess the impact of 
various factors on the cumulative incidence function of 
BOS and death. Employing a Fine and Gray model with a 
Bayesian approach, the study found that CMV infection 
was a predictor for an increased risk of BOS in the stud-
ied patients. Additionally, bilateral transplantation and 
CMV infection were identified as significant predictors of 
mortality within the sample population.

Optimizing the immunosuppression regimens
Anti-rejection immunosuppression medications are 
commonly administered following a transplant proce-
dure. Yet, a majority of databases do not gather infor-
mation regarding patients’ specific immunosuppression 
regimens. Research has indicated that this particular 
factor significantly predicts graft failure, surpassing its 
impact on mortality prediction. This could be attrib-
uted to the fact that these regimens reduce the risk of 
host rejection while potentially causing harmful side 
effects on organs such as the kidneys [141]. The selec-
tion of immunosuppression regimens post kidney and 
liver transplants exhibits considerable variability. Before 
establishing national registries, analyses have revealed 
that specific protocols at different medical centers pri-
marily influence this diversity.

Nevertheless, studies have demonstrated that both the 
immunosuppression regimens and individual patient 
characteristics can significantly affect the 3-year survival 
of grafts and the complications arising from immunosup-
pression when comparing similar patients on different 
regimens. Therefore, the development of a personal-
ized approach to immunosuppression could potentially 
decrease post-transplant morbidity. For instance, regi-
mens involving early withdrawal of steroids following a 
kidney transplant have been associated with fewer com-
plications in elderly populations [142]. Although overall 
toxicity may increase mortality rates, it does not have 
as significant an impact on graft failure. It is worth not-
ing that numerous databases have not collected data on 
patients’ immunosuppression regimens, possibly due to a 
perceived lack of importance.

Consequently, ML models could facilitate broader data 
collection to enhance the prognostic accuracy of these 
models. Including patients’ immunosuppression regi-
mens could improve prognostic accuracy and potentially 
assist in optimizing individualized regimens for each 
patient. Instances of graft rejection have been linked 
to suboptimal levels of immunosuppressive drugs, and 
given the various pharmacodynamic and pharmacoki-
netic factors involved, the utilization of ML algorithms 
on extensive datasets could enable a comprehensive 
analysis of these factors and potentially identify the most 
suitable regimen for each patient [143].
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One of the primary difficulties in the management of 
solid organ transplants involves the identification of the 
most effective dosage for immunosuppression and other 
medications that are sensitive to dosage. This challenge 
becomes particularly complex when dealing with patients 
who have renal or hepatic dysfunction. Waiting for drug 
levels to stabilize can lead to not only delayed discharge, 
but also the failure of the transplanted organ and the 
occurrence of adverse drug reactions. As personalized 
medicine gains prominence, the unique characteristics 
of individual patients become crucial in understanding 
how drugs are processed in their bodies. This suggests 
that incorporating pharmacokinetic data into machine-
learning algorithms could enhance the accuracy of clini-
cal dosing decisions.

Tacrolimus
In their study Thishya et al. [21] investigated the impact 
of genetic polymorphisms in ABCB1 and CYP3A5 on 
the bioavailability of tacrolimus and the risk of post-
transplant diabetes. They employed artificial neural 
network (ANN) and logistic regression (LR) models to 
predict the bioavailability of tacrolimus and the risk of 
post-transplant diabetes respectively. Additionally, the 
researchers developed a three-level artificial neural net-
work to identify the variables that influenced both tacro-
limus bioavailability and the risk of diabetes in renal 
transplant recipients. In a separate study by Tang et al. 
[19] the authors compared linear regression with eight 
different ML models to forecast stable tacrolimus dosing 
in renal transplant recipients. The results indicated that 
regression trees exhibited the best overall performance. 
Although these trees outperformed linear regression, 
their predictive ability was comparable to the other seven 
ML techniques.

Furthermore, Zarrinpar et al. [144] devised a person-
alized dosing model for tacrolimus in liver transplant 
recipients. This model was based on a second-order poly-
nomial equation, resulting in consistent and appropriate 
adjustments to tacrolimus dosing.

Storset et al. [145] examined the application of com-
puterized tacrolimus dosing in de novo renal transplant 
recipients. They compared the efficacy of computerized 
dosing with traditional dosing methods employed by 
experienced transplant physicians. The findings revealed 
that computerized dose individualization significantly 
enhanced the proportion of tacrolimus concentrations 
within the desired range, in contrast to conventional dos-
ing. Moreover, high-risk patients experienced a shorter 
time to achieve target levels with computerized dosing. 
Additionally, computerized dosing exhibited advantages 
in terms of glucose metabolism and renal function.

McMichael et al. [146] conducted an evaluation of 
an innovative dosing system known as the “intelligent” 

dosing system (IDS), which aimed to optimize FK 506 
and prednisone. The IDS utilized stochastic open-loop 
control theory to optimize drug dosing and demon-
strated accurate prediction of FK 506 plasma levels. The 
model achieved a remarkable 95% accuracy predicting in 
describing the correlation between FK 506 dosage and 
plasma level. Furthermore, the study found no biases in 
the dosing predictions made by the model, confirming its 
reliability in providing precise estimations. Importantly, 
the study emphasized the unbiased nature of the dosing 
predictions, further validating the model’s accuracy.

Seeling et al. [147] devised a knowledge-based system 
to guide tacrolimus therapy for kidney transplant recip-
ients. The primary aim of the research was to establish 
adaptation guidelines for tacrolimus treatment by ana-
lyzing a clinical dataset and incorporated them into a 
clinical decision-support tool. The study drew upon 
patient information spanning from 1995 to 2008, sourced 
from the Department of Nephrology and Dialysis at the 
Vienna General Hospital. This dataset encompassed 
patient characteristics, laboratory results, duration post-
kidney transplantation, and other immunosuppressive 
medications administered. The investigators employed 
a regression tree methodology to segment the data into 
homogeneous clusters and devised semi-automated 
models for these clusters to predict the drug concentra-
tion for the subsequent ward round.

Cyclosporine
Camps-Valls et al. [148] explored the application of neu-
ral networks in personalizing the dosage of cyclosporine 
A (CyA) for kidney transplant patients. They utilized 
various types of neural networks, such as multilayer per-
ceptron (MLP), finite impulse response (FIR), and Elman 
recurrent networks. To create a comprehensive model, 
the researchers devised a two-model approach where 
the first model predicted the blood concentration, which 
then served as input for the dosage prediction model. The 
training of these models involved data from 22 patients, 
while testing was conducted using data from 10 patients. 
Notably, the ensemble of FIR and Elman networks exhib-
ited the highest performance among the different neural 
network configurations.

In another related study, Goren et al. [149] examined 
the adaptive-network-based fuzzy inference system 
(ANFIS) for predicting cyclosporine blood levels in renal 
transplantation patients. The ANFIS model was devel-
oped based on therapeutic drug monitoring (TDM) data 
collected from 138 patients. The model incorporated 
20 input parameters, including concurrent drug usage, 
blood levels, sampling time, age, gender, and dosing 
intervals. The authors reported that the ANFIS model 
demonstrated accurate prediction capabilities for cyclo-
sporine concentration in blood samples.
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Mycophenolic acid (MPA)
The estimation of the area under the curve (AUC) of 
MPA is crucial for optimizing treatment and improv-
ing patient outcomes in therapeutic drug monitoring 
for MPA. In a study conducted by Woillard et al. [150], 
a machine-learning model was developed to accu-
rately estimate the concentration of MMF in transplant 
patients. Specifically, the models focused on estimating 
the concentration of MMF in patients who had under-
gone kidney or heart transplants.

The researchers utilized extreme gradient boosting 
(Xgboost R package) ML models to develop these models. 
The models were trained using a dataset of 12,877 MPA 
AUC requests from 6,884 patients. These requests were 
sent to the Immunosuppressant Bayesian Dose Adjust-
ment expert system, which provided AUC estimation and 
dose recommendations based on MPA concentrations 
measured at three sampling times (approximately 20 min, 
1 h, and 3 h after dosing).

The dataset was divided into a training set (75%) and 
a test set (25%). The Xgboost models in the training 
set were evaluated using the root mean squared error 
(RMSE) in a 10-fold cross-validation experiment. The 
model with the lowest RMSE was then evaluated in the 
test set and in four independent full-pharmacokinetic 
datasets from renal or heart transplant recipients. The 
models took into account various factors, including two 
or three concentrations, differences between these con-
centrations, relative deviations from theoretical sampling 
times, the presence of a delayed absorption peak, and 
five covariates (dose, type of transplantation, associated 
immunosuppressant, age, and time between transplan-
tation and sampling). The results of the study demon-
strated that the developed model accurately estimated 
the AUC of MPA over a 12-hour period. These models 
have the potential to be utilized in routine exposure esti-
mation and dose adjustment of MPA, providing valuable 
guidance for clinicians in optimizing treatment for trans-
plant patients. In Table  3 the information of significant 
studies focusing on the application of different AI models 
in organ transplant are summarized.

Ethical and legal dimensions of AI in organ 
allocation and healthcare
The integration of AI and big data into healthcare, par-
ticularly in fields like organ transplant and allocation, 
presents both transformative opportunities and signifi-
cant challenges. While AI technologies show promise 
in enhancing organ allocation procedures and patient 
results, they also spark worries about equity, openness, 
and responsibility [151]. Ethically, primary concerns 
include AI bias, patient consent, and data confidential-
ity. Organ allocation AI systems must be crafted to avoid 
reinforcing current inequalities and ensure fair organ 

access across varied patient groups [152, 153]. Clarity 
in AI decision processes is vital for maintaining confi-
dence and accountability in healthcare [154]. Moreover, 
the gathering and utilization of patient information 
for AI-driven organ allocation raise significant privacy 
issues that need to be tackled through strong data pro-
tection strategies. From a legal standpoint, incorpo-
rating AI in organ allocation faces hurdles related to 
accountability, efficacy and safety, and regulatory adher-
ence. Well-defined structures are necessary to ascertain 
responsibility when AI-aided decisions result in negative 
outcomes [151]. Guaranteeing the safety and effective-
ness of AI systems in healthcare demands stringent vali-
dation and continuous monitoring [153]. Additionally, 
the employment of AI in organ allocation must adhere to 
current healthcare regulations and data protection laws, 
which may require modification to address the unique 
challenges presented by AI technologies. To address 
these ethical and legal aspects, a cross-disciplinary strat-
egy is crucial. This encompasses developing comprehen-
sive ethical guidelines, encouraging collaboration among 
healthcare experts, data scientists, and ethicists, and 
implementing robust regulatory frameworks [155]. By 
proactively tackling these challenges, the medical com-
munity can leverage AI’s potential in organ allocation 
while upholding ethical principles and legal standards, 
ultimately striving for more efficient and equitable 
healthcare provision.

Safeguarding the ethical and legal aspects of AI-driven 
healthcare systems is critical, especially in protect-
ing patient data privacy, ensuring informed consent, 
and respecting patient autonomy [156]. Data privacy 
becomes even more critical in organ allocation scenarios 
where donors and recipients remain anonymous. Leak-
age of sensitive patient information in these cases can 
lead to serious consequences, such as emotional distress, 
potential exploitation, and breaches of confidentiality 
agreements. For example, if a donor’s identity is exposed, 
it may lead to unwanted contact from recipients or their 
families, creating emotional and legal complications. 
Similarly, recipients may face stigma or undue pressure 
if their personal information is revealed. Therefore, main-
taining strict confidentiality protocols is vital to ensure 
trust and the smooth functioning of the organ alloca-
tion process. As AI continues to influence healthcare and 
precision medicine, robust data protection legislation 
becomes vital. Laws like the Health Insurance Portabil-
ity and Accountability Act (HIPAA) in the United States 
and the General Data Protection Regulation (GDPR) in 
Europe set global benchmarks for privacy [157]. HIPAA 
focuses on safeguarding health information from cov-
ered entities, whereas GDPR enforces comprehensive 
data protection standards across the EU, creating a ripple 
effect worldwide [158]. In the context of organ allocation, 
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ethical risks amplify due to the sensitive nature of the 
data and the life-and-death decisions involved. An ethi-
cal assessment framework emphasizing transparency, 
accountability, and awareness has been proposed to 
guide the adoption of AI in healthcare. These frameworks 
ensure that stakeholders across the healthcare supply 
chain align with ethical priorities while navigating the 
complex interplay of technology, data, and human wel-
fare [159].

Real-world examples of successful AI applications 
in transplantation
The field of transplantation has seen encouraging 
advancements in AI applications, though many remain in 
the developmental phase rather than being widely used 
in clinical settings. Among the AI models introduced for 
donor-recipient matching, “Smart Match” stands out as 
a real-world application actively used in clinical practice. 
Developed by R. Deshpande, this AI-powered system 
leverages machine learning algorithms to enhance the 
accuracy of donor-recipient pairing, ultimately optimiz-
ing transplantation outcomes. By addressing challenges 
in donor-recipient compatibility, immunosuppression 
management, and post-operative care, Smart Match 
aims to reduce mismatches, lower waitlist mortality, and 
improve overall patient outcomes. Although relatively 
new, the system has demonstrated promising results, 
streamlining the allocation process and increasing the 
efficiency of organ transplantation. Early implementa-
tions suggest it has the potential to significantly improve 
transplant success rates while reducing wait times for 
patients in need [160].

The “Continuous Distribution Framework,” developed 
through a collaboration between the United Network 
for Organ Sharing (UNOS) and the Massachusetts Insti-
tute of Technology (MIT), is a groundbreaking AI-driven 
algorithm used in real-world organ allocation. This sys-
tem evaluates all patient factors simultaneously, gener-
ating a unique weighted score for each organ candidate 
to ensure more equitable and efficient transplant deci-
sions. Successfully implemented in the United States, 
this framework has revolutionized organ distribution by 
integrating factors such as medical urgency, waiting time, 
and geographical location into a single, comprehensive 
scoring system. Its ability to balance multiple variables 
has significantly improved fairness and efficiency in the 
allocation process, addressing longstanding challenges in 
organ transplantation [161].

Among the various models and algorithms developed 
to predict post-transplantation complications, the iBox 
algorithm stands out as a significant real-world success. 
Created by the Paris Transplant Group under the lead-
ership of Dr. Alexandre Loupy, this algorithm offers a 
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reliable method to forecast short-, medium-, and long-
term outcomes for transplanted organs.

The iBox algorithm analyzes gene expression in kid-
ney, heart, and lung grafts to evaluate both the risk of 
rejection and the overall health of the graft. Its accuracy 
and effectiveness have been validated through extensive 
clinical studies, solidifying its role in practical medi-
cal applications. By providing precise predictions, the 
iBox model enables healthcare providers to custom-
ize post-transplant care plans and proactively address 
potential complications. This innovative tool has revo-
lutionized transplant care by improving long-term graft 
survival rates and enhancing patient outcomes, making it 
an invaluable asset in the field of organ transplantation 
[162].

These examples illustrate the successful integration of 
AI into clinical transplantation practices, demonstrat-
ing its potential to transform patient care and optimize 
transplantation outcomes. although AI demonstrates 
significant potential in transplantation, its practi-
cal applications remain limited. Successful examples 
include enhanced organ allocation algorithms and donor-
recipient matching. However, for widespread adoption, 
these tools need to be integrated into electronic medical 
records, organ offer systems, and mobile devices [163]. 
The field is rapidly evolving, and AI is anticipated to play 
an increasingly significant role in improving personalized 
clinical decision-making in transplant medicine.

Future research directions
The field of medical research is witnessing rapid advance-
ments, with artificial intelligence (AI) offering promis-
ing opportunities to enhance transplant medicine. Two 
key areas where AI’s transformative potential is gaining 
recognition are improving long-term graft survival and 
addressing inequities in organ allocation. As we approach 
this technological shift, future studies must harness AI-
powered predictive models and innovative approaches to 
ensure fair and effective healthcare outcomes.

The creation of AI-driven predictive models for long-
term graft survival is an emerging focus in transplanta-
tion medicine, with the potential to significantly improve 
patient outcomes. Liver transplantation (LT) exemplifies 
how AI integration can optimize clinical decision-mak-
ing. The intricate management of LT recipients, involv-
ing numerous demographic, clinical, and laboratory 
factors, provides an opportunity for machine learning 
and deep learning applications. Regarding new scientific 
approaches in laboratory science, we know that labo-
ratory factors implication extend beyond diagnostics 
and research, playing a pivotal role in strengthening the 
healthcare system and providing vital analytical sup-
port to healthcare providers, including physicians, facili-
tating informed decision-making in the ever-evolving 

landscape of modern medicine [164]. These technologies 
can be utilized pre-transplant to enhance donor-recipient 
matching and improve candidacy decisions, thus reduc-
ing waitlist mortality and boosting post-transplant out-
comes [165]. In liver transplantation, identifying early 
allograft dysfunction (EAD) is crucial for predicting graft 
and patient survival. A recent study proposed a stan-
dardized EAD definition based on specific postoperative 
laboratory analyses, revealing a 23.2% EAD incidence 
and a strong link to graft loss and patient mortality [166]. 
This objective criterion can serve as a valuable endpoint 
in translational studies aimed at elucidating the mecha-
nisms underlying graft dysfunction, thereby informing 
the development of predictive models that incorporate 
AI methodologies. Similarly, uric acid (UA) levels in kid-
ney transplantation have gained attention as a potential 
predictor of long-term graft survival. Studies indicate 
that mean UA levels during the initial six months post-
transplant are independently associated with graft loss 
and function, suggesting that incorporating such bio-
markers into AI-driven models could enhance predictive 
accuracy [167]. By utilizing large datasets and advanced 
analytical techniques, researchers can develop models 
that consider both traditional clinical variables and novel 
risk factors.

The need for improved predictive models is particu-
larly evident in pediatric kidney transplantation, where 
the current Kidney Donor Profile Index (KDPI) inad-
equately predicts graft survival. Alternative indices, such 
as the Child Donor Index (CDI) and Adolescent Donor 
Index (ADI), have shown superior predictive capabili-
ties, highlighting AI’s potential to refine donor allocation 
strategies [168]. These findings underscore the impor-
tance of developing AI-driven models that can integrate 
diverse data sources, including clinical, demographic, 
and novel biomarkers, to enhance long-term graft sur-
vival predictions.

The integration of AI in transplantation medicine 
shows promise for developing robust predictive models 
that can significantly improve long-term graft survival. 
By addressing the limitations of existing methodologies 
and incorporating a wider range of risk factors, research-
ers can enhance the personalization of treatment plans 
and ultimately improve patient outcomes in both liver 
and kidney transplantation.The potential of artificial 
intelligence (AI) to address disparities in organ allocation 
is increasingly recognized in contemporary healthcare 
research. One significant area of concern is the inequita-
ble access to preemptive kidney transplantation, particu-
larly among marginalized populations. Reese et al. [169] 
highlight that preemptive transplantation can signifi-
cantly improve patient outcomes compared to those who 
undergo dialysis. However, systemic barriers, including 
stringent eligibility criteria and a first-come, first-served 
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allocation model, disproportionately disadvantage Black 
patients. The authors propose that standardizing waitlist-
ing criteria and enhancing clinician education could miti-
gate these disparities, suggesting that AI could play a role 
in streamlining these processes. In the context of organ 
allocation, geographic disparities have also emerged 
as a critical issue. Feigin et al. [170] discuss how tradi-
tional allocation models, which often rely on artificial 
regional boundaries, can hinder access for patients with 
the most urgent medical needs. They propose a continu-
ous geographical allocation model that utilizes a gravity 
model to prioritize patients based on their condition and 
proximity to available organs. This innovative approach 
demonstrates how AI could enhance fairness in organ 
distribution by ensuring that those in critical need have 
access to organs from further distances, thereby improv-
ing overall outcomes.

Discussion, perspective and conclusion
Organ transplantation has evolved significantly since its 
inception in 1954, transitioning from early challenges to 
becoming a standard treatment for end-stage organ dis-
eases. While advancements in surgical techniques and 
immunosuppression have contributed to its success, 
challenges remain in organ allocation. Artificial Intel-
ligence holds the potential to revolutionize organ allo-
cation by predicting outcomes and optimizing donor 
selection, ultimately improving efficiency and equity in 
transplantation.

Integrating AI and machine learning (ML) into solid 
organ transplantation is a major medical advance-
ment, addressing challenges like organ shortages and 
outcome prediction. In terms of predictive analysis, 
machine learning (ML) algorithms hold great promise 
for improving organ allocation by increasing the accu-
racy of donor-recipient matches, outstanding traditional 
methods [171]. By analyzing various factors and their 
relationships, ML can optimize the allocation process. 
In post-transplant care, ML models are advancing to 
predict personalized short-term outcomes, with future 
efforts focused on long-term predictions. Despite prog-
ress, incorporating more patient data into AI research is 
essential to further improve predictive accuracy.

On the other hand, ML has played a key role in medical 
image analysis, particularly in specialized areas like trans-
plant pathology. Advances in AI promise to revolution-
ize organ selection, matching, and allocation. AI helps 
address the shortage of skilled pathologists by detect-
ing complex patterns, even surpassing human experts in 
areas like diagnosing kidney allograft rejection. Digital 
pathology scanners enhance AI’s impact, and accurate 
algorithms are being developed to identify organ rejec-
tion and assess organ quality, especially in liver biopsies. 
These advancements could improve the use of marginal 

organs, significantly enhancing the organ transplantation 
process.

The implementation of artificial intelligence (AI) in 
clinical settings, particularly medical imaging, faces 
several significant challenges. One primary obstacle is 
regulatory compliance, which requires demanding per-
formance assessments to ensure that AI algorithms are 
generalizable and trustworthy. The complexities sur-
rounding regulatory frameworks can impede the timely 
integration of AI tools into clinical practice [172]. Addi-
tionally, the training requirements for health care pro-
fessionals pose another challenge, as practitioners must 
be adequately educated on the use and limitations of AI 
technologies to raise trust and effective utilization. This 
training is essential to mitigate skepticism among health-
care providers regarding AI’s reliability and efficacy [173]. 
Furthermore, the infrastructure needed to support AI 
implementation is often lacking, and healthcare facili-
ties must invest in both technological upgrades and data 
management systems to accommodate AI tools effec-
tively. This includes addressing technical hurdles related 
to data collection and algorithmic advancements that 
are crucial for the successful deployment of AI in clini-
cal workflows. Overcoming these challenges requires a 
collaborative approach involving stakeholders across the 
healthcare spectrum, emphasizing the need for ongoing 
validation of AI tools in real-world settings to demon-
strate their benefits for patient outcomes.

The true power of AI in transplantation care lies in 
its ability to integrate various aspects of medical prac-
tice into a cohesive whole. he integration of AI in radi-
ology and pathology can improve workflow efficiency 
and diagnostic accuracy, allowing for faster and more 
precise analysis of medical images and tissue samples 
[174]. This enhanced diagnostic capability can provide 
surgeons with more comprehensive and timely informa-
tion for transplantation decision-making. AI tools can 
assist radiologists in detecting subtle imaging findings 
and pathologists in analyzing complex histopathologi-
cal patterns, potentially leading to earlier detection of 
complications or rejection [174, 175]. Interestingly, while 
AI shows promise in improving diagnostic capabili-
ties, there are concerns about its impact on professional 
roles. However, studies suggest that AI is unlikely to 
replace radiologists or pathologists, but rather augment 
their capabilities and allow them to focus on higher-
value tasks [176]. This shift may create opportunities for 
increased direct involvement of radiologists and patholo-
gists in multidisciplinary clinical teams, fostering closer 
collaboration with surgeons. AI has the potential to serve 
as a unifying platform for multidisciplinary collabora-
tion in transplantation care. By streamlining workflows, 
enhancing diagnostic accuracy, and facilitating data 
sharing, AI can enable more effective communication 
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and decision-making among surgeons, radiologists, and 
pathologists. However, successful implementation will 
require addressing challenges such as data integration, 
ethical considerations, and the need for specialized train-
ing to ensure all team members can effectively utilize AI 
tools in their collaborative efforts [175, 177, 178].

Another aspect of the discussion in this area is while the 
integration of AI and machine learning in organ trans-
plantation has shown promising advancements, yet the 
implementation and effectiveness of these technologies 
vary across healthcare systems globally. AI use in the field 
of organ transplantation varies significantly across differ-
ent health systems worldwide. This variation is due to the 
technological infrastructure, regulatory frames, and soci-
eties’ attitudes toward adopting AI in managing human 
life [16]. Comparative insights bring to light both best 
practices and challenges that may inform future devel-
opments in this domain. As discussed above, one of the 
primary areas where AI is making an impact is in organ 
allocation and donor-recipient matching. There is indeed 
a growing optimism among transplant clinicians in the 
United States that these processes might be integrated 
with AI to provide allocation systems not only more equi-
table but also efficient in their function [179, 180]. How-
ever, ethical considerations, such as algorithmic bias and 
transparency, remain significant challenges that need to 
be addressed to ensure fair outcomes [160, 181]. The use 
of AI in transplantation differs greatly across the different 
countries. It is widespread and highly advanced in West-
ern Europe and North America, in regions with well-
developed healthcare systems. These areas are using big 
data and very sophisticated techniques of machine learn-
ing to improve both the pre-transplant workup and the 
post-transplant surveillance [163]. While in developing 
countries, the implementation of AI is usually restricted 
by resources and infrastructure that limit the successful 
implementation of modern technologies [182, 183]. This 
disparity highlights the need for tailored approaches that 
consider local contexts and capabilities when integrating 
AI into transplantation practices. Despite the promising 
developments, there are still many obstacles to overcome 
in the global AI field of organ transplantation. Issues such 
as data privacy, the need for robust validation of AI mod-
els, and the integration of AI into clinical workflows are 
critical hurdles that must be overcome [160, 181]. This, 
however, also creates an urgent need for collaboration 
across disciplinary boundaries between clinicians, data 
scientists, and ethicists to develop effective, yet ethically 
viable AI applications.

In conclusion, while AI and ML algorithms show great 
promise in enhancing predictive capabilities in organ 
transplantation, challenges remain in their clinical imple-
mentation. Future research should focus on improv-
ing model interpretability, validating algorithms across 

diverse populations, and addressing data quality issues to 
fully realize the potential of AI in transplantation medi-
cine. All the discussed technologies can uncover patterns 
in transplantation that traditional methods might miss. 
However, accurate long-term outcome predictions are 
insufficient, highlighting the need for future studies. The 
combination of AI and solid organ transplantation holds 
great potential. As technology advances and extensive 
datasets become available, AI-driven insights in trans-
plantation are emerging as a promising area for future 
research and innovation.
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